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ABSTRACT

The original time domain analysis of data from the Australian Coastal Experiment involved fitting coastal-
trapped wave modes to an array of velocity time series using a truncated singular value decomposition. While
the truncation was necessary for noise reduction, it is shown that important information concerning the separation
of mode 1 and mode 2 was discarded. A weighted least-squares mode-fitting technique is introduced that uses
the data to estimate both the signal-to-noise ratio and the relative weighting of the fitted modes. In addition,
the velocity data are augmented by sea-level data.

Findings from the present analysis differ in several important respects from the original results. It is found
that mode 1 has approximately twice the energy flux of mode 2 and that mode 3 is statistically insignificant at
the southern end of the East Australian waveguide. In addition, mode 1 is not highly correlated with mode 2.
These differences are primarily due to changes in mode 1; mode 2 remains essentially unchanged from the
original analysis. These revised modes, when used as boundary conditions to a wind-forced coastal-trapped
wave model that predicts velocity and sea level along the coast, lead to a small but significant increase in
prediction skill over the original modes. The reanalysis raises questions regarding the energy source for the
coastal-trapped wave modes.

The difference between the original and present analyses is reduced by the inclusion of sea-level data. The
ability of the instrument array to resolve coastal-trapped wave modes is discussed, and the problems associated
with nonorthogonality of the theoretical modal structures as sampled by the array are highlighted. It is noted
that the small number of degrees of freedom in the data leads to 95% confidence limits on modal energy fluxes

that are as large as 69% of the estimated values.

1. Introduction

Much of our present knowledge concerning the ve-
locity field on the southeastern Australian shelf has
been derived from the Australian Coastal Experiment
(ACE), carried out between September 1983 and
March 1984 (Freeland et al. 1986). ACE was designed
to enable the alongshore evolution of the coastal-
trapped wave (CTW) signal to be identified, and to be
compared with predictions from a numerical CTW
model forced by local winds and remote CTWs. In the
original time domain analysis ( Church et al. 1986a,b),
time series of three CTW modes were estimated from
current meter data at three locations spanning about
500 km in the alongshore direction (see Fig. 1). A
statistically based “eddy” mode was also fitted in an
attempt to minimize contamination from the East
Australian Current.

Results from ACE showed that northward propa-
gating CTWs may account for a significant part of the
subtidal-frequency alongshore current and coastal sea-
level variability in the vicinity of Sydney. The south-
ward flowing East Australian Current and its associated
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eddies were observed to have an episodic impact upon
the velocity field in this region, with the most pro-
nounced activity occurring on the outer shelf and slope
region (Freeland et al. 1986; Church et al. 1986a,b;
Huyer et al. 1988).

The CTW modes obtained at the southernmost line
(line 1) were used as boundary conditions for a forced-
CTW model, and the predicted modal amplitudes at
the two northern lines compared with the observed
data. On the basis of these comparisons Church et al.
(1986b) deduced that about three-quarters of the CTW
energy flux observed at line 2 was the result of free
CTW propagation from line 1, with the remainder due
to wind forcing in the intervening region.

Our aim in this study is to improve the resolution
of the CTW modes in the ACE region through a num-
ber of changes to the fitting procedure used by Church
et al. (1986a,b). The need for a reappraisal of the ACE
modes was triggered by the work of Schahinger and
Church (1994), in which the predictive capabilities of
the forced-CTW model were extended beyond the ACE
period to times when extensive moored arrays were
not available for the definition of CTW modes. To
achieve this, Schahinger and Church (1994) identified
easily measurable proxies for the observed modes at
line 1 such as coastal sea level in northeastern Bass
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FiG. 1. Map of southeastern Australia showing the location of the three lines of ACE current
meters. Triangles denote locations from which wind-stress measurements are used to drive the
numerical forced-CTW model, and dots indicate the site of sea-level measurements.

Strait and wind stress within the strait. These proxy
modes were then used as the upstream boundary con-
ditions of the model. As the feasibility of this method
relied almost wholly on previous estimates of modal
amplitudes at line 1, a careful reexamination of the
mode-fitting technique was necessary.

Our reanalysis involves three major changes. First
we add all available sea-level data to the velocity data
used in the original mode-fitting procedure. Second,
we replace the truncated singular value decomposition
technique, used by Church et al. (1986a,b) to stabilize
what turned out to be an ill-conditioned problem, by
a weighted least-squares technique in which marginally
useful information is down weighted rather than dis-
carded. One of the weighting factors is related to the
signal-to-noise ratio of the dataset, which is determined
from the data itself by optimizing the prediction of

withheld data. Third, the relative importance of the
fitted modes, which influences the solution of an ill-
conditioned problem, is determined iteratively, so that
the eventual solution is consistent with the prior spec-
ification of these modal weights. This latter feature is
perhaps the most novel aspect of our method, and is
possible only because we can estimate average weights
from the sequence of solutions at individual times. We
take some care to try and isolate the effect of incor-
porating additional data from the effect of our analysis
method.

In comparing our revised modes with the original
modes for the ACE period we use a number of diag-
nostics. These include the residual velocity and sea-
level variance averaged over the entire time series as a
percentage of the observed variance, the absolute and
relative energies of the modes, and the degree of cor-
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relation between modes. The worth of the new mode-
fitting procedure can be gauged (in part) by the quality
of the predictions from the forced-CTW model that
was employed in the ACE studies. That is, if the revised
modes at line I are used as the upstream boundary
condition of the model, are the hindcast time series of
sea level and current along the New South Wales coast
better matched with the observations?

While the focus of the comparisons will be the modes
obtained at line 1, the modes at line 2 will also be
reexamined. We are principally interested in whether
the alongshore phase speeds of the revised first and
second CTW modes are any closer to the theoretical
values than were the original modes. The line 3 modes
will not be pursued in this study; Church et al.
(1986a,b) found CTW theory to be less applicable at
this line due to the dominance of the East Australian
Current.

The structure of the paper is as follows: new features
of our method are introduced in section 2, and the
ability of the ACE array to resolve CTW modes is as-
sessed in section 3. Results are presented in section 4
and compared with the previous analysis. Section 5
contains a discussion of our results, particularly in re-
lation to the energy source of CTWs. The paper con-
cludes with section 6.

2. Data and method
a. Sea-level data

The original coastal-trapped wave mode fitting by
Church et al. (1986a) used only the alongshore com-
ponent of velocity from current meters deployed over
the continental margin. There were nine velocity time
series at line 1, and 12 at line 2. We have augmented
these data with sea-level data corrected for atmospheric
pressure and otherwise processed in the same way as
the velocity data (Forbes 1985). That is, the hourly
time series were first low-pass filtered (half-power point
at 40 h) and decimated to 12 h values. The twice-daily
data were then high-pass filtered to remove signals with
periods longer than about 20 days. -

At line 1, the available data consisted of adjusted
sea level at the coast, and bottom pressure measured
at the 135-m and 500-m isobaths. Line 2 (and line 3)
had only nearby coastal data. For ease of notation, we
shall refer to both adjusted coastal sea level and bottom
pressure as simply sea level.

The sea-level time series span the period from 21
September 1983 to 20 March 1984 (363 12 h records),
though the first 24 days of the 500-m sea-level time
series at line 1 were discarded due to an apparent drift.
The duration of this drift was too close to the low-
frequency end of the high-pass filter to be completely
removed.

b. Stable mode fitting

The original mode-fitting procedure involves ex-
pressing the data as a sum of three coastal-trapped wave
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modes plus an empirically determined “eddy” mode.
At each alongshore location and at each time, the ith
current measurement d; is represented as a linear com-
bination of the velocity modal structures G( x;, z;),
where x; and z; are the offshore location and depth,
respectively, of the ith current meter. The CTW ve-
locity modal structures are obtained by differentiating
the pressure modal structures, Fj( x;, z;), which in turn
are obtained as eigenvectors of the low-frequency, low-
wavenumber CTW eigenvalue problem (Church et al.
1986a). The eddy mode is determined by correlating
each time series with one deep offshore current record
where it is assumed that the signal is entirely due to
the East Australian Current (Freeland et al. 1986;
Church et al. 1986a). The amplitude of the jth mode
is denoted by ¢;, and is determined by solving the fol-
lowing equations:

4
2G(xi,z)¢=d;, i=1,--

J=1

(1)

*s N,

where there are n velocity measurements at that time

and alongshore position. If p sea-level measurements,

hy, are available, then an additional set of equations is

obtained:

4
F(xi, zi); = hy,

1

k=1,-+-,p. (2)

J

In matrx notation, Eqgs. (1) and (2) are combined
and written

Go = d. 3)

The matrix G has more rows than columns because
there are more measurements than fitted modes at each
line and at each time. Hence the matrix system (3)
cannot, in general, be solved exactly, but rather a least-
squares solution is sought. In addition, the system was
determined by Church et al. (1986a) to be rank defi-
cient, requiring the use of a technique such as the sin-
gular value decomposition (SVD) to obtain a stable
solution.
The SVD solution is given by (e.g., Wunsch 1978)
R 4T
D = 2 ;—d Vi,

i=1 i

(4)

where u; and v; are the singular vectors of G (eigen-
vectors of GGT and G'G, respectively ). The associated
singular values, s;, are obtained as the square root of
the eigenvalues of the smaller of the two matrices GGT
and GG, and are ordered from largest (i = 1) to small-
est (i = 4). The sum is taken up to the rank, R, of the
system, which Church et al. (1986a) determined to be
3. Hence information contained in the fourth singular
vector is discarded. It will be shown in a later section
that this amounts to discarding information regarding
the separation of mode 1 from mode 2. However, trun-
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cating the SVD sum has the advantage of reducing the
impact on the solution of small singular values in the
denominator of (4). In particular, Church et al.
(1986a) found that truncating the SVD considerably
reduced the solution squared amplitude ®7dp.

An alternative method for stabilizing the solution to
a rank deficient system is described by, among others,
Wunsch (1978), and is called variously “ridge analy-
sis,” “tapered least squares,” or “smoothed least
squares.” The smoothed least-squares solution is ob-
tained by minimizing a penalty function consisting of
a linear combination of the equation residual variance
and the solution “energy” (squared amplitude)

ele + o’ P, (5)

where e = G@ — d is the vector of equation residuals.
The smoothing parameter o determines the trade-off
between having a large solution with a small residual
variance (small o), or a less energetic solution with
increased residual variance (large o).
The solution that minimizes (5) is
m o uld

=3 ———vy (6)

2 i
i=1 Si+0 /Si :

where the sum is now over the total number of fitted
modes, m = 4. The impact of small singular values on
the solution can be reduced by a suitable choice of the
smoothing parameter ¢. The advantage of this ap-
proach is that information contained in all the singular
vectors is retained, although it may be downweighted
if ¢ is comparable to or larger than s;.

c. Weighting

The importance of row and column weighting of G
has been discussed by many authors (e.g., Wunsch
1978; Menke 1984). In its simplest form, row weighting
amounts to ensuring that no one equation dominates
the residual term e”e by virtue of the units in which
the equation is expressed. Here, we will be fitting modes
to both velocity data and sea-level data, so that some
equations will be in meters per second, while others
will be in meters. To compensate, the first term in the
penalty function (5) is replaced by a weighted version,
e"W.2e, where the diagonal matrix W, contains the
inverse of the row weights. The choice of these weights
is discussed in the next section.

Column weighting amounts to rescaling the contri-
bution of the modal amplitudes ¢, to the penalty func-
tion. In the absence of column scaling, if one mode
has considerably less energy than the others, relatively
large variations in this mode due to data or model errors
will not be sufficiently penalized. Hence, we define a
diagonal matrix of square roots of estimated modal
energies, W,. We assume that all weight matrices are
independent of time; there is insufficient information
to do otherwise.
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The modified penalty function becomes

e"W;2%e + o 2®"W, . (7)
The solution to (3) that minimizes this modified pen-
alty function is

® = [(G"W;?G + ¢’W;?)"'1G™W2]d = G4, (8)

which reduces to the smoothed least-squares solution
(6) when the weight matrices are set to the identity
matrix and the singular value decomposition of G is
made. The notation G™® represents the generalized in-
verse of G.

An alternative way of expressing the weighted prob-
lem and its solution in terms of the nontruncated SVD
will be useful later. By defining scaled variables, we can
write the scaled equations, penalty function, and so-
lution in forms directly analogous to the unscaled ver-
sions (3), (5), and (6), respectively; that 1s,

G =4d (9)
¢Te + o’ D (10)

m AT'
b-3 29 5, (11)

where G = W,'GW,; & = W,'®; 4 = W.'d; ¢
=W, 'e; and i;, ¥; , and §; are the singular vectors and
singular values of G.

d. Estimating parameters
1) SMOOTHING PARAMETER

There are a number of methods available for choos-
ing the smoothing parameter o (e.g., Lawson and Han-
son 1974; Wahba 1990, chapter 4). Some are based
on reducing the solution sensitivity to errors in the
data and model to an acceptable level, while others
rely on prior knowledge of the expected signal-to-noise
ratio (¢ can be interpreted as the reciprocal of this ra-
tio). We have chosen a technique called generalized
cross validation (GCV) (Wahba and Wendelberger
1980; Wahba 1990; McIntosh and Veronis 1993),
which seems to require the least additional information
or assumptions. The principle behind GCYV is to use
the data itself to validate the choice of ¢ by optimizing
the prediction of withheld data.

To be more precise, a value of ¢ is chosen, and the
solution (8) is obtained after leaving one equation out.
The right-hand side of the withheld equation (either a
velocity or sea-level measurement) is then predicted
from this solution, and the discrepancy stored. This
procedure is repeated, leaving out each equation in
turn, to obtain an overall measure of the predictive
skill of the model with the particular value of ¢ chosen.
The optimum o is found by maximizing this predictive
skill using a standard optimization technique. In prac-
tice, the computational tedium of solving many n — 1
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problems has been circumvented by some clever linear
algebra (see, e.g., Golub et al. 1979), and the optimum
o may be found by minimizing the expression.

n~leTW,%e

Vo) = race(l = GG O]

(12)

Our initial idea was to find the optimum o at each
time for which data were available, that is, every 12 h.
However, there are only about 10 measurements at
each time, and GCV seems to need a larger number
(generally upwards of 50) to work properly (Wahba
1990, p. 65). We have experimented with combining
a number of individual matrix problems of the form
(3) together in a large block matrix formulation and
estimating o for this larger problem. The values of ¢
obtained stabilized when more than about 15 individ-
ual matrix problems were combined. We have decided
to combine 21 individual times together (i.e., 10 days
of data) in order to estimate a value of ¢ applicable to
the central time. This process is repeated for each 12
hourly time.

As a check on GCV, we have also performed Monte
Carlo experiments to determine the variation in sin-
gular values of the scaled matrix G due to errors in the
computed modal structures (matrix elements). We as-
sume errors in modes 1 to 3 of 10%, 15%, and 20%,
respectively, and errors of 50% in the eddy mode. Nor-
mally distributed errors with these standard deviations
are added to the matrix, and the standard deviations
of the singular values determined over 200 realizations.
With this level of error, it is surprising that the smallest
singular values have a standard deviation of less than
15%. A lower bound on ¢, denoted by oin, is chosen
so that the smallest singular value in the denominator
of the SVD (11) is increased by at least twice its stan-
dard deviation. This is done by defining o, by

(13)

2
IR = 25d(8,),
Sm
where sd stands for standard deviation. Hence we are
95% confident that the smallest singular value of G is
no smaller than the true (unknown ) singular value for
the analysis. In practice, omin 1S always smaller than
the smallest o value obtained using GCV, which in-
dicates that the GCV procedure is stabilizing the anal-
ysis adequately.

2) ROW WEIGHTS

If the statistical view of solving least-squares prob-
lems is taken (e.g., Menke 1984), then the weighted
penalty function (7) can be thought of as a X variable
provided that the weight matrices W2 and W3 are the
covariance matrices for the equation residual and so-
lution, respectively, and provided also that the equation
residual and the solution have zero mean. Minimizing
(7) then amounts to obtaining the most likely solution
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if Gaussian statistics are assumed. In practice, full co-
variance information is rarely available, and the weight
matrices are often assumed to be diagonal. We have
chosen a diagonal equation residual weight matrix with
elements proportional to the standard deviation of the
entire velocity or pressure dataset at the appropriate
line. In other words, we divide each equation involving
velocity data by a single estimate of the true velocity
standard deviation, and each equation involving sea
level by an estimate of the sea-level standard deviation.
A more sophisticated weighting would be to divide each
equation by an estimate of the expected error in that
equation. This estimated error would probably be
dominated by eddy noise not accounted for by the eddy
mode but would also contain contributions arising
from approximating the CTW mode structures and
from instrument noise.

One way of deciding whether the sea-level and ve-
locity equations are appropriately scaled is to look at
the scaled data resolution matrix (Menke 1984)

N=GG™. (14)

The diagonal elements of this matrix indicate the extent
to which individual equations are resolved and are
contributing to the solution. Experiments with different
row scales for the velocity and sea-level equations show
that the diagonal of N is more nearly uniform for our
choice of scales than if either of the velocity or sea-
level equation scales are varied by a factor of 2.

We have investigated the sensitivity of our solutions
to the choice of equation scaling. In particular, the ve-
locity and sea-level standard deviations used to scale
the equations were independently increased and de-
creased by a factor of 2. The three major findings of
this study were not altered. Preempting the results
somewhat, for all choices of row weights, mode 1 con-
tained more energy than mode 2, mode 3 contained
negligible energy, and modes 1 and 2 were not corre-
lated.

3) COLUMN WEIGHTS

In the absence of full covariance information, the
squared column weight matrix W3 is assumed to be
diagonal. It is desirable that the diagonal elements con-
sist of the solution variance (time-averaged modal en-
ergy fluxes), so that a relatively high energy mode does
not dominate the penalty function. In the case of the
eddy mode, squared amplitude would be used, al-
though it may not be interpreted as an energy flux.
One of the reasons for conducting a mode-fitting ex-
ercise such as this is to estimate the time-averaged en-
ergy flux in each fitted mode. In the absence of any
other information, the original analysis by Church et
al. (1986a) could only assume a priori equal energy in
each mode. However, a further analysis could now
make use of this preliminary estimate of energy fluxes
to choose more appropriate column weights.
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Qur iterative weighting procedure starts with uni-
form column weights, although the final weighting does
not depend on this starting point. A first estimate of
the modal amplitudes is obtained from (8) using GCV
to choose the smoothing parameter. Modal energy
fluxes for this solution are calculated, the column
weights are redefined and a new solution obtained. This
procedure is iterated until the energy flux changes are
insignificant (less than 0.25%), which typically takes
seven iterations. Note that the cglumn weights are not
a function of time; they change only between iterations
and between lines. We have not combined column
weighting with the SVD technique although this can
be done.

We have experimented with using GCV to determine
the column weights as well as the smoothing parameter.
The results obtained were quite similar to those ob-
tained using the iterative scheme, but we found that at
some times the solution amplitudes dropped to almost
zero. This was caused by GCV choosing overly large
column weights, which we attribute to the multidi-
mensional minimization algorithm finding a local
rather than a global minimum of the GCV function
(12). This did not seem to be a problem when using
GCV to estimate only the smoothing parameter, in
which case the minimization is one-dimensional.

e. Solution error estimates

Apart from calculating the modal amplitudes, it is
also possible to calculate an estimate of the standard
error in these amplitudes. The full covariance matrix
of modal amplitudes is given by (Lawson and Hanson
1974; Menke 1984; Tarantola 1987)

eTW;?¢

n—m

cov(®) = (GTW.2G + o2W;2)'.  (15)

It may be shown that this expression, and indeed
the solution (8), is independent of a uniform scaling
of either weight matrix. In other words, one can double
the size of all elements of W, for example, and o will
double also to compensate. Alternatively, one may
double all elements in W,, and o will decrease by a
factor of 2, leaving the solution and its covariance un-
changed. Hence it is only the relative weighting ex-
pressed by differences between the elements within ei-
ther weight matrix that affects the solution and its error
estimate. It is the GCV procedure that determines the
appropriate trade-off between errors in the data and
the solution size, in other words, the signal-to-noise
ratio.

We use the solution covariance matrix in a statistical
test of whether a modal amplitude is significantly dif-
ferent from zero relative to its standard error. The
standard error is just the square root of the appropriate
diagonal element of the covariance matrix.
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3. Mode orthogonality, separation, and array design

It is desirable that the columns of the matrix G are
orthogonal, so that the solution for one mode is unaf-
fected by either leaving another mode out of the cal-
culation, or by changing the weighting assigned to an-
other mode. The theoretical CTW cross-shelf structures
form an orthogonal set (Wang and Mooers 1976;
Clarke 1977), but the orthogonality relation is not di-
rectly related to the structure of G. Hence it may not
be possible to design an instrument array to ensure
that the columns of G are orthogonal. Even if this could
be achieved for the CTW modes, the eddy mode does
not obey any theoretical orthogonality relation and so
the corresponding column of G may be dependent on
the columns associated with CTW modes.

In the various experiments we conducted, it was clear
that leaving one mode out of the fitting procedure
changed the amount of energy in the remaining modes.
This led us to examine the normalized inner product
of the columns of G at line 1, both with and without
the sea-level data (see Table 1). The diagonal column
weight matrix W, will not change these inner products,
and so the analysis applies to both the original SVD
solution and the present GCV solution. Columns that
are orthogonal will have an inner product of 0, while
identical columns will have an inner product of 1. The
most striking feature of this table is that for either anal-
ysis, mode 1 is strongly coupled with both mode 2 and
the eddy mode. Hence there will be some ambiguity
in apportioning energy between these modes. However,
leaving the eddy mode out, for example, does not mean
that exactly 64% of its energy will flow into mode 1.
The redistribution of energy is more complex because
all the modes are coupled to various degrees.

A more rigorous way to examine the separation of
modes due to a particular instrument array is to use
the singular value decomposition. The SVD of a matrix
gives far more information than is necessary to solve
the matrix system. In particular, the v; singular vectors
specify the linear combination of modes associated with
each singular value. If a singular value is discarded by
truncating the SVD sum (4), then the associated linear
combination of modes is not available to the solution.

The singular vectors and ratio of singular values to
the largest for the original truncated SVD solution ob-

TABLE |. Normalized inner products of columns of G
corresponding to various CTW modes at line 1 using all data (velocity
and sea level) and velocity data alone.

Inner product All data v data only
1and 2 0.80 0.80
1 and 3 0.09 0.07
1 and eddy 0.64 0.66
2and 3 0.52 0.51
2 and eddy 0.22 0.23
3 and eddy 0.30 0.30
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TABLE 2. The v singular vectors for the original (SVD) analysis at
line 1. The vectors presented are for the longest period with a fixed
number of instruments. Numerical values only change slightly with
differing numbers of instruments. The singular values, s; are
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TABLE 4. As for Table 2 but for the intended ACE array and with
the eddy mode left out and no sea-level data. Results are essentially
unchanged by the addition of sea-level data.

normalized by the largest singular value, s;. Mode v, V2 v3

Mode v vy V3 V4 1 0.46 0.53 0.71

2 0.78 0.15 —0.61

1 0.51 0.01 0.28 0.81 3 0.43 —-0.83 0.35

2 0.58 0.45 0.45 —0.52  syfs; 1.00 0.68 0.21
3 0.11 0.72 -0.67 0.16
eddy —0.63 0.53 0.52 0.21
si/s 1.00 0.89 0.42 0.14

tained by Church et al. (1986a) are shown in Table 2.
The most striking feature of these singular vectors is
that information about the separation between mode
1 and mode 2 is contained mainly in v4;, whereas v,
and v; have essentially no ability to separate modes 1
and 2. Here v, has some ability to resolve mode 2,
although it mainly resolves mode 3. Truncating the
smallest singular value, which Church et al. (1986a)
found necessary to stabilize the solution, removes v,
from the SVD solution, leaving the mode 1 and 2 am-
plitude time series highly correlated (r = 0.94). This
_correlation is not physically based, but is related to the
inability of the instrument array to resolve adequately
modes 1 and 2. This conclusion is not changed sub-
stantially by the addition of sea-level data.

It should be noted that, generally, no data are nec-
essary to perform this type of analysis, only the instru-
ment locations and theoretical modal structures that
go to make up the matrix G. However, in this appli-
cation of the SVD, the eddy mode structure is deter-
mined from the data (Church et al. 1986a). If the eddy
mode is left out of the analysis, the singular vector
structure is similar (see Table 3). Again, the singular
vector that contains the most information concerning
the separation of mode 1 and mode 2 is associated with
the smallest singular value.

It is possible that the loss of instruments from the
original designed array has contributed to the difficulty
in separating modes 1 and 2. To test this, the SVD of
the intended array at line 1 (see Church et al. 1986a
for the configuration) was computed (see Table 4).
The singular values and vectors have not changed much
from those of the recovered array, and we conclude
that the loss of instruments did not degrade significantly
the ability of the ACE array to resolve coastal-trapped
wave modes.

TABLE 3. As for Table 2 but with the eddy mode left out.

Mode vy V2 v3
1 0.41 0.55 0.73
2 0.74 0.27 —-0.62
3 0.53 -0.79 0.30
sifs; 1.00 0.67 0.20

The singular vectors and singular value ratios for
our revised method applied to just the velocity data
are shown in Table 5. These are determined from the
scaled matrix G. The main feature is that mode 3 is
almost wholly resolved by the fourth singular vector,
which is associated with a small singular value. This is
because the iterative column scaling technique has de-
termined that mode 3 contains very little energy, which
makes it difficult to resolve relative to the more ener-
getic modes. The next feature to note is that the sep-
aration between modes 1 and 2 is now mainly deter-
mined by vs, which has a larger singular value (relative
to the largest ) than the equivalent singular vector from
the original SVD analysis (0.19 versus 0.14). Hence
our revised method should be able to discriminate more
reliably between modes 1 and 2.

Unfortunately, the scaled matrix G depends on the
data through the iterative column scaling technique,
which in turn depends on GCV to determine the signal-
to-noise ratio. Hence, unless good prior estimates of
the expected solution size and signal-to-noise ratio were
available, it would not be possible to perform this anal-
ysis prior to deploying the array. However, there are
some features of the original SVD analysis that have
not changed much. For example, separation of modes
1 and 2 is clearly going to present some difficulty re-
gardless of scaling. Ideally, one would like to design
the instrument array so that the most energetic modes
(presumably the first two) are resolved first. If the in-
strument array could be arranged so that each singular
vector resolved just one mode, then column scaling
will not alter this structure but merely alter the size of
the associated singular value.

The point of this argument is that it is still worth
looking at the SVD analysis of a potential instrument

TABLE 5. The ¥ singular vectors and singular value ratios of G for
our revised analysis of line 1, using only velocity data. Similar results
are obtained with the addition of sea-level data.

Mode V1 (16) ¥2(17) ¥5(18) ¥4 (19)
1 0.73 0.05 0.66 0.18

2 0.51 0.62 —0.54 —0.26

3 0.01 0.14 —0.29 0.95
eddy —0.45 0.78 0.44 —0.03
s,/s; 1.00 0.56 0.19 0.08
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array before deployment, making the best guess pos-
sible about column (and row) scales. Techniques for
improving the array are beyond the scope of this article;
recent work on array design by Barth and Wunsch
(1990) gives some indication as to how one might pro-
ceed.

4. Comparison of revised and original analyses

The original ACE coastal-trapped wave analysis
(Church et al. 1986a,b) has been modified in two ways.
The CTW mode-fitting technique has been modified
by adopting a weighted least-squares approach, and
the original velocity data have been augmented by sea-
level data. The initial goal of this analysis is to deter-
mine the modal amplitude time series, which depend
on both the data used and on a rational choice of
weights for the least-squares method. In this section
we endeavor to discriminate between changes caused
to the original modal decomposition by the use of ad-
ditional data, and changes due to the analysis method.

We will refer to the original singular value decom-
position method by the acronym SVD, while our
weighted least-squares method is referred to as WLS.
The latter method uses GCV to determine the signal-
to-noise ratio, while the column scales are determined
by an iterative method. Although it is possible to apply
GCV without column scaling and also possible to apply
iterative column scaling to the SVD method, these cases
would complicate the discussion unnecessarily. Hence
we concentrate on the effect on the solution of addi-
tional data versus the weighted least-squares analysis
method.

In comparing the effect of additional data and the
least-squares method on the modal decomposition, the
following diagnostics will be used:

1) total CTW mode energy flux, and its partitioning
between the fitted modes

2) correlation between the time series of mode 1
and mode 2 amplitudes

3) percentage of total variance of the data not ex-
plained by the fitted modes

4) coherence of the CTW mode amplitude time se-
ries between lines 1 and 2

5) ability of a numerical wind-forced CTW model
(Church et al. 1986a,b) to predict both alongshore cur-
rents at line 2 and sea-level data along the coast when
the analyzed modes at line 1 are used as boundary
conditions to the model.

The last diagnostic is particularly important because
the increased ability to predict sea-level and currents
along the coast is the major practical benefit of an ex-
periment such as ACE.

a. Effect of mode-fitting method

Consider first the difference between the CTW mode
energy fluxes obtained using the SVD and WLS mode-
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fitting methods. Each method has been used to analyze
both the original dataset (consisting of velocity mea-
surements alone), and a larger dataset created by the
addition of sea-level data. The energy fluxes for the
two methods applied to both datasets are given in Table
6 for line 1 and Table 7 for line 2. In all cases the WLS
method acts to increase the energy in mode 1 by at
least a factor of 2 over the SVD method. In contrast,
the energy in mode 2 remains relatively unchanged.
The net effect is to change the conclusion of the original
ACE study that mode 1 contained less energy than
mode 2. The results of the WLS analysis suggest that
mode | contains about 70% of the total CTW energy
at line 1, and about 60% of the total CTW energy at
line 2.

The original SVD analysis of velocity data alone
found that mode 3 contained 20% of the total CTW
energy at line 1, and 31% at line 2. However, the WLS
analysis finds that there is negligible energy in mode
3. We attribute this result to the use of column scaling,
that is, weighting the modes in the least-squares pro-
cedure by the reciprocal square root of the expected
energy in the modes.

Overall, the WLS method results in an increase in
the total CTW energy relative to the SVD method of
60% at line 1 for the analysis of velocity data alone, or
21% if sea-level data are included. At line 2, the in-
creases are 28% and 35%, respectively, for the two da-
tasets.

When considering the eddy mode, we note that the
squared amplitude of this mode is proportional to the
energy in this mode but may not be interpreted directly
as energy, as may be done with the CTW modes. The
squared size of the eddy mode is essentially indepen-
dent of the analysis method used. This result is probably
due to the fact that the eddy mode is well resolved by
the array. However, the fact that the energy in mode
2 also is essentially independent of the analysis method

TABLE 6. Line | time-averaged energy fluxes (in units of 10® W),
velocity (v) and sea-level (5) residuals as a percentage of total variance
in the observed data, and correlation (r) between modes 1 and 2 for
different models. SVD refers to the original truncated singular value
decomposition analysis of Church et al. (1986a,b), and WLS refers
to our weighted least-squares method. Subscript values are percentage
of total CTW energy in a particular mode. The 95% significance level
for correlations is about 0.30. Analysis period is from 21 September
1983 to 20 March 1984.

SVD WLS SVD WLS
Mode v data vdata v+ ndata v+ pdata

1 0.58;, 2.184 0.794 1.6649
2 0.944 0.8555 0.8643 0.713
3 0.39,,  0.03; 0.34,, 0.04,
total CTW 1.91 3.05 2.00 2.41
eddy 0.78 0.68 0.89 0.85
v residual (%) 13 13 16 17
7 residual (%) 49 59 25 20
rmode | vsmode2  0.94 0.04 0.95 0.28
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TABLE 7. Same as Table 6 but for line 2. Analysis period is from
10 September 1983 to 8 March 1984.

SVD WLS SVD WLS
Mode v data vdata v+ npdata v+ pdata

1 0.65 1.90¢3 0.713; 1.645
2 0.984, 1.0535 0.7133 1.28,3
3 0.72, 0.05, 0.7735 0.03,
total CTW 2.35 3.00 2.19 2.95
eddy 1.61 1.66 1.81 2.17
v residual (%) 19 18 21 20
7 residual (%) 101 96 55 32
rmode 1 vs mode 2 0.81 -0.23 0.82 -0.37

cannot be attributed to the resolution of the array; it
was noted in section 3 that the array was not well suited
to distinguishing mode 1 from mode 2.

Another point made in section 3 was that the SVD
analysis virtually guaranteed that the mode 1 and mode
2 amplitude time series would be highly correlated.
This is because the information that would allow the
separation of these modes is discarded due to the ne-
cessity of stabilizing the SVD solution by truncating
the SVD. Hence the analyzed amplitude time series of
mode 1 and mode 2 will be highly correlated whether
these modes are actually correlated or not. The original
analysis found that the correlation between mode 1
and mode 2 was 0.94 at line 1 and 0.81 at line 2. One
of the advantages of the weighted least-squares method
is that no information is discarded, although it may be
down-weighted. Consequently, we find that for the
WLS method the correlation between mode 1 and
mode 2 is considerably reduced relative to the SVD
values. At line 1 the correlation coefficient is 0.04 if
velocity data alone are used and 0.28 if velocity and
sea-level data are used. At line 2, the correlation is
small and negative, being —0.23 for velocity data, and
~0.37 for velocity and sea-level data. The significance
level for all correlations is about 0.30 so that the WLS
method suggests that mode 1 and mode 2 are not sig-
nificantly correlated. We have tested the WLS method
on an artificial dataset in which mode 1 and mode 2
were highly correlated and demonstrated that the WLS
method is capable of producing a high correlation be-
tween mode 1 and mode 2.

We find that the SVD and WLS techniques give so-
lutions that explain a similar fraction of the variance
in the data. At line 1, the residual velocity variance is
between 13% and 17% of the total velocity variance,
depending on the dataset used. At line 2 the unex-
plained velocity variance is slightly higher at between
18% and 21% of the total. The residual sea-level vari-
ance depends on whether sea-level data are included
explicitly in the fit or not. The WLS method generally
leads to a slightly better fit, except at line 1 in the
case where velocity data only are used (see Tables 6
and 7).
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Looking at the residual variance at individual current
meters reveals a similar pattern for both methods. The
unexplained variance is roughly uniform in absolute
terms, which is not surprising considering that each
instrument has been given the same weight by choosing
uniform row (equation) weights. Recall that the ACE
current meter arrays extended from the 135-m isobath
to the 2000-m isobath. The signal variance is generally
higher for instruments on the shelf than off the shelf,
and hence the unexplained variance as a percentage of
the individual instrument variance increases for in-
struments off the shelf. It is possible to encourage uni-
form fractional residual variances at all instruments by
choosing row weights proportional to individual in-
strument variances. However, such a choice does not
allow for the fact that the dominant error at most in-
struments off the shelf will be due to eddy noise not
accounted for by the time-independent eddy mode.
Hence the choice of uniform row weights is a realistic
first estimate, and the resultant uniform residual vari-
ances at all instruments is a reflection of the expected
error in fitting the data.

We now examine the coherence between the mode
amplitudes analyzed independently at line 1 and line
2. Of particular interest is the phase of the coherence
between similar modes at the two lines. The phase is
inversely proportional to the phase speed at a given
frequency. The phase speed can be compared with the
theoretical estimate of the phase speed; a favorable
comparison is evidence of the existence of coherent
coastal-trapped waves in the region. At this stage, we
consider only the original velocity dataset. The effect
of including sea-level data is considered in the following
subsection.

Results for the original SVD analysis of velocity data
alone (Church et al. 1986a) indicated that both mode
1 and mode 2 were highly coherent between line 1 and
line 2 (Fig. 2a). The mode 1 phase speed was slightly
lower than the theoretical value of 3.5 m s ! at all fre-
quencies for which there was both significant energy
and significant coherence. For mode 2, the phase speed
was close to the theoretical value of 1.9 ms™!, but
tended to increase with frequency.

The corresponding results for our WLS analysis of
velocity data alone reveal a marked decrease in the
alongshore coherence relative to the SVD results, es-
pecially in the case of mode 1 (Fig. 2b). The mode 1
phase speed is further from the theoretical value than
was the SVD analysis, and the coherence levels are
below the 95% significance level at the energetic fre-
quencies. However, the phase speed for mode 2 is close
to the theoretical value, and is now almost constant
over the lower frequencies where the majority of the
modal energy is contained.

In agreement with Church et al. (1986a), neither
the SVD nor WLS analysis shows any alongshore co-
herence for either mode 3 or the eddy mode.
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FiG. 2. Coherence, phase, and spectral energy of mode 1 and mode 2 amplitudes between line 1 and line
2; analysis period 336 12 h values from 21 September 1983. (a) Original SVD analysis; (b) WLS method
using velocity data alone; (¢) SVD method using velocity and sea-level data; (d) WLS method using velocity
and sea-level data. Error bars indicate the 95% confidence limits for phase only at frequencies for which there
is significant coherence. The solid lines on the phase plots indicate phase speeds of 3.0 and 4.0 m s~* for mode
1 and 1.5 and 2.5 m s~! for mode 2. The theoretical phase speeds for mode 1 (3.5 m s™') and mode 2 (1.9
m s™!) lie approximately halfway between these lines. A negative phase implies that line | leads line 2. The
95% significance level for coherence is indicated by a dotted line. The solid and dashed energy curves correspond
to line 1 and line 2, respectively; the energy units are arbitrary.
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FIG. 2. (Continued)

Our final comparison involves the use of the ana- al. 1986a,b). Observations at line 2 are compared with
lyzed CTW modes at line 1 as upstream boundary con- predictions from the model. The model propagates the
ditions for a wind-forced prognostic model (Church et input CTW modes along the coast, and incorporates
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enhancement of the modes from observed winds, decay
due to bottom friction, and exchange of energy between
the modes. The eddy mode cannot be included in this
procedure; to minimize the effect of eddies on our
comparison, we consider only a 90-day subset of the
ACE period that was relatively free of the effects of the
East Australian Current. This period is the same as
that used by Church et al. (1986b). Again, at this stage,
we consider only the modes obtained from analyzing
the original velocity dataset.

When the three CTW modes obtained at line 1 using
the SVD technique are used as boundary conditions
for the prognostic model, the observed and predicted
alongshore currents at line 2 are most highly correlated
at the nearshore sites. All these correlations are signif-
icant at the 95% level, as are the predictions of coastal
sea level at line 2 and line 3. At each of the two deep-
water offshore moorings (depths of 1200 m and 2000
m), only the prediction at the instrument closest to
the surface had a correlation with the data that was
significant at the 95% level (see Table 8 ). Similar results
are obtained using the CTW modes obtained from the
WLS analysis (not shown in the Table), although there
is no significant correlation at the shallowest 1200-m
instrument.

The two methods also give similar results if we use
as our measure of fit the linear regression coefficient,
3, between the observed and predicted data rather than
the correlation coefficient. (Here 8 is defined as that
number that when multiplied by the observed time
series gives the best fit to the predicted time series in
the least-squares sense; see Draper and Smith 1981.)
However, it is noteworthy that at all instruments on
the two inshore moorings, the WLS method provides
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a slight improvement in the linear regression coeffi-
cient. Each increase, taken individually, is not signif-
icant, but the consistent increase may be significant.
We will return to this point in a later section, where a
simple statistical test is used to show that a consistent
but small increase in linear regression coefficients may
indicate that one analysis method and/or dataset has
significantly increased predictive skill over others.

A note here on statistical matters. The standard error
of the regression coefficients is calculated using the
method of Allen and Kundu (1978), while the equiv-
alent degrees of freedom required for its computation
(and also required for determining the statistical sig-
nificance of the correlation coeflicients ) were obtained
using the method of Davis (1976). A conservative es-
timate of the integral time scale is 5 days (Freeland et
al. 1986; Church et al. 1986b). Confidence limits for
correlation coefficients were computed as in Draper
and Smith (1981).

If we consider the root mean-square (rms) of the
signal at individual instrument sites, we find that the
SVD method leads to a consistent underprediction of
the measured rms; the two inshore instruments are the
only exceptions. Although the WLS method also leads
to underprediction of the measured rms, there is a gen-
eral improvement at most sites. The exceptions are at
the two instruments on the inshore mooring, where
the WLS method overpredicts the rms.

One tentative conclusion we can draw from these
results is that the WLS method gives a more energetic
solution than the SVD method, but with increased
noise. This is evidenced by the increase in predicted
rms values without a corresponding increase in the
correlation or regression coefficients.

TABLE 8. Predictions of velocity at line 2 and sea level () at lines 2 and 3 from the prognostic CTW model with modes analyzed at line
1 as upstream boundary conditions. Only two combinations of model and data are shown: the original SVD method using only velocity
data, and the WLS method with the addition of sea-level data. Analyses are for a 90-day “‘eddy-free” period, 20 October 1983 to 18 January
1984, except for those instruments marked 1 and %, where only 67 and 28 days, respectively, of observed data were available. Root-mean-
square (rms) units are centimeter per second for velocity and centimeter for sea level. The correlation coefficient, r, between the observed
and predicted time series has a 95% significance level of about 0.30; double asterisks denote an insignificant correlation. The standard error

for the linear regression coefficient 3 is about 0.10.

Instrument Predicted rms Error rms r B
depth/ Obs.
water depth rms SVD WLS + 9 SVD WLS + 9 SVD WLS + ¢ SVD WLS + 5
75/135 12.4 12.3 13.8 8.7 8.6 0.75 0.79 0.74 0.88
1257135 12.4 13.2 14.7 8.7 8.4 0.77 0.82 0.82 0.97
75/200 12.4 8.7 10.3 10.5 10.2 0.55 0.61 0.38 0.51
125/200 12.3 8.7 10.4 10.2 9.9 . 0.57 0.63 0.40 0.53
190/200 10.4 6.8 . 8.8 8.2 8.3 0.62 0.64 0.40 0.54
190/1200+ 13.1 22 3.6 12.3 12.7 0.42 ** 0.07 0.06
450/1200 9.8 1.9 2.5 9.5 9.8 b ** 0.05 0.04
650/1200 9.7 24 2.5 9.9 9.9 b ** 0.01 0.01
1000/1200 7.6 23 2.4 7.2 7.6 0.31 o 0.10 0.05
450/2000% 3.6 1.2 2.5 32 2.9 0.48 0.62 0.16 0.42
100072000 7.1 1.6 1.8 7.0 7.0 b e 0.04 0.04
1900/2000 1.7 2.6 1.7 29 2.2 h b 0.25 0.20
7 (line 2) 5.5 5.1 6.1 3.7 35 0.76 0.82 0.70 0.91
7 (line 3) 55 4.3 5.6 3.0 3.1 0.83 0.84 0.65 0.86
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To summarize, we see that the weighted least-squares
technique changes the composition of the CTW signal
at both lines 1 and 2, with the first mode containing
more energy than the second mode. The energy in the
third mode is considerably reduced relative to the SVD
analysis. The unexplained variance is the same for both
methods, and there is little to choose between the pre-
dictions from the prognostic model. Both methods in-
dicate the existence of a coherent mode 2 coastal-
trapped wave propagating from line 1 to line 2 at ap-
proximately the theoretical phase speed. However, only
the SVD method indicates a coherent mode | coastal-
trapped wave.

b. Effect of adding sea-level data

We examine now the effect on the CTW mode com-
position of using additional data in the analysis. At
line 1, the original nine current measurements are aug-
mented by three sea-level time series, while at line 2,
coastal sea-level data are added to the original 12 cur-
rent measurements. The modal energy decomposition,
total CTW energy, residual variance and correlation
between mode 1 and mode 2 are summarized in Table
6 for line 1 and Table 7 for line 2.

The effect of additional data on the energy in the
CTW modes depends on the analysis method used. At
both line 1 and line 2, the SVD method shows an in-
crease in the energy in mode 1 (36% and 9%, respec-
tively), and a decrease in the energy in mode 2 (9%
and 28%, respectively), to the extent that these two
modes now contain about the same energy. The energy
in mode 3 decreases by 13% at line 1 and increases by
7% at line 2, while the squared amplitude of the eddy
mode increases by 12%-14%.

In contrast, the addition of sea-level data to the WLS
analysis gives a decrease in mode 1 energy of 24% at
line 1, and a decrease of 14% at line 2. The energy in
mode 2 decreases by 16% at line 1, but increases by
22% at line 2. The net effect is to bring the ratio of
mode 1 to mode 2 energy for the WLS method a little
closer to the ratio obtained using the SVD method.
However, the difference between the methods is still
marked; the SVD method estimates that mode 1 and
mode 2 contain approximately equal energy at both
lines, while the WLS analysis suggests that mode 1
contains more than twice the energy of mode 2 at line
1, and 28% more energy at line 2.

The WLS analysis of mode 3 is unchanged by ad-
ditional data; there is very little energy in this mode.
The squared amplitude of the eddy mode is increased
by 25% at line 1 and 31% at line 2.

The only change of any note in the total CTW energy
caused by adding sea-level data is at line 1 for the WLS
method, where the total energy drops by 21%. It still
exceeds the total CTW energy obtained from the SVD
method by 21%.

The residual velocity variance at both lines and for
both techniques is increased slightly by the addition of
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sea-level data. However, there is a considerable decrease
in the associated residual sea-level variance (see Tables
6 and 7). To fit the sea-level data, it is necessary to
relax the fit to the velocity data. The advantage is that
there is now a relatively uniform residual variance for
all available measurements, although in all cases the
sea-level residual exceeds the velocity residual. This
might indicate that we have not chosen our row (equa-
tion) weights exactly right.

For all combinations of methods and datasets, the
velocity and sea-level residuals are somewhat larger at
line 2 than at line 1. We attribute this to the increased
eddy activity at line 2, as evidenced by the fact that
the squared size of the eddy mode is about twice as
large at line 2 as at line 1. The time-independent eddy
mode will not be able to represent fully the eddy activity
at either line. Hence the portion of the eddy signal that
cannot be represented as either the eddy mode or one
of the CTW modes will appear as residual variance.

The inclusion of sea-level data leads to an increase
in the alongshore coherence of modes 1 and 2 for both
methods, while mode 3 remains incoherent. For the
SVD method, there is a slight increase in coherence at
all frequencies of interest (0.05-0.50 cycles per day),
although changes to the corresponding phase speeds
are not significant (Fig. 2c). However, for the WLS
technique, the increase in coherence for mode 1 is quite
marked, with significant coherence now found at all
frequencies higher than 0.1 cpd (cycles per day) (Fig.
2d). Mode 2 is coherent at the 95% level only at fre-
quencies less than 0.2 cpd, but it is at these frequencies
that the majority of energy resides. The mode 1 and
mode 2 phase speeds estimated from all data using the
WLS method are close to being independent of fre-
quency, and the values are closer to the theoretical val-
ues than are those of the SVD analysis.

Finally, we consider predictions of velocity and
coastal sea level from the prognostic CTW propagation
model described in the previous section. Including sea-
level data at line 1 in either the SVD or the WLS anal-
ysis increases the amplitude of the predictions at line
2 by an average of about 7%. This increase 1s desirable
because of the tendency of both methods to underpre-
dict the amplitude at most instruments (see the pre-
vious section). There is also a general improvement
in the correlation between the predicted and observed
data; the extent of this increase is largest for the sea-
level time series. However, in all cases the increase in
the value of the correlation coefficient is not significant
at the 95% confidence level. The addition of sea-level
data to both methods also has the effect of increasing
the linear regression coeflicients at most instruments.
However, in most cases these increases were below the
standard error in these coefficients and so individually
could not be considered significant. In the next section
it will be shown that the fact that nearly all regression
coefficients increased is significant, thus allowing the
selection of a preferred method and dataset.
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To summarize this section, the addition of sea-level
data has a different effect on the results of the SVD
and WLS methods. The mode 1 to mode 2 energy
ratio increases for the SVD method, and decreases for
the WLS method, thus narrowing the gap between the
results from these methods. However, the WLS method
still results in mode 1 containing at least twice the en-
ergy of mode 2, while the SVD results indicate these
modes contain about the same energy. Estimates of the
energy in mode 3 are not changed substantially; the
WLS method results in very little energy in this mode,
while the SVD method suggests mode 3 contains about
one-fifth of the total CTW energy. For both methods,
the sea-level residual is reduced considerably at the ex-
pense of a slightly higher velocity residual. The addi-
tional data improves the coherence of both mode 1
and mode 2 between line 1 and line 2; the coherence
for the WLS method in particular is improved, with
the phase speed close to being independent of frequency
over the range of energetic frequencies. Predictions of
line 2 velocity and coastal sea-level by the prognostic
model are generally improved, although none of the
improvements by themselves could be considered sta-
tistically significant.

¢. Are the modifications significant?

We observed in the previous section that the WLS
method led to a slight improvement in the prediction
of velocity and sea-level data along the coast. We also
observed that the addition of sea-level data to the anal-
ysis led to a similar improvement for both methods.
These improvements occurred at most instruments,
whether measured by the correlation coefficient or by
the linear regression coefficient. The fact that the im-
provement was consistent across most instruments
suggests that these results are not random. What is
needed is a method for assessing the likelihood that
such a consistent result is due to chance.

We will concentrate on the linear regression coeffi-
cient between the predicted and observed data. The
fact that this value is normally distributed if the data
are normally distributed (Draper and Smith 1981)
makes the analysis easier. To remove the effect of in-

strument location, we use a paired test in which the.

variables are the differences between the linear regres-
sion coefficients at identical sites for the two models
being tested. These differences are scaled by the stan-
dard error of the difference; this standard error is the
square root of the sum of squared standard errors of
the two individual regression coefficients. The scaled
differences are normally distributed with mean zero
and standard deviation of unity. We can now test the
mean of these differences to see how likely it is that
such a value occurred by chance.

The mean scaled difference for each combination of
experiments is shown in Table 9, together with the
probability that this value could occur by chance. Only
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TABLE 9. Statistical measure of whether one combination of
method and dataset is significantly better or worse than another. The
third column consists of the difference between linear regression
coefficients at line 2, scaled by the standard error and averaged. A
negative value means that experiment 2 has larger regression
coefficients than experiment 1. The fourth column is the probability
that the mean scaled difference could occur by chance. See the text
for further explanation. .

Mean scaled .
Experiment | Experiment 2 difference Probability
SVD SVD + 9 —1.25 0.211
SVD WLS -1.12 0.263
SVD WLS + g ~3.19 0.001
SVD + g WLS 0.08 0.935
SVD + g WLS + 5 —-1.96 0.050
WLS WLS + g —1.96 0.050

those instruments that have a statistically significant
regression coefficient for all experiments are included
in this test; these are the 5 shallow current meters and
the sea-level measurements at line 2 and line 3. How-
ever, the conclusions would be unchanged if all instru-
ments were included. If we reject the null hypothesis
that two experiments give the same linear regression
coefficients at the 95% level, then any two experiments
for which the probability is less than or equal to 0.05
can be considered as having significantly different pre-
dictive skill. If the mean scaled difference is negative,
then experiment 2 has greater skill than experiment 1.
The figures in Table 9 show that the WLS method used
to analyze both velocity and sea-level data has signif-
icantly greater predictive skill than any other combi-
nation of method or dataset. This is the only conclusion
that may be drawn from these figures at the 95% level.

d. Presence of mode 3

To establish whether a particular mode has a sig-
nificantly nonzero amplitude relative to the noise level
in the analysis, we conduct a Student’s t-test of the
modal amplitudes relative to their estimated errors.
The estimated errors for the WLS method are calcu-
lated from (15), while the estimated errors for the SVD
method are calculated from a similar expression (see
Lawson and Hanson 1974). The test is applied at all
times (every 12 h), and the percentage of times that a
mode is significantly different from zero at the 95%
level recorded. Because the modal amplitudes fluctuate
about zero, a mode will be considered insignificant by
this test near a zero crossing. However, if the mode is
significantly nonzero and of opposite sign either side
of the zero crossing, then the zero crossing must be
considered significant. We have not found a way to
include this effect in the test. The results are clear
nonetheless.

The only experiments in which mode 3 is significant
more than 2% of the time are those involving the SVD
method at line 1. The other modes are typically sig-
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nificant 30%-50% of the time. We note that the SVD
method generally gives somewhat larger values for the
percentage of time a mode is significant and that adding
sea-level data generally increases this percentage.

This analysis is likely to be quite strongly dependent
on the weight matrices used in the analysis. Not only
does the solution depend on the weight matrices, but
so does the standard error. Hence the ¢ values (ratio
of amplitude to standard error) might vary considerably
as the assumptions about weighting change. Since we
believe that the WLS method uses more realistic
weights than the SVD method, we conclude that mode
3 is not significant at either line 1 or line 2.

e. Significance of energy estimates

If 1t is assumed that the modal amplitudes have a
normal distribution, then the modal energy estimates
have a chi-square distribution. The number of degrees
of freedom is given by the length of the experiment
divided by the integral time scale. The latter was esti-
mated by both Freeland et al. (1986) and Church et
al. (1986b) to be between 3 and 5 days. Hence a con-
servative estimate for the number of degrees of freedom
for estimating modal energy is 180/5 = 36. With this
estimate, the 95% confidence interval for the modal
energy estimates, given as a percentage of the estimate,
is +69% and —34%. If the shorter integral time scale
of 3 days is used, the 95% confidence limits are +48%
and —28%.

5. Discussion

The results we obtain using the weighted least-
squares method raise a number of interesting issues
regarding the oceanography of the ACE region, and
CTW measurement experiments in general. The first
of these is the lack of correlation between the mode 1
and mode 2 amplitude time series at both line 1 and
line 2. This indicates that the generation mechanism
for the two modes may not be as strongly linked as the
analytical studies of Buchwald and Kachoyan (1987)
and Middleton (1988) might suggest.

Theoretical studies by Clarke and Van Gorder
(1986) and Lopez and Clarke (1989) suggest that seven
or more modes may be needed to describe adequately
. the alongshore velocity field associated with CTWs (al-
though fewer are required to describe coastal sea level).
However, the work of Chapman (1987) in the CODE
region, and Church et al. (1986b) in the ACE region,
indicate that fewer modes are necessary to explain ad-
equately the observed signal. In addition, both works
point to the impracticality of extracting more than a
few CTW modes from most instrument arrays. Our
finding that the amplitude of mode 3 is insignificant
relative to the other modes is consistent with these
conclusions, although we cannot discount the existence
of modes higher than the third. (A referee has pointed
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out that Figs. 2 and 3 of Lopez and Clarke 1989 indicate
that many modes are necessary only on the inner shelf,
and that elsewhere fewer modes are needed to describe
the flow. This comment helps reconcile theory and ob-
servation.)

Our best estimate of the total CTW energy at line 1
during the ACE period, using the weighted least-squares
method and sea-level data, is 2.4 X 10® W. This is an
increase of 26% over the original ACE results. Three
separate energy sources have been identified in the lit-
erature. Estimates of the energy flux due to local wind
forcing in Bass Strait range from 1.1 to 2.0 (X108 W)
(Clarke 1987; Morrow et al. 1990). Local wind forcing
between the eastern end of Bass Strait and line 1 is
estimated to add about 0.3 X 10® W (Freeland et al.
1986). Finally, CTWs incident at the western end of
Bass Strait are thought to transfer energy through the
Strait (Church and Freeland 1987; Middleton and
Viera 1991; Baines et al. 1991). The last two studies
showed incident CTWs to be at least as important as
local wind forcing in driving an eastward energy flux
in Bass Strait, though it should be noted that these
conclusions were based on data from the post-ACE
period April to June 1984. Adding the energy fluxes
from the three sources gives a tentative lower bound
of 2.5 X 10® W for the energy flux incident at line 1.
The fact that our estimate of total CTW energy is
slightly lower than this lower bound could be attributed
to the penalty function minimized to obtain a stabie
solution. One term in the penalty function involves
the sum of energy fluxes in the modes, so it is likely
that our estimate of energy flux is also a lower bound.
It is difficult to draw any stronger conclusions given
the large confidence limits on our calculation of CTW
energy, and the inherent uncertainties in estimating
energy sources.

An unexpected result of the original ACE study was
the finding that mode 2 contained more energy than
mode 1 at both line 1 and line 2 (Church et al. 1986a).
Our results show that both the addition of sea-level
data and the use of the weighted least-squares method
act to increase the energy in mode 1 at both lines, mar-
ginally decrease the energy in mode 2 at line 1, and
generally increase the energy in mode 2 at line 2. Over-
all we find that at line 1, mode 1 contains 2.3 times as
much energy as mode 2, while at line 2 the ratio is 1.3
(see Tables 6 and 7). Our modal energy partitioning
agrees with the “conventional” view of a CTW signal
dominated by the first mode, but it should be noted
that arguments have been proposed that lend weight
to the opposing view. The analytical studies of Buch-
wald and Kachoyan (1987) and Middleton (1988),
for example, both indicate that the dimensions of Bass
Strait are such that an oscillatory flux through the strait
may act to generate mode 2 in preference to mode 1
on the East Australian shelf. However, Middleton
(1988) also points out that the ratio of mode 2 to mode
1 may change if allowance is made for the mismatch
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in the strait and shelf water depths. Griffin and Mid-
dleton (1991) show that the energy flux in the first
CTW mode in the vicinity of Sydney (50 km north of
line 2) due to free propagation from Bass Strait was
three to five times larger than that of the second mode.
However, they concede that this figure may be an over-
estimate. In addition, their data comes from the 1984/
85 summer period, a year after ACE.

An unusual aspect of our reanalysis is that, although
the energy in mode 1 remains essentially unchanged
from line 1 to line 2, the energy in mode 2 increases
by a factor of 1.8. Wind forcing in the intervening re-
gion is unlikely to account for such an increase
(Schahinger and Church 1994). The most obvious
physical explanation is linked to the increased activity
of the East Australian Current at line 2 relative to line
1. It is possible that CTWs may be generated by eddies
hitting the continental slope and shelf. Louis (1989)
has suggested that this mechanism may have been re-
sponsible for the eventlike bursts of wave activity ev-
ident in many of the ACE current meter records, par-
ticularly at line 2 during January 1984. Such a mech-
anism may preferentially generate higher-order CTW
modes.

In all the discussions above involving energy esti-
mates, it must be remembered that the confidence lim-
its on such estimates are quite large due to the small
number of degrees of freedom.. Although the ACE ex-
periment ran for about half a year, the signals it was
designed to measure had integral time scales of between
3 and 5 days, giving an effective number of degrees of
freedom of only 36 to 60.

The modal decomposition at line 1 differs consid-
erably between the original SVD analysis and our
weighted least-squares analysis with additional sea-level
data. The original ratio of modes 1, 2, and 3 was about
3:5:2, whereas our analysis suggests the ratio is more
like 7:3:0. It was shown that the ability of our analysis

to predict sea level and velocity along the coast was -

statistically significantly enhanced over the original
method. However, we were surprised to find that the
amplitude of predicted sea level and velocity increased
by only 10%-20%, despite the substantial change in
energy partitioning. The square root of the total CTW
energy at line 1 in our reanalysis increased by 12% over
the SVD analysis, and it is this increase that is reflected

in the predictions. We conclude that it is the total CTW .

energy input at line 1 that is more important than the
distribution of that energy into CTW modes. However,
this conclusion is almost certainly dependent on the
residual fit at line 1 being acceptable.

6. Conclusions

We have applied a weighted least-squares method
to reanalyzing data from the Australian Coastal Ex-
periment. The original time-domain analysis used a
singular-value decomposition. Novel features of our
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method are the use of generalized cross validation to
estimate the signal-to-noise ratio of the dataset, and
the use of an iterative method to estimate the matrix
column scales. Sea-level data not used in the original
analysis were also incorporated. A comprehensive study
of the effects on the solution of the analysis method
versus the use of additional data revealed a complicated
interaction. Adding sea-level data had a different effect
on the two methods, although it did improve along-
shore coherence between modes in both cases. The ad-
ditional data tended to bring the two solutions into
closer agreement, indicating that with more data the
solution is less determined by the method used. Ap-
plying the original analysis method to the larger dataset
led to mode 1 containing the same energy as mode 2
at both lines. Our weighted least-squares method ap-
plied to the entire dataset increased the energy in mode
1 substantially, left mode 2 essentially unchanged, and
indicated that there was almost no energy in mode 3.

Furthermore, our reanalysis indicates that there is
little correlation between the mode 1 and mode 2 am-
plitude time series at line 1. The original analysis
method enforced such a correlation. The implication
is that there may not be a common energy source for
these two modes. This, together with our finding that
mode 1 has more than twice the energy of mode 2 at
line 1, suggests that further work is needed on the en-
ergy source of coastal-trapped waves on the southeast-
ern Australian shelf.

We have demonstrated that our method together
with the additional sea-level data gives significantly
greater skill at predicting alongshore currents and sea
level along the coast. However, we have noted defi-
ciencies in the ability of the ACE instrument array to
separate completely mode 1, mode 2, and the eddy
mode. In addition, the duration of the ACE experiment
leads to between 36 and 60 degrees of freedom, which
in turn leads to disappointingly large confidence limits
on estimates of modal energies. Results in this paper
should be tempered with that knowledge.
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