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ABSTRACT

The Lagrangian and Eulerian descriptions of the flow in a double gyre, eddy-resolving numerical simulation
are compared in the context of exploring the use of drifter arrays to describe ocean circulation. The parame-
terization of the unresolved scales of motion in large-scale numerical ocean models is analyzed through a
combination of Lagrangian and Eulerian simulated fields. Here, in Part I, the Lagrangian and Eulerian description
of the flow is presented with special emphasis on the description of the eddy diffusivity field. In Part II, the
limitations that coarse spatial resolution imposes on the advective-diffusive equation are tested by comparing
the evolution of a passive tracer field in high- and low-resolution numerical models.

The number of “buoy days” used in the numerical experiment is similar to what is expected to be launched
in the Atlantic Ocean during WOCE/TOGA surface velocity program. The parameters that determine the
model ocean circulation were chosen such that the mean and eddy kinetic energy levels are comparable to
observations in the upper ocean. The diffusivity fields presented here are obtained from two different statistical
approaches, namely, from the shear of the velocity field and from the application of Taylor’s Lagrangian diffusion
theory. This theory relates the absolute dispersion of tagged particles to the diffusive power of the turbulent
velocity field in statistically homogeneous and stationary turbulent flows. By using a combination of Lagrangian
and Eulerian statistics, it is observed that with a large number of particles the mean Eulerian velocities and
velocity variances can be estimated well from the Lagrangian trajectories. The estimation of Lagrangian statistics
(i.e., dispersion rates with respect to the center of mass, Taylor diffusivities, etc.) depends significantly on the
region in which they are computed. The estimation of the spatial distribution of the diffusivity function from
the trajectories of the particles released in the eddy-resolving numerical model reproduce the most important
large-scale characteristics observed in the analysis of drifters and floats in the ocean: anisotropy of the horizontal
components of the diffusivity matrix with zonal values usually being larger than meridional diffusivities, and
an inhomogeneous diffusivity field, with large values in those regions where the eddy kinetic energy is larger.
Central gyre statistics are typically well defined both in terms of the theory and within the drifter densities used.
In the western boundary layer Lagrangian statistics are not robust, not because of sample size problems but due
to the breakdown of the assumptions behind single particle calculations. Regimes where this occurs have ratios
of the local advective time scale to the Lagrangian decorrelation time scale greater than one and are therefore
typically nonstationary.
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1. Introduction

One approach frequently used to describe tracer
transport, both in oceanography and meteorology, is
the analysis of the trajectories of fluid parcels. Because
the conservation of properties is a Lagrangian concept,
the use of Lagrangian current followers is a natural
way to observe the horizontal (or quasi-horizontal)
eddy processes and provide a description of lateral ad-
vection and eddy dispersion of the particles by the flow
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field. Particle trajectories and transport effects asso-
ciated with different isolated features have been widely
analyzed with both observations and numerical and
analytical models. The Lagrangian approach to explore
the ocean circulation is usually focused on the analysis
of individual particles trajectories for different flow re-
gimes and the use of Lagrangian statistics to describe
the eddy transport.

As suggested in the pioneering work of Taylor
(1921), Lagrangian statistics prove to be a useful tool
to describe eddy transport. Taylor’s work is considered
to be the starting point of the classical diffusion theory.
Its main contribution is to provide a way to estimate
the diffusive power of a turbulent velocity field by an-
alyzing the autocorrelation function of the Lagrangian
velocity field. A large amount of research has been done
using this approach both in the atmosphere and the
ocean under the assumption that the Lagrangian sta-
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tistical analysis of atmospheric balloons (Kao 1965)
and floats, respectively, provides a measure of the dif-
fusivity field (Freeland et al. 1975; Davis 1985; Colin
de Verdiere 1983; Krauss and Boning 1987; Figueroa
and Olson 1989). This analysis has also extended to
basin-scale eddy resolving numerical models (BOning
and Cox 1988).

Boning and Cox (1988) were the ﬁrst to examine
the eddy diffusive properties of a flow field in a basin-
scale eddy resolving primitive equation numerical
model of the ocean circulation by using Lagrangian
trajectory simulations. Their analysis is limited to the
relatively homogeneous eastern part of the interior of
the subtropical thermocline where the concept of eddy
diffusivity is more likely to apply because of the ho-
mogeneity of the velocity field. By using interpolated
data archived every 3 days, they estimate eddy diffu-
sivities in the model thermocline to be on the order of
5% 107 cm? s™!. This value is a factor of-3 larger than
oceanic observations for these areas. Their analysis,
however, is restricted to the gyre interior, and no dif-
fusivity estimations are presented for the western
boundary and the high eddy kinetic energy regions.

The novel approach of this work is that it goes one
step further in relating the Lagrangian and Eulerian
approaches in describing the mixing of passive tracers.
This is done by looking at how well the dispersion of
drifters, and the eddy diffusive properties of the me-
soscale eddy field inferred from them, represent the
actual diffusion and mixing of tracers.

The goals of Part I are therefore to investigate the
feasibility of estimating relatively accurate eddy dif-
fusion coefficients and other low-order Lagrangian sta-
tistics from the trajectories of numerical particles re-
leased in an eddy-resolving numerical model of the
ocean circulation. Thus, the Lagrangian and Eulerian
description of the flow is presented with particular em-
phasis on the estimation of the dispersive properties of
the eddy velocity field. In Part II, we make use of these
Lagrangian statistics to analyze the evolution of passive
tracer fields. Here it is assumed that the classical dif-
fusion theory of Taylor (1921), based on the statistical
analysis of the dispersion of single particles in stationary
and homogeneous flows, is capable of describing the
diffusive power of the eddy velocity fields.

The layout of this work is as follows. In section 2,
the Bleck and Boudra (1986) numerical model equa-
tions and characteristics are briefly reviewed. In section
3, the numerical techniques associated with the tracking
of Lagrangian particles in Eulerian numerical models
are discussed. In section 4, the results from the eddy
resolving experiments are presented. The discussion is
based on the analysis of the Lagrangian and Eulerian
statistics computed from the numerical model. These
statistics are the spatial distributions of diffusivity
functions, Lagrangian integral time scale, kinetic ener-
gies, and dispersion rates. A discussion of the results
as well as their significance to the execution of field
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programs and modeling of passive tracers is presented
in section 5.

2. Description of the model

The original code first developed by Bleck and
Boudra (1981) for a hybrid vertical coordinate system,
and later implemented to pure isopycnic coordinates
(Bleck and Boudra 1986), had been used extensively
for exploring the wind-driven circulation on basin
scales for both coarse- and high-resolution simulations
(Boudra and Chassignet 1988; Campos and Olson
1991; among others). Here, the Bleck and Boudra
(1986 ) isopycnal coordinate primitive equation model
is used. The equations of motion for each layer are
basically the shallow-water equations, and there is no
fluid motion across the coordinate surfaces. Layers in-
teract only through hydrostatically transmitted pressure
forces. The layer-integrated horizontal momentum
equations in generalized coordinates with s as the ver-
tical coordinate are according to Bleck (1979):

v 1
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where
dv  du
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dx dy

is the relative vorticity on s, « is the specific volume
within the layer, s = ds/dt, ¢ is the geopotential, and
A 1is the eddy viscosity coefficient. Other symbols are
conventional.

The continuity equation in isopycnal coordinates,
which does not include any thickness diffusion term,
is given by

dap
dt

where Ap is the layer thickness. The hydrostatic equa-
tion is given by

=0, (2)

oM = pia. (3)

The horizontal pressure force is expressed in terms
of both geopotential and pressure gradients along co-
ordinate surfaces represented by the Montgomery po-
tential (M = gz + pa). Since there are no diabatic
processes or compressibility effects considered, there is
no thermodynamic equation to be solved. The nu-
merical techniques used in the model integration are
presented in Bleck and Boudra ( 1986) and, therefore,
are not discussed here.
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Parameter setting

The parameters that determine the model ocean cir-
culation were chosen such that the eddy kinetic energy
levels are comparable to observations (Richardson
1983; Piola et al. 1987) in the upper ocean (Fig. 1a).

Depth H = 4000 m
Upper-layer thickness h; = 500 m
Lower-layer thickness h; = 3500 m
Reduced gravity g =002ms™?
Wind stress amplitude 70=0.1 Nm™
Viscosity A=50m?s"!
Coriolis parameter fo=83-10"%s7"

Meridional coriolis

variation 8=20-10""m's!
Bottom friction e=10-10""s""
Horizontal resolution Ax =20 km

The boundary conditions are given by

d
u=—13=0 at x=0, L,;
x

du

P 0 at y=0,L,,

which correspond to free slip lateral boundary condi-
tion. The implementation of free slip boundary con-
ditions for the C grid used here is discussed in Campos
(1990). The ocean is driven by a zonal wind stress
(7, 0), given by 7, = —7¢ cos(2wy/L,), where L, is
the meridional extent of the basin. No buoyancy forc-
ing, besides the one on the form of pressure forces be-
tween the layers, is included. For the parameter setting
as described above, the observed scales for the isopycnal
velocity, (U), horizontal scale (L), and vertical scale
(D), are 30 cm s~!, 100 km, and 500 m, respectively.
The associated Rossby radius of deformation is about
40 km, and the Reynolds and Burger numbers are of
the order of 600 and 0.1, respectively. The high Reyn-
olds number clearly indicates the turbulent character-
istics of the model simulations, while the Burger num-
ber provides a measure of the ratio of the radius of
deformation to the typical length scale.

Results from wind-driven primitive equation models
in a double gyre configuration with square geometry
and flat bottom are extensively discussed in the liter-
ature (Holland and Lin 1975; Holland 1978; Bleck
and Boudra 1981, 1986; Huang 1986; and others).
Therefore, the discussion here will only briefly treat
aspects of the circulation that are considered in the
aforementioned papers and will focus on mixing in
this well-studied configuration.
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Figure 1a shows the eddy kinetic energy field and Fig,
1b shows a series of instantaneous maps of the upper-
layer circulation represented by the layer thickness field.
The circulation in this layer is composed of a subtropical
and subpolar gyre with an eastward flowing free jet in
between. The high Reynolds number characterizing the
circulation, together with the high resolution (Ax, Ay
= 20 km) and relatively low ratio of the upper to lower
layer depth (H,/H, = 0.14) results in a circulation that
is very nonlinear and in which eddies form almost con-
tinuously over most of the basin. Figure 2 depicts the
mean circulation for the same layer, averaged over the
last 4000 days (~11 years) of the model integration.

3. Lagrangian statistics

Figures 3 and 4 show! the spaghetti plots corre-
sponding to two sets of Lagrangian trajectories
launched in Northern Hemisphere subtropical and
subpolar gyres, respectively. The particles launched in
the subtropical gyre (Fig. 3) exhibit more turbulent
trajectories as they drift westward than those moving
in the same direction and launched in the subpolar
gyre (Fig. 4). This behavior is consistent with the
smaller upper-layer depth in the northern part of the
basin (than in the southern), which results in a more
nonlinear regime. Eddies, characterized by closed par-
ticle trajectories, are observed to exist almost every-
where in the basin.

Bower (1991) studied the mechanisms by which
fluid particles cross a meandering jet. Her results sug-
gest that the ability of particles to cross the meandering
jet stream is determined to a large extent by the motion
of the water parcel along the stream relative to the
meander propagation and by the initial position of the
particles relative to the core of the stream. Recent ob-
servations in the Gulf Stream (Bower and Rossby 1989)
reveal that only a small number of subsurface RAFOS
floats actually travel across the stream. The particle
trajectories presented here do not show evidence of
this behavior, although they suggest that a small num-
ber of particles can be trapped in forming eddies and
move across the gyre trapped in the eddy. Two likely
explanations for this behavior can be put forward. As
suggested by Owens (1984), if the alongstream velocity
of the particles exceeds the typical phase speed of the
propagating meander, fluid particles are likely to be
trapped in the current. The second explanation is that
the sharp meridional potential vorticity gradient ob-
served in the region of the jet acts as barrier to the
exchange of particles. It should be kept in mind that
the Lagrangian particles are not affected by particle
inertia and that because of the spatial resolution used
here (20 km), the particle trajectories are not affected
by smaller-scale phenomena.

! Here, only a small fraction of the total number of trajectories
used in this study is presented.
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The statistical background

Eulerian statistics from Lagrangian trajectories are
estimated from a combination of spatial and tempo-
ral averaging. Lagrangian statistics, on the other
hand, consider observations made following particles
launched in a region. The requirement is usually re-
laxed by using all particles that pass through a region.

The computation of autocorrelation functions, dif-
fusivity functions, and dispersion rates requires the
separation of the instantaneous velocity into a mean
component plus a fluctuation with respect to the mean.
When only Lagrangian data is available, as is usually
the case from observations in the real ocean, the mean
velocities removed from the velocity time series are the
ones obtained by averaging all existing estimates in a
given region. Here, the availability of a mean velocity
field estimated from both the Lagrangian trajectories
and the Eulerian gridpoint values provides the means
for comparing both fields (Figs. 5a,b).

The Lagrangian statistics discussed in this section
were estimated from the trajectories obtained from 200
particles randomly deployed over the basin. The model
ocean was integrated for a period of 4000 days (~11
years) after equilibrium, providing 8 X 10° buoy-days.
The integration was carried out in four periods of 1000
days each. At the beginning of each period the La-
grangian particles were randomly seeded. This was
done in order to reduce bias and maintain a relatively
uniform float density distribution.

Eulerian averaging is used to estimate mean veloc-
ities and single particle diffusivity from the Lagrangian
particles. As indicated by Davis (1983, 1985), there
are three basic ways that Eulerian statistics derived from
Lagrangian data can be biased. These are:

1) Bias originated by Stokes drift, which induces
higher-order terms (i.e., V, = Ug + I'(0Ug/9dx)). These
terms correspond to the Lagrangian mean velocity, the
Eulerian mean, and the product of the Lagrangian dis-
placement by the Eulerian velocity gradient, respec-
tively. This suggests that if particles are not uniformly
distributed, there is a difference between random de-
ployment and random encounter statistics.

2) The existence of a correlation between launching
position and the mean drift.

3) Inhomogeneities of the eddy velocity field, which
cause particles to drift toward high eddy energy regions
(Freeland et al. 1975).

The main features observed from the gridpoint ve-
locities are well represented by the Lagrangian particles,
although minor differences due to a lack of continuity
of the Lagrangian sampling can be observed. The Eu-
lerian mean velocity components obtained from the
Lagrangian particles drift are estimated by partitioning
the ocean basin into subblocks of 2 by 2 model grid
elements and ensemble averaging float velocities over
each subdomain area. In this way the Eulerian statistics
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FIG. 1. (a) Eulerian eddy kinetic energy in cm? s™2, (b) Instan-
taneous maps of the upper-layer circulation represented by the layer
thickness. Maps are presented every 10 days.

from the floats are obtained for 40 km X 40 km areas.
The 40 km X 40 km size of the subblocks is a com-
promise between spatial resolution, statistical stability,
and representativeness. Figures 6a,b show the corre-
lation between the mean velocity components as de-
termined from the gridpoint values and from the La-
grangian trajectories. The influence of the westward
propagation of the planetary waves on the float-derived
mean velocity field is represented by the departure of
the scatter points with respect to the diagonal solid
line. Note that this departure is larger for the high zonal
velocity estimates characteristic of the free jet. The
correlation in the meridional component shows that
the absolute value of the float-derived mean velocities
is systematically larger than the mean Eulerian veloc-
ities, particularily in the western boundary layer, where
velocities are higher. Probably, the 40 km X 40 km
subblocks in the western boundary region for which
the Lagrangian mean velocities are estimated is too
wide to resolve the western boundary current, under-
estimating its value.

This averaging procedure of computing the arith-
metic mean value from all observations in a bin is
biased toward low velocity episodes, as water parcels
trapped in slow moving features will remain longer in
an area than those trapped in fast moving features.
One alternative to reduce this source of bias is by con-
sidering only independent observations, by applying
some combination of temporal and spatial filtering of
the available data. This procedure is implemented here
by assuming a decorrelation time scale of the order of
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CONTOUR FROM 2.4x107 TO 7.8x107 BY 0.3x10"

FIG. 1. (Continued)

5 days and thus using only independent velocities sep-
arated by a typical time scale. If, for example, two par-
ticles are in the same 40 km X 40 km bin within the
temporal window of a typical Lagrangian integral time
scale of 5 days, the velocities will not be independent
of each other. In this case, the value corresponding to
the velocity averaged over all the available data during
that period (5 days) is used as an individual observa-
tion. The same averaging procedure is considered when
a Lagrangian particle stays in the bin over a period

shorter than the typical time scale. This method of
computing Eulerian average velocities from Lagrangian
data gives mean kinetic energy levels that are about
16% higher than those estimated by considering all
available data inside the bin.

4. The diffusivity fields

The Eulerian and Lagrangian statistics to be dis-
cussed in what follows are meant to serve as a link
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FI1G. 2. Upper-layer mean circulation averaged over the
last 4000 days (~11 years) of integration.

between Lagrangian particle motions, mixing length
theories, and Lagrangian diffusion, and the use of the
advection—diffusion equation for passive tracers (Part
II) in which the eddy transport is governed by an eddy
diffusivity, considered in the following section.

There are several approaches used to describe eddy
transport in numerical models. The most widely used
is Laplacian diffusion (the flux vs gradient law) in
which the factor of proportionality is tuned to maintain
numerical stability. Here, two approaches are exam-
ined. The first represents a Lagrangian view of the
problem in which the dispersion of Lagrangian particles
are used to compute the lateral components of the
space-dependent diffusivity. The second is an Eulerian
approach in which the mean shear of the instantaneous
velocity field is used to estimate a deformation-depen-
dent diffusion coefficient. The two diffusivity fields re-
sulting from the Lagrangian and Eulerian approaches
mentioned above are discussed here and are used in
Part II to investigate the usefulness of a space-depen-
dent and anisotropic diffusivity field in the integration
of the advective-diffusive equation for a passive tracer
field.

a. Lagrangian diffusivity

The statistical background supporting the compu-
tations presented in what follows is discussed in several
papers (Freeland et al. 1975; Colin de Verdiere 1983;
among others). These statistics are autocorrelation
functions, diffusivity functions, dispersion rates, and
Lagrangian integral time scales. The main restriction
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F1G. 3. Spaghetti diagram corresponding to a small fraction of the
Lagrangian trajectories launched in the subtropical gyre. Axis is given
in kilometers.

for the application of the classical diffusion theory of
Taylor is the homogeneity and stationarity of the tur-
bulent velocity field. These concepts are necessarily re-
lated to specific spatial and temporal scales. An ocean
basin, for example, is certainly not homogeneous, and
if the observations are taken over a period of a year, it
is nonstationary as well. However, by reducing the spa-

PARTICLE TRAJECTORIES (North Gyre)
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FI1G. 4. Spaghetti diagram corresponding a small fraction of the
Lagrangian trajectories launched in the subpolar gyre.
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FI1G. 6. Correlation between mean zonal (a) and meridional (b) velocity components as obtained from the Lagrangian
particles and from the Eulerian field. Each dot corresponds to a gridpoint observation from the previous map. Velocities

are given in centimeters per second.

tial scales over which statistics are estimated, the con-
dition of homogeneity can be approximated. Analo-
gously, if observations are taken over long periods so
that the lower frequencies can be resolved, the asso-
ciated statistics can be considered stationary. A third
possibility is the existence of an energy gap between
low-frequency fluctuations and the dominant frequen-
cies in the signal. The application of the first of these
restrictions to the estimation of Lagrangian diffusivities
from the numerical model would impose severe con-
straints on the size of the bins, particularly near the
western boundary. Reducing the size of the bins gen-
erates a problem with the resolution of the autocor-
relation function. Thus, the size of the bins represents
a compromise between resolution and representativity.
Of the several steps usually taken to go from the
Lagrangian velocity time series obtained from drifting
floats to the ensemble-averaged particle dispersion to
be presented, there are three functional steps in which
homogeneity and stationarity are explicitly assumed.
The first of these three is to assume that the autocor-
relation of the velocity field determines the joint prob-
ability distribution function; thus, the autocorrelation
function can be used to describe the turbulent field.
The second one, which is basically the definition_of
homogeneity, is that @ # u#(x, y) and that 2
# #/*(x, y). And the third one is to assume that the
statistics are independent of the launching time and
position. '
The size of the bins used for the estimation of the
autocorrelation functions, diffusivity functions, and
dispersion rates from the Lagrangian trajectories is 200
km X 200 km. Each bin contains 10 model grid points
in each direction. The number of floats passing through
each bin over the duration of the experiment is about
100 = 20, providing more than 5000 daily velocities
per bin. Despite the large sampling array, not all La-
grangian time series are suitable to be used in the es-

timation of the autocorrelation function. In most bins,
only a relatively small fraction (40% or less) of the
total number of particles depicts an autocorrelation
function with a zero crossing. This zero crossing is in-
dicative of the existence of a high-frequency eddy field.
The other 60% of the Lagrangian time series do not
show a zero crossing. The spatial distribution of the
autocorrelation function calculated from Eq. (4) is
presented in Fig. 7. The autocorrelation function of
the Lagrangian velocity field [ R;(7)] is given by

1 1 * ! !
R === (7. [ woue+ na). @
where the primes denote the velocity fluctuations with
respect to the Eulerian mean velocity, and i and j refer
to the horizontal direction; 7 is the time lag, and T is
the maximum lag. Each small frame depicts the zonal
(dashed line) and meridional (solid line) ensemble-
averaged autocorrelation function corresponding to
each 200 km X 200 km bin. The x axis in each frame
corresponds to the time lag that goes from 0 to 30 days.
(In some cases, the length of the function exceeds 30
days and extends into the neighboring frame.) The y
axis corresponds to the value of the autocorrelation
function, which can vary between —1 and 1. The de-
correlation time is represented by the first zero crossing.
Deep negative and positive oscillations in the auto-
correlation function denote the existence of energetic
coherent structures in the turbulent velocity field.

One of the major limitations of estimating diffusiv-
ities from the Lagrangian autocorrelation function is
the resolution of the small-scale eddy velocity (/ < 200
km) by individual particle trajectories. When the ad-
vective time scale, defined as the ratio of the size of
the bin to the mean velocity, is smaller than the de-
correlation time of the Lagrangian trajectory (i.e., I/
Ur < 714), the zero crossing of the autocorrelation
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FIG. 7. Map of the autocorrelation function. Each small frame depicts the zonal (dashed line) and meridional (solid line) ensemble
averaged autocorrelation function corresponding to each 200 km X 200 km bin. The x axis in each frame corresponds to a time lag that

goes from 0 to 30 days. The y axis varies between —1 and 1.

function is not resolved. Thus, the diffusivity function
does not reach an asymptotic value as required by def-
inition. This problem, which is characteristic of high
velocity regions like western boundary currents and
their seaward extension is independent of the number
of floats used and is intrinsic to the Lagrangian view
of an inhomogeneous field and the computation of Eu-
lerian statistics from Lagrangian velocities. The lack
of resolution of the small-scale eddy signals by a par-
ticular float trajectory suggests that trajectory should
not be used in the computations of the “bin-scale”
(200 km) diffusivity function. This restriction signifi-
cantly reduces the number of “adequate” trajectories

used to estimate the autocorrelation and diffusivity en-
semble averages in some regions. This troublesome
characteristic of Lagrangian sampling is circumvented
here by using only those trajectories whose velocity
time series decorrelate while in the bin.

Figure 8 shows the spatial distribution of the diffu-
sivity function Kj(¢) estimated according to Eq. (5):

K1) ='EJ; Ry(7)dr. (5)

The limits of the y axis (Fig. 8) are different for each
bin so that the diffusivity function in all bins can be
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presented in the same map. Note that there can be a
difference of up to two orders of magnitude between
the diffusivity in the region of the free jet and in the
interior. The typical diffusivity curve for homogeneous
turbulence is characterized by a monotonic growth over
a decorrelation time scale, followed by a plateau that
represents the K or diffusivity coefficient. Observa-
tions of the diffusivity function, both in these simula-
tions (Fig. &, Table 1) and from floats in the ocean
(Freeland et al. 1975; Krauss and Boning 1988), rarely
exhibit this theoretical plateau. In the bins in which
the eddy velocity field consist of energetic coherent
features, the diffusivity function shows some oscilla-
tions superirmposed on a steady growth. In some cases,
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the diffusivity function shows a monotonic decrease
after reaching a maximum value suggesting the exis-
tence of an unresolved low-frequency eddy field. The
spatial distribution of the diffusivity curves presented
here suggest that it is not very easy to characterize the
curves according to the various regimes observed in
the model ocean, namely, western boundary currents,
recirculation regions, etc. Most diffusivity curves clearly
show the existence of a strong coherent eddy field. In
only a small number of bins is the asymptotic diffusivity
(K*) actually reached. This suggests that integrating
Eq. (5) over the length of the diffusivity series (T')
results in a diffusivity coefficient that can be too de-
pendent on the limits of integration. If, on the other

O JUN S |

FIG. 8. Map of the diffusivity function. Each small frame depicts the zonal (dashed line) and meridional (solid line) ensemble-averaged
diffusivity function corresponding to each 200 km X 200 km bin. The x axis in each frame corresponds to a time lag that goes from 0 to
30 days. The y axis varies from one frame to another.
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TaBLE 1. Approximate diffusivity values per region in 107 cm?s™'.

Lower- Upper-
limit limit
Lagrangian Lagrangian Deformation
Region K. K, K. K, Ky
Subtropical gyre 09 08 09 08 0.7
Subpolar gyre .1 1.2 1.0 1.3 0.9
Western boundary current 2.1 2.0 38 39 5.3
Free jet 6.0 41 7.1 59 4.8

hand, the K= is estimated by integrating this equation
only up to the first zero crossing of the autocorrelation
function, it will represent an upper limit to the “true”
K. The two estimations, however, might coincide in
a few cases.

A second restriction in the estimation of the diffu-
sivity coefficient from the integration of the autocor-
relation function is based on the assumption that neg-
ative side lobes after a decorrelation time scale are not
statistically significant. Thus, the integration in Eq. (5)
is performed only up to the first zero crossing of the
autocorrelation function. This assumption is consid-
ered by Krauss and Boning (1988). The justification
" for this is that, as shown by Davis (1991), for large-t,
the sampling error of K(¢) increases roughly as 7'/? due
to a reduction in the sample size. Thus, K(¢) is less
accurate as ¢ increases. By considering K(¢y) ~ K%,
where ¢, represents the time corresponding to the first
zero crossing, it is assumed that K= represents an upper
limit to the diffusivity coefficient.

These ideas apply particularly to the interpretation
of the evolution of tracer fields. Basically, they suggest
that if the time scale over which K(¢) approaches K*
is short compared to the time scale over which the
mean tracer field evolves, the classical eddy diffusion
law, with the time-independent diffusivity K, will ap-
proximate the elaborated advection—diffusion equation
developed by Davis (1987), in which the diffusivity
term considers a time-dependent diffusivity.

Based on the preceding considerations, the two
methods of computing the diffusivity coefficient (in-
tegrating up to the first zero crossing and integrating
over the length of the autocorrelation function) rep-
resent an upper and a lower diffusivity limit. In Fig. 9
the spatial distribution of the four elements of the iso-
pycnal diffusivity matrix is presented (from the inte-
gration over the length of the series). Consistent with
theory and observations, the maximum values are as-
sociated with the region of the free jet and decay east-
ward ( Table 1). These characteristics are evident from
studies in the region of the Brazil/Malvinas currents
(Figueroa and Olson 1989). Particularly near the
western boundary layer, the negative zonal gradient of
the zonal diffusivity results in a negative zonal advective
effect. This is represented by

FIGUEROA AND OLSON

381

9%

a a0 9K, 99
—N KT | =— XX A 3 "
( é)x) ax?

ox ax &

Therefore, the space-dependent diffusivity near the
western boundary layer has the opposing effects of gen-
erating an eastward diffusion due to the tracer gradient
and a westward advective effect due to the diffusivity
gradient.

The ocean interior (Fig. 9) shows a diffusivity dis-
tribution that is about two orders of magnitude smaller
than in the region of the jet. This is consistent with the
eddy kinetic energy distributions. The off-diagonal ele-
ments of the diffusivity matrix have both positive and
negative values that are of the same order of magnitude
as the diagonal elements. This suggests that neglecting
these terms in the advective-diffusive equation can
misrepresent the diffusive power of the eddies. It also
implies an active interaction between waves and the
mean flow that exceeds the familiar Fickian formula-
tion with a constant diffusivity. The diffusivity distri-
bution presented here shows some of the characteristics
observed in Figueroa and Olson (1989) from the
Southern Ocean studies and the First GARP (Global
Atmospheric Research Program) Global Experiment
surface drifters, namely, a highly inhomogeneous spa-
tial distribution, horizontal anisotropy with zonal val-
ues being large than meridional, away from the western
boundary layers, and a fair correlation eddy velocity
field.

Taylor’s (1921) theory states that in homogeneous
and stationary turbulent flows the rate of dispersion of
Lagrangian particles is related to the autocorrelation
function by

_— __ T
XiH@)= ZuEfJ; J; Rji(r)drdt, (6)

where i and j correspond to the zonal and meridi-
onal components, X ?(¢) is the variance of the
eddy displacement, and u'? is the velocity variance.
Figure 10 presents the Lagrangian dispersion function
[corresponding to Eq. (6)] in a similar fashion as shown
in the other figures (Figs. 8 and 9). It is somewhat
difficult to interpret the patterns of behavior of the dis-
persion function in the light of existing statistical the-
ories, as most of these theories have been developed
for very specific regimes such as decaying turbulent
flows (Basdevant and Sadourney 1983; McWilliams
1984) and forced turbulent regimes (Basdevant et al.
1981). For inhomogeneous turbulent regimes, as con-
sidered here, the theoretical relations determining the
time evolution of the Lagrangian statistics are not able
to predict the actual behavior.

The inhomogeneity of the turbulent velocity field is
superimposed on a shear of the velocity field. This
characteristic of the mean velocity field also needs to
be taken into consideration when estimating Lagran-
gian statistics.
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Spatial Distribution of the Isopycnal

Diffusivity Matrix Terms

E
K‘xmmax = 88 . 107cm23_1

Ky:vman; =29 107677125_1

E
Kyy'rn,afl; = 54 . 1076777,23—1

FIG. 9. Map of the four elements of the isopycnal diffustvity matrix.

The relation between Lagrangian velocity statistics
and simple shear flows was first analyzed by Corrsin
(1953) by considering a statistically homogeneous and
stationary Eulerian velocity field with a linear shear.
The expression for the dispersion tensor element on
the direction across the shear as t = oo suggests a >
growth law rather than the ¢2 characteristic of no shear
flows. This ¢3 law is more likely to explain the Lagran-
gian dispersion better than the £2. It should be noted,
however, that a ¢3 growth law only considers the math-
ematical aspect of the derivation of the growth rate and
does not take into account the direct influence of the
shear on the dispersion of the particles. That is, particles
in a region of strong shear can be actually inhibited
from dispersing across the shear flow. This effect, which

suggests a strong interaction between the trajectory of
the particles and strong jets, cannot be removed in any
simple manner.

b. The deformation-dependent diffusivity field

A variable eddy diffusivity described as “deformation
dependent” (Smagorinsky 1963), which provides for
large eddy diffusion in regions where the horizontal
shear of the velocity field is large, is estimated from the
Eulerian velocity field. The space-dependent defor-
mation diffusivity [Eq. (7)] is computed by averaging
in time the instantaneous velocity shear from the eddy
resolving model. This leads to an isotropic and inho-
mogeneous diffusivity coefficient defined as
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Fi1G. 10. Map of the dispersion function estimated according to Eq. (6). The x axis in each frame
corresponds to a time lag that goes from 0 to 30 days. The y axis varies for each framie.
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The proportionality constant «, chosen such that
the basin-averaged diffusivity coefficient is approxi-
mately the same as in the other experiments (107
cm? s7') is equal to 0.6. The spatial velocity gradients
are computed at regular time intervals from the eddy-
resolving model and averaged in time to obtain the
mean shear (S) and normal (N) stresses. The spatial

distribution of the deformation-dependent diffusivity
is presented in Fig. 11. The reasoning behind the use
of the deformation-dependent diffusivity is interpreted
as follows: the formation and maintenance of the eddy
field requires an energy source, which is mostly pro-
vided by the shear flow. Thus, the magnitude of the
shear gives a measure of the intensity of the eddy field
that it sustains. This relationship can be expressed as

w_ ou
) Oxj’

where c is a nondimensional constant. If ¢ is order 1,
the vorticity of the eddies is of the same scale as the



384

\\%}%\\ ’ /, I

W

K gmaz = 5.7107em2s~1

FiG. 11. Deformation-dependent diffusivity.
Maximum value is 5.7 X 107 cm?s™".

mean shear. If a mixing length model is invoked, where
K ~ u'lor K ~ u'*T, we can further write

K~ o 2 p( 04 7
ax; ax; )

where i and j represent the two horizontal directions.
The first form of these two expressions is assumed here.
The modulus in Eq. (7) guarantees a nonnegative dif-
fusivity field. Therefore, the use of the deformation-
dependent diffusivity is consistent with mixing length
theories. Its geographical distribution is thus qualita-
tively similar to the combination of the diagonal terms
of the Lagrangian diffusivity field.

5. Conclusions

From the trajectories of 200 particles released in an
eddy resolving numerical model, a Lagrangian de-
scription of the model ocean circulation is presented.
This description is based on the analysis of individual
trajectories as well as on the estimation of Eulerian
and Lagrangian statistics.

The Lagrangian trajectories presented here, show
many of the features observed from floats in the real
ocean: some of them are trapped in eddies and drift
with them for several months before escaping; others
shows the effect of propagating waves. However, almost
no particles are observed to cross from one gyre to the
other through the meandering jet, although some do
so farther downstream.

By using a combination of Lagrangian and Eulerian
statistics, it is observed that with a large number of
particles the mean Eulerian velocities and velocity
variances can be estimated well from the Lagrangian
trajectories. However, the estimation of Lagrangian
statistics in this study, particularly near the western
boundary layer, is not significantly dependent on the
sample size but rather on the ratio of the local advective
time scale to the Lagrangian decorrelation time scale.
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That is, if the mean flow is too fast for the Lagrangian
particle to stay inside the bin for time longer than its
decorrelation time, the KX® is never reached. This can-
not be improved by increasing the number of particles
used to estimate the diffusivity function.

The estimation of the spatial distribution of the dif-
fusivity function from the trajectories of the particles
released in the eddy-resolving numerical model depict
most of the characteristics observed from oceanic es-
timations: 1) anisotropy of the horizontal components
of the diffusivity matrix with zonal values usually being
larger than meridional diffusivities, and 2) an inho-
mogeneous diffusivity field, with large values in those
regions where the eddy kinetic energy is larger. It also
shows that the off-diagonal elements of the diffusivity
matrix are of the same order of magnitude as the di-
agonal elements. On the other hand, these Lagrangian
statistical estimates from the numerical -simulations
also proved to have some of the same computational
complications as the oceanic estimations, particularly
in those areas of strong velocities ( e.g., western bound-.
ary currents). One of the major limitations of esti-
mating diffusivities from Lagrangian trajectories is that
when the Eulerian advective time scale is smaller than
the decorrelation time of the Lagrangian trajectory, the
diffusivity function does not reach an asymptotic value
as expected from theory. This characteristic of the dif-
fusivity function in high velocity regions is intrinsic to
the closure approximation. This troubling aspect of
the Lagrangian sampling problem is particularly critical
when trying to quantitatively describe the typical fea-
tures of the general circulation using Lagrangian sta-
tistics. This is a manifestation of the inhomogeneity
and nonstationarity of the velocity field. Unfortunately,
these characteristics are stronger in those regions where
Lagrangian diffusivity estimates are believed to be more
important (e.g., western boundary currents) and
weaker in those regions where knowledge of their nu-
merical values is less relevant. The model diffusivity
coeflicients were consistent in magnitude and spatial
distributions with oceanic estimates: higher values in
western boundary currents and their seaward exten-
sions, higher zonal than meridional values over most
of the basin, and lower diffusivity values in the ocean
interior. These two last statements suggest that, in
principle, there is no need for an extremely large num-
ber of drifters to map the diffusivity field in the ocean,
because the basic characteristics probably can be esti-
mated with a few drifters, while the more involved
properties (e.g., the diffusivity function) cannot be es-
timated even if the number of floats is increased sig-
nificantly.

Consistent with mixing length theories, the defor-
mation-dependent diffusivity spatial distribution is very
similar to the Lagrangian diffusivity, although the
former has large values near the western boundary
layers.
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The preceding statements regarding the represen-
tativeness of the results compared to oceanic estimates
contain good news and bad news. The good news is
that the results are in agreement with what is known
about the eddy diffusivity field in the ocean, giving
some credibility to the conclusion. The bad news is
that the results suggest that the consistency of some
statistics computed here cannot be improved by in-
creasing the sample size. This is of particular relevance
for field program implementation plans, as it sets limits
on the attainable spatial resolution of the diffusivity
field in the ocean.

The major question left to answer is how useful these
diffusivity fields are for describing the evolution in time
of a passive tracer field. This answer is the topic of
Part I1.
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APPENDIX
The Particle Tracking Problem

The Lagrangian representation of the velocity field
depends primarily on the accuracy of the interpolation
scheme used to calculate the fluid particle velocity at
the particle’s exact position and the temporal resolution
of the velocity field, or size of time step. Another source
of error arises from the fact that there is always some
part of the energy spectra of motion that is not being
resolved, and its interaction with the resolved field is
unknown. This source of error was analyzed to some
extent by Haidvogel (1982).

a. The interpolation scheme

Three different two-dimensional interpolation
schemes were tested to find the one that produces the
smallest positioning error. These are the bicubic inter-
polation scheme, bicubic spline, and polynomial in-
terpolation scheme. These three schemes are discussed
in Press et al. (1986). The performance of each of these
schemes was analyzed by estimating the least error for
a given analytical field. The maximum error (not
shown here) associated with the polynomial interpo-
lation scheme is one order of magnitude smaller than
that of the bicubic spline. As expected, in regions where
the gradient of the function is larger the error in the
interpolation is larger. The root-mean-square error for
the polynomial scheme is less than 0.5% of the value
of the function. Yeung and Pope (1988) find that cubic
splines gives the higher interpolation accuracy from a
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comparison of ten different interpolation schemes. In
that paper, however, the polynomial interpolation
scheme used in this study is not considered, and in-
terpolations are performed in three dimensions rather
than two, as is the case here.

b. The Lagrangian scheme

The path of a particle is determined by the kinematic
requirement that

ax(t) _
dt - u(x([)9 t)a

where u is the horizontal velocity field, which is a func-
tion of the position x and time ¢. The simplest form
of integration is usually referred to as the Euler or ki-
nematic method and consists of obtaining the particle
position at a new time step, based on the velocity at
the position of the present time step. This can be written
as

(8)

Xt = xi + AT[u(x, tM)], (9)

where the superscripts indicate the time level and AT
= ¢"*1 — " The trajectories are given by a vector equal
to the displacement between the points (x”, y") and
(xn-H’ yn+l).

The assessment of the accuracy of the trajectories of
particles embedded in a given velocity field was ap-
proached by considering two different types of velocity
fields and two different Lagrangian schemes. The
former are a time-independent analytical velocity field
and the velocity field arising from the primitive equa-
tion model of Bleck and Boudra (1986), and the latter
are a fourth-order Runge~-Kutta and the Euler scheme.
Although the results from this comparison are not
shown here, it was observed that for the velocities and
small time steps used in the integration of the model
the Euler scheme performs as well as a fourth-order
Runge-Kutta scheme. Note that the fourth-order
Runge-Kutta scheme requires knowledge of the ve-
locity components at four successive times (and po-
sitions) per time step. These positions (and corre-
sponding velocities) correspond to the positions (and
velocities) where the particle is going to be at future
times. Thus, the use of a higher-order scheme for ve-
locity fields defined at grid points does not necessarily
imply an increase in accuracy for sufficiently smail
steps, such as used here.
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