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ABSTRACT

1t is hypothesized that wind forcing is a dominant generator of internal waves. A linear model is derived for
the transfer of wind stress into vertical motions associated with internal waves. Two key assumptions are made
in order to develop a wavenumber-frequency spectrum of wind stress. The first assumption is that the two-
dimensional wavenumber spectrum is separable into two components, one parallel to the direction of mean
synoptic flow and the other normal to it. A spectral form for each wavenumber component is hypothesized,
based on aircraft measurements of mesoscale wind fields. The second key assumption is that the mesoscale
wind field is frozen and advects with a uniform velocity associated with synoptic-scale motions. With these
assumptions, the dynamics can be cast into a stationary reference frame—yielding a wavenumber-frequency
spectrum-—or into a moving reference frame—yielding a 2D wavenumber spectrum.

The resulting internal wave spectrum for vertical velocity is cast into various projections, and compared with
the Garrett and Munk spectrum. With the proper choice of model parameters, excellent agreement between
frequency spectra is obtained. It is found that the wind stress divergence dominates over wind stress curl in the
generation of the internal wave continuum. Various sensitivities to model parameters are explored. A Rayleigh
distribution of wind field advection speeds (as observed in synoptic scale weather maps) yields a response very
similar to a single, average advection speed (11 m s™'). The lowest vertical mode is the most energetic for
conditions where the surface mixed layer depth is greater than about 300 m. For a mixed layer depth of 100
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m, the third vertical mode is most energetic.

1. Introduction

Wind forcing is an important generator of near-in-
ertial internal waves. Pollard and Millard (1970),
Kundu (1976), and Weller and Halpern (1983) found
significant correlation between near-inertial motions
in the surface layer and the local wind. Kundu and
Thomson ( 1985) and Rubenstein (1983 ) showed that
linear theory can explain the observed intermittency
of near-inertial waves, and the horizontal phase struc-
ture of surface-layer oscillations. Gill (1984 ) presented
a linear theory that explained many other features of
near-inertial waves, such as the tendency for horizontal
and vertical scales to decrease after a storm has passed.

An important question that arises is to what extent
can linear dynamics explain the full frequency-wave-
number spectrum of internal waves. Kise (1979) pre-
sented a theoretical argument that showed near-inertial
wind forcing may be strong enough to maintain the
entire internal wave field. Eriksen (1988) examined
the linear response of near-inertial waves to a wind
stress that deposits a body force as a step function in
the vertical; uniformly within a surface layer and zero
below. He found that the vertical wavenumber spectral
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response is the same as that described by the Garrett
and Munk GMS81 empirical spectrum (Munk 1981).

This agreement between the vertical wavenumber
response of a step function wind stress and the GM81
spectrum may simply be fortuitous, or it may reflect
wind stress as a dominant source of internal waves. To
resolve this question, one needs to look at the full re-
sponse to a frequency-wavenumber spectrum of the
wind stress field. Unfortunately, complete knowledge
of the wind field’s mesoscale wavenumber—frequency
spectrum may remain unknown for a long time.
Therefore, the approach used here is to take the best
available information about the space-time scales of
the wind field and to formulate a hypothetical wave-
number—frequency spectrum. Then the sensitivity of
the internal wave response to changes in parameters
of the wind stress spectrum can be investigated.

In section 2 a model spectrum of the wind stress
field is developed. The basic form of the spectrum is
based on aircraft measurements of low-altitude me-
soscale winds over the ocean. Two assumptions are
made to simplify the spectrum: the wind field is sep-
arable in the alongwind and crosswind coordinate di-
rections, and the mesoscale field is frozen and advected
with a synoptic pressure system.

In section 3 the basic model equations are presented.
The solution is cast as an expansion in terms of normal
modes in the vertical. The response function in fre-
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quency, wavenumber, and mode number is derived in
terms of the auto- and cross-spectra of wind stress. In
section 4 the response spectrum is analyzed. The spec-
tral density of vertical velocity is analyzed in frequency
and mode number space. In section 5 the analysis con-
tinues in horizontal wavenumber and mode number
space. Section 6 presents a summary of results and
conclusions.

2. Model spectrum of wind stress

The basic problem in the present approach is that a
complete description of the wind stress field or of its
power spectrum is not available. Therefore, we make
certain simplifying assumptions in order to express the
power spectrum in terms of available measurements.

We assume that most of the energetic internal wave
spectrum is generated by forcing from the mesoscale
wind field. Here we define mesoscale as variability in
the length scale range from about 2 to 200 km, cor-
responding to Orlanski’s (1975) 8 and v categories.
We further assume that mesoscale winds are “frozen”
fields that do not evolve with time but are simply ad-
vected with the synoptic scale pressure systems and
that they are separable in x and y. In equation form,
this assumption can be written

X,y
Xy, 1) X (x — UDY (),

(1)
where 7%, 77 are the components of stress in the x and
ydirections, p is density, and U is the propagation speed
of a pressure system. Of course, without wind stress
measurements sufficiently sampled in space and time,
one cannot directly justify this assumption. We note
that the assumption makes the problem tractable.
Kundu and Thomson (1985) made a similar assump-
tion in their study of inertial oscillations due to a mov-
ing front. D’Asaro (1989) made a slightly less restrictive
assumption in his study of inertial oscillations. He did

not assume that the wind stress field was separable in "

x and y but he did make a frozen advection hypothesis:

(X, y, 1)
p

*(x — Ut, y,0). (2)
The amplitude of the propagation speed U is an im-
portant parameter for internal waves. To assess the
distribution of propagation-speeds, we performed a
study of the speeds of atmospheric low pressure sys-
tems. We used a set of surface level atmospheric pres-
sure analyses of the midlatitudes in the North Atlantic,
produced by the Fleet Numerical Oceanographic Cen-
ter. These analyses were generated at 6-h intervals dur-
ing the winter of 1976/77. We measured the propa-
gation of low pressure systems and constructed a his-
togram of propagation speeds. The histogram is shown
in Fig. 1, along with an empirical fit of a Rayleigh
distribution function. The peak of the distribution
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function is at 8.8 ms™!, corresponding to a mean

propagation speed of U ~ 11 ms™".

There have been a number of studies of the time
and space scales of wind stress over the ocean. For
example, Willebrand (1980) analyzed wind stress over
the North Pacific and North Atlantic, and Chave et al.
(1991) analyzed the wind stress curl. They used syn-
optic-scale pressure analyses to compute the quasigeo-
strophic near-surface winds, which were then trans-
formed to wind stress fields. They found that frequency
spectra of wind stress and wind stress curl were nearly
flat, or were slightly red for low frequencies. A break
in slope to approximately —2 occurs at about 0.2 cycle/
day. The smoothing scale for these synoptic analyses
is in the range 300-800 km, essentially removing the
mesoscale variance. Therefore, these spectral analyses
are not useful for describing mesoscales that contribute
to wind-forced internal waves.

A description of the spatial scales of the mesoscale
wind field is perhaps best obtained from aircraft mea-
surements. Overland and Wilson (1984) analyzed me-
soscale variability measured by an aircraft during low-
level tracks in directions along and across the mean
wind. They analyzed three different mesoscale envi-
ronments over the ocean. They fitted their measure-
ments to a model of the autocorrelation and cross-
correlation functions of the wind. From these corre-
lation functions they derived a model of the power
spectrum.

In this paper we assume a wind stress power spec-
trum of a form similar to that used by Overland and
Wilson (1984). We assume that the mean wind is di-
rected parallel to the y direction and that the basic
form for the wind stress autospectral density functions
for stress in the x and y directions may be written

S¥(k, Ddkdl

= x32 _% ﬂxc g ﬂxa
= (7%) (1”3)2(0_*_ kz)(wb’,zm-f- lz)dkdl, (3)

SY(k, )dkdl

_ Y2 2 Byc _2_ 6ya

(7o) (ﬂ’ﬁiﬂ“ kz)(r B2+ lz)dkdl. (4)
Here k and / are wavenumbers in the x and y directions.
The terms B, and 8,, are roll-off wavenumbers of the
x component of wind stress in the cross- and along~
mean wind directions (x and y directions), while the
terms B3, and B, are roll-off wavenumbers of the y
component of wind stress in the cross—- and along-~
mean wind directions (x and y directions). We will
use the value 7Y = 0.14 Nt m~? for average stress
amplitude. This value was chosen so as to tune model
results to be in best agreement with the GM81 spec-
trum. Moreover, this value is consistent with contour
maps of rms stress over the North Atlantic and North

Pacific, derived from synoptic analyses by Willebrand
(1980).
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The forms in parentheses of (3), (4) are similar
to that derived by Overland and Wilson (1984) for
the spectrum of winds in the along- and across-mean
wind direction. They found values for 8, and 8. (cor-
responding, in their notation to 2mj; and 2n;;) in the
range from 0.06 to 0.46 rad km™', corresponding to
wavelengths A = 27 /8 in the range from about 100
to 14 km. Equations (3), (4) do not include a delta-
function term derived by Overland and Wilson. This
delta-function term represents the variability due to
organized mesoscale cloud rolls that were present in
one of their analyzed environments. The term is rel-
atively small in amplitude and is not included in this
study.

Overland and Wilson (1984 ) also computed a cross-
correlation function between u and v variability, which
we can summarize in terms of a cross-spectral density
function,

2 B
Xy = ox Y= xXye
S,— dkdl TOTO(W Biyc‘{- kz)(

z :sxya
7 B2, + I

)dkdl.
(5)

This cross-spectrum will also be needed later in this
paper.

3. Basic model equations

We consider three-dimensional geometry with (x,
v, z) coordinates corresponding to eastward, north-
ward, and upward directions. The velocity components
are u, v, and w. We make the Boussinesq and hydro-
static approximations and write the linearized equa-
tions of motion as

u

Fp--Loru+T oz ©)
%+fu=—g—i——rv+%2(z) (7
2+ go=0 9)
%%;i %’Zf= (10)

Here fis the Coriolis parameter, g is the acceleration
of gravity, p is density perturbation, p is pressure per-
turbation divided by density, NV is the buoyancy fre-
quency, ¢ is time, and r is a damping coefficient. The
components (7%, 77) represent surface stress. The
function Z(z) represents the vertical gradient of stress
and is distributed uniformly in the surface mixed layer
according to the functional form
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FIG. 1. Histogram of atmospheric front translation speed. Estimates
were obtained from synoptic weather charts of the North Atlantic
during January and February 1977. The dashed curve shows a Ray-
leigh density function with a mean value of 11 ms™".

0, O0<z<D-#h

(11)
1/h, D—h<z<D.

Z(z)= {
We define a buoyancy frequency profile to be the
same as that of Garrett and Munk (1972),
(z=(D—h))
b
0, D—h<z<D,

Noexp[— ], z<D-—h,

N(z) =

(12)

where Ny = 3 cph is the surface-extrapolated buoyancy
frequency, b = 1300 m is a scale depth, and 2 = 100
m is a surface mixed-layer depth. The boundary con-
dition is assumed to be w = 0 at the flat bottom and
at the surface (z = 0, D).

We assume that the mesoscale structure of the wind
stress is a frozen field, and that it is simply advected
with synoptic-scale weather systems. For simplicity we
assume that the wind stress can be written as

(13)

We expand all variables in terms of vertical orthogonal
modes;

™ [p = 7§ (X, 3, 0).

o0

(4,0, p) = 2 (Un, Uy, D) Pu(2), (14)
n=0
(0, W) = 22 (Pns Wa)Wa(2). (15)

n=0

Substituting these relations into (6)-(10) we obtain
the vertical structure equation,

AW, N?
dz? c2

W, (16)

where ¢, is a set of eigenvalues. The eigenfunctions
W.(z) and eigenvalues ¢, in (16) are solved numeri-
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cally. We project the stress distribution function onto
a set of vertical modes,

o«

Z(z)=3 %P,,(zx

n=0 En

(17)
and we can solve for the coefficients ¢, in terms of

D
J:) Wi(2)Z(z)dz

On

=~ (18)
j; Wi(z)*dz

We follow the normalization convention used by Er-
iksen (1988) and require that the integral in the de-
nominator equals D, and then require that

(19)

Because #'(z) is a constant in the mixed layer, we
find that

1 !
on =5 Wi(0).

We also define the depth average of the squared eigen-
function to be

(20)

D
W,2,=%f W,(z)%dz. (21)
1]

We combine (6)~(10) and use (13)~(17) to give
—+r

() wpo el 57)

ot x: P

6"[(637 ax) (az r)(ax 6y)}'
(22)
2
Sr(w, [; U)dwd! = {f{l%’f(%, l) + % S!(%, 1)
BY [21
w4 x w
“[5si(s
(4]

The terms in (26) are labeled [1-6], for reference
in our analyses. Terms [1-3] refer to the curl of
the wind stress, and terms [4-6] refer to the rate
of change of the wind stress divergence. Terms
[1]1,[2],[4], and [ 5] are autospectra given by (3)
and (4). Terms {3] and [6] are cross spectra given
by (5).
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Because of our assumption in (1) that the wind stress
field propagates with speed U without dispersion, we
can choose one of two coordinate systems. We can cast
our problem into a stationary coordinate system by
replacing 9, with U™'9, (as done by D’Asaro 1989),
or to a coordinate system moving with the wind field
(as done by Kundu and Thomson 1985) by replacing
9, with Ud,. In this section we will consider a trans-
formation to a stationary coordinate system. In section
5 we will consider a transformation to a moving co-
ordinate system.

We replace each occurrence of 3, with U™ 8,in (22),
take the Fourier transform in y and ¢, and go into fre-
quency-wavenumber space (w, /) to get a response
function R(w, /, n) from the left-hand side of (22) as
follows:

R, 1, m; U) = 2+ 7" = o*(1 = 3/ U?)
+ 2 + 2iwr] ™!, (23)

We neglect the r? term, as it is very small compared
to /2, and write the squared magnitude of the response
function as

[R(w, I, n; UY? = {[f? — &*(1 = c3/U?) + i}
+ 40?2}, (24)
Then the power spectral density for w is given by
Sy(w, I, n; Udwdl
= |R(w, I, n; U)|*W 262Sp(w, I; U)dwdl, (25)

where Sr(w, [; U) is the power spectral density of the
forcing term in brackets on the right-hand side of (22).
We derive this term as follows: We neglect the term
proportional to r, as it is negligible compared to d,.
We replace 8, with U~'9, in the right-hand side of (22),
take the Fourier transform in y and ¢, and take the

magnitude squared, to obtain
2lw @
——— QXYY
o s7(5)
(31
3
22 ¥ 207l (@ dw
l)+w { S,(U,l>+ U S3 (U’.l)]} U dl. (26)
(51 (61

4. Model analysis: Frequency-mode spectrum

We begin our analysis by recognizing that the re-
sponse function R(w, [, n; U) given in (23) and (24)
represents the impulse response function of a damped
harmonic oscillator. For a particular wavenumber
component /, vertical mode n, and propagation veloc-
ity U, the resonance frequency is given by
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2r?
w3es=w3*(—l—_-c—5/72‘)—2, (27)
where w3 is the resonance frequency in the absence of -y
damping and is given by ' §
fz + 22 ©
3= L T o 28 8
T (28) &
The amplitude damping term may be written r
= (2T 4iss) "', where T, is an energy dissipation time 10 )
scale. Here Tyis represents the time required for dis- 0.01 0.10 1.00
sipation to drain the internal wave field of energy in Frequency [cph]
the absence of forcing (see, e.g., Garrett 1991; Gregg 102
et al. 1986; Gregg 1984). Typical estimates for 7y; I
range from 30 to 100 days; we will assume a value of 100k
45 days corresponding to r = (90 days)™'. The Q factor g |
of the oscillator is then given by §
S o2}
«
Wy, 3
0===( —cﬁ/U2)~L~O(4OO). (29) 8
2r 2r & 104 _
This value for the Q factor corresponds to a rather [ _.oil%
weakly damped oscillator. P :
The spectral density for vertical velocity can be 0.01 0.10 1.00
computed from (25) and (26) with reference to (3)- Frequency [cph]

(5). The spectral density is plotted in Fig. 2, for pa-
rameter values r = (90 days) ™', U= U= 11 ms™!,
and for the two values / = 27 /(15 km) and 27 /(150
km). Only term [5] from (26) is included here, as we
will show later that this term dominates most of the
spectrum. In these plots, the first three individual ver-
tical modes are shown, as well as the sum over the first
20 modes. Each mode shows an individual resonance,
given by (27). At high frequencies, well above wys, the
slope of the spectral density for individual modes
asymptotes to —2. This slope represents a combination
of the —4 slope in the squared response function | R|?
in (24) and the +2 slope from term [5] in (26).

We note that this —2 asymptotic slope in the vertical
velocity spectrum is equivalent to a —4 slope in a ver-
tical displacement spectrum. These slopes are in con-
trast with the GM spectrum, which describes a O slope
in vertical velocity and a —2 slope in displacement.
However, the ocean is not forced at a single horizontal
wavenumber, but over a continuous spectrum. We ap-
ply this continuous spectrum by performing the inte-
gration,

Sp(w, n; U) = j(; S, I, n; U)dl, (30)

and a summation over the first 20 modes,

20 ©
S(w, U)= 2, Su(w, [, n; U)dI.

n=1

(31)

Figure 3 shows the frequency dependence of S,,(w; U);
the components associated with each of the six indi-
vidual forcing terms in (26 ) and the subtotals over the

FiG. 2. Spectral density of vertical velocity, in units of
(m s™")?(rad s~')~!, for parameter values (a) [ = 2 /(150 km) and
(b) I =2« /(15 km). The total spectral density is shown (thick solid)
as well as the explicit contributions by the first three modes. The
sharp spikes correspond to frequency resonances associated with par-
ticular mode-wavenumber combinations.

first three and the last three terms are shown. Here
the spectral density is expressed in units of
(ms™")2(rad s™')"!, and is plotted as a function of
cycles per hour (cph). Terms [1] and [5] dominate
the subtotals, as they include a proportionality to /2.
The important point to notice is that the spectra are
rather smooth functions; by integrating over all wave-
numbers, a continuum of resonances is combined, re-
sulting in smooth functions of frequency.

The dominant terms [1] and [51], and the sum over
all six terms are shown in Fig. 4. The spectral density
Sw(w, n; U) is shown for the first 8 modes; n = 1, 2,
-+ -, 8, as well as the summation over the first 20
modes, S, (w; U). While the modal summation of term
[1] (Fig. 4a) has approximately a —2 slope in frequency,
term [5] (Fig. 4b) has approximately a O slope. As a
result, term [5] dominates over most of the internal
wave frequency band; the sum over all six terms (Fig.
4c) is very similar in shape to that of term [5].

Figure 5 shows a comparison between the total spec-
tral density and the GM spectrum. The wind-forced
model agrees well in shape and amplitude with the
GM spectrum. Figure 6 shows a comparison between
the spectral density S, (w, n; U) and the corresponding
GM spectrum. While the shapes are similar, we note
that unlike the GM spectrum, the wind-forced spec-
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F1G. 3. Wind-forced model spectral density of vertical velocity, in
units of (m s™')2(rad s~*)~!. Wind stress curl terms [1-3] are shown
in (a), and wind stress divergence terms [4-6] are shown in (b).
Sharp resonances seen in Fig. 2 have been smoothed out through
integration with respect to horizontal wavenumber /.
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FiG. 5. Comparison between wind-forced model and GM81 model
of spectral density of vertical velocity, in units of (m s™*)*(rad s™')~".

trum is not separable in w and #. The lowest few modes
contribute variance to the vertical velocity spectrum
preferentially at high frequencies (w > f), while the
higher modes contribute preferentially at low, near-
inertial frequencies (w ~ f). This result can also be
seen in Fig: 4c.

The spectral density of vertical velocity, S, (w, n; U)
can be converted into a spectral density of total energy
(= kinetic + potential) through the approximate for-
mula

N2f2
2((.02 __f2)w2

The fraction of energy in a given mode is then given
by

Se(w, n; U) =~ Su(w, n; U). (32)
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F1G. 4. Wind-forced model spectral density of vertical
velocity, in units of (m s™')?(rad s™!)~'. Wind stress curl
term [1] is shown in (a), wind stress divergence term [5]
in (b), and the sum of all terms [1-6] in (c). The total
spectral density, as well as explicit contributions by the
first eight modes are shown. Sharp resonances seen in Fig.
2 have been smoothed out through integration with respect
to horizontal wavenumber /.
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FI1G. 6. Comparison between (a) GM81 model and (b) wind-forced model of spectral density
of vertical velocity as a function of frequency and vertical mode number.
N ber n. In contrast, the wind-forced energy distribution
Se(w, n, U)dw F,(n) is peaked at n = 3.
F(n; U) = (33) At this point we can explore the sensitivity of the

N .
> J; Se(w, n, U)dw

Figure 7 shows a comparison between the fraction of
energy Fo(n) = F,(n; U = U), the GM modal distri-
bution of energy H(n) given in (A.4), and the energy
fraction of the baroclinic modes far from resonance,
hDg2, for h=100m, D = 5km (4/D =0.02). Eriksen
(1988) found excellent agreement between #Do?2 [in
his notation, 4/ D+ G,,(0)?] and H(n), particularly for
h/ D in the range 0.02 to 0.04. Both energy distributions
H(n)and hD¢? decay monotonically with mode num-

0.100

Energy Fraction

0.010

0.001 DS
1 10
Mode Number

FI1G. 7. Fraction of total internal wave energy given by wind-forced
model (diamonds), by the GM81 model (squares), and by a baro-
clinic mode model far from resonance (triangles) from Eriksen ( 1988)
for h/D = 0.02.

wind-forced model to various parameters. Figure 8a
shows the sensitivity of the energy fraction F.(n) to
variations in the mixed layer depth, 4. As the mixed
layer deepens, lower modes are emphasized. Shallow
mixed layers (2 < 200 m) show a distinct peak at low
modes, while a deep mixed layer (4 = 400 m) shows
a monotonic decrease in energy distribution, as a func-
tion of mode number.

This behavior is consistent with observations. San-
ford (1991) and Eriksen ( 1988) resolved internal wave
velocity profiles onto sets of normal modes. In mid-
latitudes, both investigators observed peaks in energy
density in mode » = 3. In the wind-forced model, this
result translates to a mixed layer depth 4 ~ 100 m.

Figure 8b shows the spectral density is inversely pro-
portional to /; Eriksen (1988) also described this in-
verse proportionality. In addition, Fig. 8b shows that
higher frequencies are slightly emphasized as the mixed
layer deepens. _

Figure 9 shows how the spectral density S, (w; U)
depends on the damping coefficient r for three values:
r = (45 days) ™", (90 days)~!, and (180 days) . The
amplitude of spectral density in the internal wave band
varies as 7!, while the shape of the spectral density
does not vary significantly.

Figure 10 shows how the spectral density varies as
a function of front translation speed, U. Spectra for
values U = 4, 10, and 20 m s ! are shown. In addition,
a composite spectrum that has been weighted according
to the Rayleigh distribution of translation speed, men-
tioned in section 2, is shown, where the average trans-
lation speed is U = 11 m s™'. The Rayleigh distribution
is very similar to the spectral density corresponding to

U = 10 m s™'. The spectral density is approximately
inversely proportional to U. The shape of the spectrum
is not sensitive to U at low frequencies, (w < 0.3 cph),
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but is slightly dependent on U at higher frequencies (w
> 0.3 cph).

The reason for the inverse proportionality between
spectral density and front translation speed, U, arises
from our transformation to a stationary coordinate
system. Consider a small-scale feature in the wind stress
field. When this feature is advected past a fixed point
with translation speed U, it is observed as a short time-
scale perturbation. The duration of this perturbation
is inversely proportional to U. The frequency band-
width associated with the perturbation increases with
U. As energy is conserved, the spectral density must
be inversely proportional to U,

There are six different roll-off wavenumbers § in
(3), (4), and (5). Rather than explore the sensitivity
to all combinations of variation between the 3 com-
ponents, we will instead consider only a few cases,
Where 086 = Bxc = ﬁyc = Bxyc and Ba = 6xa = )Bya = 6xya-
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FI1G. 9. Sensitivity of wind-forced spectral density model of vertical
velocity to variations in damping coefficient, r.
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FIG. 8. (a) Sensitivity of energy fraction to variation in
mixed layer depth /, compared with GM81 model, as a
function of vertical mode number. (b) Sensitivity of spec-
tral density of vertical velocity to variation in mixed layer
depth &, compared with GM81 model, as a function of
frequency.

Figure 11a shows three curves, corresponding to roll-
off wavenumbers 8, = 8, = 2w/, for A = 15, 30, and
60 km. Total energy is insensitive to the value of 3,
although high (low) frequencies are somewhat em-
phasized by high (low) values of 8. Figure 11b shows
four curves, corresponding to (8., 8,) = (27 /., 27/
Ae), for (A, Ag) = (15, 60), (15, 15), (60, 60), and
(60, 15) km. We see that variation in the crosswind
roll-off wavenumber serves mainly to change the overall
spectral level, while variation in the alongwind roll-off
wavenumber slightly changes the spectral slope.

5. Model analysis: Horizontal wavenumber—-mode
spectrum

In this section we transform the model equations to
a coordinate system moving with the wind field. We
do this by replacing 9, by Ud, in (22). Then (24)-
(26) are replaced with

101
102§
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£

Spectral Density

104k

10k

10k ==
0.01
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FIG. 10. Sensitivity of wind-forced spectral density model of vertical

velocity to variations in front translation speed, compared with a
. Rayleigh distribution of translation speeds.
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[R(k, I, n; U)|? = {[f*+ c2(k* + I?) - K*U*)?
+4k2U2r2}“, (34)
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Sw(k, 1, n; U)dkdl
= |R(k, I, n; U)|*W 262S(k, I; U)dkdl, (35)

where the wind-forcing spectrum is given by

Si(k, I; Uydkdl = { fH12S*(k, I) + k*S¥(k, I) — 2kIS?(k, 1)]

(1] (2]

If we were to integrate (35) with respect to d/, then
we would obtain the same results as in section 4, if we
had replaced all occurrences of w with kU in (24)-
(26). To obtain results from an independent dimen-
sion, we integrate (35) with respect to horizontal
wavenumber component k to give

Kmax

Su(l,n; U) = f Sw(k, 1, n; U)dk.

0

(37)

Rather than taking the upper limit of this integral to
be infinity, we take the upper limit to be k. = N/ U.
This limit results if we do not allow frequencies greater
than the buoyancy frequency, N.

The GM spectrum is shown in Figs. 12a and 12b.
Figure 12a shows S$M(aq, n) given in (A6), where a
= (k* + I?)!/? is the total horizontal wavenumber
magnitude. Note that this spectrum is not separable in
«a and n. To form a valid comparison between the GM
spectrum and the wind-forced spectrum, we convert
the GM spectrum from an expression in total horizon-
tal wavenumber SSM(«, n) to one in a single wave-
number component, SSM(/, n), given in (A9) and
shown in Fig. 12b. In contrast to SSM(a, n), we see
that S$M(/, n) does appear to be almost separable in
[ and n, except in the region of large / and small »n.
This region of the spectrum drops off because of the
cutoff amax = nw/b of the upper limit in the in-
tegral (A8).

Figures 12¢ and 12d show S, (/, n; U) evaluated
through the integral in (37), using all six forcing terms
in (36). The parameters used here are U = 11 m s/,
h =25m, and r = 1/(10 days); (8., B.) = (27/ A,
27/ Ag) with (A, A;) = (60, 30) km for Fig. 12¢ and
(X, Ag2) = (90, 10) km for Fig. 12d. These parameters
were chosen to allow Fig. 12d to give the best agreement
with the GM spectrum in Fig. 12b. The contrast be-
tween Figs. 12c and 12d give one a feeling for the rather
weak sensitivity to changes in the roll-off wavenumbers
(6C’ ﬁa)-

It is interesting to note that the GM spectrum and
the wind-forced model spectrum, shown in Figs. 12¢
and 12d, exhibit similar cutoffs in the region of large /
and small n. The cutoff in the GM spectrum arises

[3]
+ K2UPK2S(k, 1) + PSY(k, 1) + 2kdSY (k, )] } dkdl.

(36)

[4] [5] (6]

from the upper limit o, = #7/ b in the integral (A8).
The cutoff in the wind-induced model spectrum follows
from the upper limit k., = N/ Uin the integral (37).
These two integrals are not exactly analogous. Their
respective upper limits are also not exactly analogous,
as the upper limit o, arises from the dispersion re-
lation for internal waves (AS), while the upper limit
kmax arises from the dispersion relation for the frozen
field advection of the wind forcing, w = Uk. However,
both cutoffs follow from asserting an upper frequency
limit, wmax = N.

The availability of six roll-off wavenumber param-
eters might provide sufficient degrees of freedom to
tune the wind-forced model over a very wide range of
“observational spectra.” However, our self-imposed
constraints B, = By = Byc = Bxyc and Bz = Bxa = Bya
= By, restrict our tuning to two parameters.

6. Conclusions and discussion

In this paper, the spectral response of vertical velocity
due to wind-forced internal waves was derived. We
summarize with the following conclusions:

1) The linear response of the ocean to surface wind
stress may be sufficient to explain much of the total
energy of the internal wave field, as well as the distri-
bution of space and time scales. For certain ranges of
wind stress model spectrum parameters, there is good
agreement with the GM81 empirical spectrum.

2) The internal wave responses to wind stress di-
vergence and wind stress curl are roughly comparable
in the near-inertial frequency band. In the internal wave
continuum at higher frequencies, wind stress diver-
gence dominates.

3) For a mixed layer depth of 100 m, the third ver-
tical mode is the strongest contributor to the total in-
ternal wave energy.

4) The spectral density of vertical velocity as a
function of frequency is inversely proportional to front
translation speed. Here, it is important to note the as-
sumption that the mesoscale wind stress field is ad-
vected with a uniform speed as frozen turbulence.

5) The frequency-vertical wavenumber spectrum
is not separable, in contrast to the GM81 model.
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6) The slope of the frequency. spectrum becomes
more blue with increasing roll-off wavenumber in the
hypothesized wind stress power spectrum.

The spectral model of internal waves is derived in
terms of the spectrum of the wind stress field. This
spectrum is not well known. Nevertheless, the wind-
forced internal wave model agrees well with the GM81
empirical spectrum, over certain ranges of model pa-
rameters. The agreement is not perfect in all details,
and adjusting model parameters (4, 8,, 8;) will not
necessarily improve the agreement. There are several
reasons for this:

1) The assumed form of the wind stress spectrum
might not be correct. In particular, the separability of
the 2D spectrum into components in the cross—- and
along-mean wind directions is open to question.

2) There are other important sources of internal
wave energy that have been neglected, such as the gen-
eration of internal tides.

3) Dynamical effects such as the interaction of in-
ternal waves with mesoscale structure, the 8 effect, and
irregular bathymetry have been neglected.

4) There are strong nonlinear mechanisms that
transfer energy from one part of the spectrum to an-
other. These mechanisms eventually lead to energy
dissipation. These mechanisms are parameterized by
the damping coeflicient r in the present wind-forced
model.

Frequency spectra are computed up to a maximum
frequency of 1 cph. As discussed by Kundu (1993),
the hydrostatic approximation becomes invalid above
a frequency a few times (Nf)'/? ~ 1 cph. It would be
interesting to remove the hydrostatic approximation
and calculate the internal wave response. The solution
would be more difficult to compute because the eigen-
values become a function of frequency in addition to
vertical mode number.

D’Asaro (1985) showed that over the course of a
year, most of the forcing of near-inertial motions is
contributed by a few dozen of the strongest intermittent
storm events. On average, a few of these storm events
occur each month. Such strong events are not neces-
sarily well represented by an average wind stress spec-
trum, especially one patterned after the results of a
handful of aircraft observations. We should keep in
mind, however, that the dissipation time scale for in-
ternal waves is on the order of several months. Each
individual storm event contributes only a small fraction
to the local internal wave energy. An average wind
stress spectrum might not be too bad an approximation,
if one keeps in mind that it represents a long-term,
large-area average.

There is additional evidence that supports the ap-
proach taken here. Garrett (1991) discussed results of
Briscoe and Weller (1984) and Briscoe (1984), in
which a lag of 2-3 months between internal wave en-
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ergy levels and seasonal variations in wind stress was
observed. In addition, the amplitude of variation in
internal wave energy was about 40% of the amplitude
in the seasonal wind stress variation. Garrett showed
that these facts are consistent with an internal wave
dissipation time scale of 100 to 200 days.

A question that arises is, Why is there a tendency
toward universality, in the sense that seasonal variation
in internal wave energy is weaker than seasonal wind
stress variability? One possible explanation lies in the
way that the efficiency of internal wave generation var-
ies with mixed layer depth. Figure 8b shows how, as
the mixed layer deepens, the coupling between the wind
stress and the internal wave field becomes weaker. The
internal wave spectral density varies approximately as
h~!. Because strong wintertime winds tend to be as-
sociated with a deeper mixed layer, there is a negative
feedback mechanism that tends to reduce the variability
in seasonal wind-induced internal wave variability.

It has long been known that wind forcing is a major
generator of internal waves (e.g., Kise 1979). Several
studies compute the frequency spectrum of internal
waves in resonance with a particular wavenumber
component of the wind field (Rubenstein 1983; Kundu
1993). As noted by Kundu (1993), these spectra are
too spiky, as a result of modal resonances. In addition,
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FIG. 11. Sensitivity of the wind-forced spectral density model of
vertical velocity to variations in wind stress roil-off wavenumber
components, (a) Roll-off wavenumbers 8. = 8, = 2= /A, for A = 15,
30, and 60 km. (b) Roll-off wavenumbers (8., 8,) = (27/X., 27/
Aa), for (g, Ag) = (15, 60), (15, 15), (60, 60), and (60, 15) km.
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the modeled spectral slope in the internal wave con-
tinuum is much steeper than that actually observed.

It is generally assumed that nonlinear interactions
are responsible for the universal shape of the internal
wave spectrum, and for the rapid relaxation of distorted
spectra toward a universal form (Muiiller et al. 1986).
These interactions could remove the spiky resonances
and reduce the slope of the wind-forced internal wave
spectrum, thus substantially modifying the spectrum
into the observed universal spectrum. This present
study provides evidence that the linear response to
winds may be responsible for the first-order shape of
the internal wave spectrum. Nonlinear interactions,
although quite strong, need only make minor adjust-
ments in order to ‘““fine tune” the spectrum into its
universal form.

Deviations from this universal form are observed
only in special places, such as at the equator, under
the polar ice cap, and so on. Deviations at the equator

may be explained by the lack of the Coriolis force there.
Deviations under the polar ice are not so simply ex-
plained. In light of the results of this paper, it seems
likely that the stress applied at the ice—~water interface
has a different spectrum than that of mesoscale winds
over the open ocean.

Levine (1990) computed frequency spectra from
measurements of vertical displacement under the Arc-
tic ice. He found the spectral slope to be nearly —1
rather than the —2 slope described by the GM81 model,
which is primarily based on midlatitude observations.
Moreover, the subice internal wave field was about 50
times less energetic than commonly observed at lower
latitudes. We can speculate that the spectrum was pri-
marily shaped by an ice-induced stress whose (i) di-
vergence amplitude is much less than that of wind-
induced stress in midlatitudes, and (ii) whose spectrum
is much different from that of midlatitude wind stress.
The resulting internal wave field, being much weaker
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than in midlatitudes, is subject to weaker nonlinear
interactions. Therefore, the ability of nonlinear inter-
actions to reshape the internal wave spectrum is much
reduced. As a result, we speculate that the observed
spectrum more closely reflects the linear response to
ice-induced stress than the effect of nonlinear inter-
actions.

How might one test the hypotheses advanced in this
paper against observations? This problem is made dif-
ficult in that internal waves can propagate long dis-
tances away from their region of origin, within a dis-
sipation time scale. Perhaps the best approach is to
relate long-term internal wave statistics to wind stress
statistics. If an experimental site is chosen well away
from continental boundaries and strong oceanographic
fronts, then one might be justified in assuming local
horizontal homogeneity of the wind stress statistics and
the ocean environment.

A distributed set of meteorological buoys would be
necessary to measure the mesoscale wind field. The
model presented here predicts that energy in the in-
ternal wave continuum is most directly related to wind
stress divergence. Therefore, one would want to com-
pute the mesoscale divergence of the wind stress field,
instead of simply the wind stress. An extensive mooring
is required to measure internal waves over the entire
water column. An array of moorings would allow one
to examine the directionality of propagating internal
waves.

Various statistical tests could be applied to study the
coupling between the wind field and the internal wave
field. The distribution of energy among vertical modes
could be compared against those predicted by the pres-
ent model. Frequency spectra of the modes could be
compared against mode! predictions, such as those
shown in Fig. 4. One could compute time-lagged cor-
relations between wind stress divergence and internal
wave energy. It might prove useful to try scaling the
wind stress divergence by the mixed layer depth to see
if the correlation is improved in accordance with model
predictions. It would also be useful to compare statistics
of directionality between internal waves and wind field
propagation.
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APPENDIX
GMS81 Spectrum and Transformations

The Garreft and Munk (Munk 1981) spectral den-
sity of vertical velocity is described by

2N0
N

SSM(w,n)=b (0® = f?)E(w,n), (Al)

where
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E(w,n)=B(w)H(n)E, E=63X107° (A2)
N
B(w)_ﬂ'wm_—_f_z, (A3)
2 241
H(n) = __(_ni_nL)___ ny =3. (A4)

e o] b
> (nt+n2)!
n=1

Here the use of the GM superscript in (Al) serves to
differentiate the GMS81 spectrum from the wind-forced
model spectrum. Through the use of the dispersion
relation for hydrostatic internal waves,

2
o bNo
w2=f2+72;5, y=—,

(A5)

we can transform the spectral density from S$™(w, n)
to STM(a, n),

_bNy2f
=N WEH(n)

,Y3a2
n(f7n? ¥ v7e?)’
(A6)

SoM(a, n)

Here « is the total magnitude of the horizontal wave-

number vector,
a= VK2 + %

If we assume that the internal wave field is horizontally
isotropic, then we are justified in applying the Abel
transform,

S my =2
!

(A7)

ames SOM( v n)ada
Va2 ~12

and a similar transform to SSM(k, n). Here the upper
limit of the integral is the maximum possible horizontal
wavenumber, an., = #w/b. This integral can be solved
analytically,

(A8)

2
A it—rf—EH(n)[% Vaio - I2
_ fzn tan..l( 'Ybagnax—lz )]
(A9)

Figures 12a and 12b show plots of (A6) and (A9),
respectively.

SOM(, n) =
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