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ABSTRACT

To provide possible dynamical interpretations of the Gulf Stream-induced circulation in thq Middl_e Atlam.ic
Bight (MAB), the inshore flow driven by a steady and straight jet in a homogeneous ocean is considered via

similarity solutions.

To isolate the curvature effect of the coastal boundary, the author first considers the case of a constant-depth
ocean, from which various nonlinear flow regimes are discerned. When applied to the MAB, the model can
explain the observed intrusion of the Gulf Stream water just downstream of Cape Hatteras where the coastline

curves convexly.

Over larger scales of the MAB, the scale analysis suggests the importance of the topography in the vorticity
balance. When the topography is included, the similarity solution shows the strong flow to be confined offshore,
flanked inshore by a weak counterflow, consistent with the observed slope sea gyre. There is in addition a flow
convergence toward the inshore edge of the jet, consistent with the observed occurrence of the shelf water there
and the inferred shoreward flux of nutrients across the jet axis.

1. Introduction

Observations show that the Gulif Stream interacts in
varied form with the shelf and slope water of the Middle
Atlantic Bight (MAB). From current measurements,
Csanady and Hamilton (1988) have documented the
existence of a cyclonic slope sea gyre with the Guilf
Stream forming its offshore boundary, and Bane et al.
(1988) have found strong correlation between the
shelfbreak current and the position of the Gulf Stream
front, suggesting the dynamical linkage of the two.
Complementing this gyre circulation, satellite images
(e.g., Fig. 19 of Csanady and Hamilton 1988 ) show an
entrainment of the inshore water by the stream, cor-
roborating hydrographic evidence (Ford and Miller
1952).

While these features appear quite persistent, recent
studies (Churchill and Cornillon 1991b) suggest, on
the other hand, frequent incursions of the Gulf Stream
water onto the outer shelf. One episode of such intru-
sions can be seen in the satellite image (plate 1c of
Churchill et al. 1989) that shows a filament of the warm
water leaving the Gulf Stream just downstream of Cape
Hatteras, turning cyclonically as to direct backward
near the shelfbreak.

In the hope of providing dynamical interpretations
of these diverse features, I have considered the inshore
circulation driven by a steady and straight jet in a ho-
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mogeneous ocean. Although the dynamics is nonlinear
by the implication of a “jet,” the vorticity equation
nevertheless allows similarity solutions, which greatly
simplifies the mathematical task. And despite limita-
tions of such solutions, they provide a powerful tool
for depicting possible flow fields and elucidating the
underlying dynamical balance.

For the organization of the paper, I shall first discuss
in section 2 the model and the use of similarity solu-
tions. Solutions to a constant and variable-depth ocean,
as well as their application to the MAB, are then dis-
cussed, respectively, in sections 3 and 4. The model
results are summarized in section 5.

2. The medel

Let us consider a model configuration as shown
schematically in Fig. 1, whereby a steady and straight
jet interacts with a continental boundary in a homo-
geneous ocean. Cartesian coordinates are used with the
X axis aligned with the jet axis, defined as where the x
component of the velocity, ¥, has a maximum (i.e.,
du/dy = 0). The ocean depth is denoted by d, which
vanishes at y = y, > 0 marking the coastal boundary.
The object of the model is to determine the flow field
within the model domain bounded in y by the jet axis
and the coastal boundary. For convenience, all the
variables are nondimensionalized according to the fol-
lowing scaling rules: Let X be the x scale of interest
and Y, U, and D, be the values of y, u, and d at (X,
0); then the variables x, y, u, v, and d have been non-
dimensionalized by X, Y, U, UY/X, and D,, respec-
tively.
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Since the ocean is homogeneous, the horizontal ve-
locity is depth independent, and the continuity equa-
tion can be integrated vertically to yield

V.(vd)=0, (2.1)

which allows the definition of a transport streamfunc-
tion ¢ as

v=d 'k X Vy. (2.2)

As implied by “jet,” we neglect the x variation in com-
parison with the y variation so that the relative vorticity
¢ is given by '

(2.3)

where the subscripts indicate partial derivatives. We
consider a vorticity equation of the form

J(¥, q) = ESyy, (2.4)

where J is the Jacobian and g = d~'(1 + €{) is the
potential vorticity. The two dimensionless parameters
that have appeared in (2.4) are the Rossby number e
= U(fY) ! with fbeing the Coriolis parameter, taken
to be a positive constant, and the Ekman number E
= pX (fY 3)~! with v being the kinematic eddy viscos-
ity. The mathematical task is simply to solve (2.4) in
the model domain subject to proper boundary condi-
tions.

Before discussing the boundary conditions, I shall
first remark, as to be seen later, that (2.4) can be re-
duced to an ordinary differential equation by similarity
transformations, thus greatly simplifying the task of
obtaining a solution (the similarity solution). The well-
known trade-off of this simplification is that the sim-
ilarity solution can satisfy only more restrictive bound-
ary conditions that may limit its application. Along
the coastal boundary, the physical condition is that
both the normal and tangential components of the ve-
locity vanish, which can be satisfied only if the bound-
ary adheres to certain similarity forms, and obviously
the utility of the similarity solution depends on how
representative such a boundary is of the boundary of
interest.

Similarly, as the x-dependence of the flow is specified
by the model geometry through the similarity require-
ment, the only boundary condition that can be imposed
at the jet axis is the scaling definition that u is of unity
at (1, 0). That is, the jet is external only in setting the
spatial and velocity scales of the inshore flow, which
otherwise is governed by the model physics. The im-
plicit assumption is that the jet is forced from offshore
so that other properties of the jet, such as its transport,
can be accommodated by the spatial dimensions sea-
ward of the jet axis, that is, outside the model domain.

The presence of a forcing region of the jet is obviously
required for the overall vorticity balance if the jet were
to interact with a coastal boundary since, by virtue of
its nonslipness, such a boundary provides a vorticity

F=k-VXv(dW),
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input that must be removed by forcing. This designa-
tion of an offshore forcing region of the jet incidentally
stipulates that the unforced balance (2.4) and the en-
suing similarity solution may not be extended across
the jet axis. The present problem thus differs funda-
mentally from the channel flows considered in classical
fluid mechanics (e.g., see section 5.4 of Batchelor 1970)
where the vorticity flux from one boundary can exit
through the other boundary so that the inertial-viscous
balance (2.4) remains valid throughout the channel.
In these latter cases, however, similarity solutions exist
only for a symmetric wedge, which is the reason why
this is the only geometry that has previously been con-
sidered.

While the similarity requirement is restrictive, one
mitigating factor sometimes overlooked is that the
similarity solution may be applied piecewise in x so
long as the edge effect can be neglected. One thus need
not be concerned with singularities or the breakdown
of the model approximations, such as the narrowness
[ie., Eq. (2.3)] or straightness of the jet, outside the
domain of interest that, by scaling definition, encom-
passes x = 1.

To facilitate the similarity solution, let us consider
a coastal boundary of the form

Ve = X%, (2.5)

where a is an external parameter that may assume ¢i-
ther positive or negative value. With the allowance that
the jet may be directed forward or backward (with re-
spect to positive x), the form (2.5) is quite general and
covers a wide range of model geometries. To isolate
the curvature effect of the coastal boundary, I shall first
consider the case of a constant-depth ocean.

3. A constant-depth ocean

For a constant-depth ocean, the vorticity equation
(2.4) becomes

ReJ(¥, ¥yy) = ¥y, (3.1)

where Re = ¢E£~! = UY ?(vX) ! is the Reynolds num-
ber. Since without a variable depth and the ensuing
vortex stretching, the fluid does not sense the planetary
rotation, (3.1) is the same as that used in the classical
nonrotating jet problems (e.g., see chapter 5 of Batch-
elor 1970), which states the balance between advection
and diffusion of vorticity. Although the Reynolds
number is typically large for our applications (see sec-
tion 3d), the inclusion of the viscous term is neverthe-
less essential since it is of higher order and may sin-
gularly perturb the inviscid solution.

To solve (3.1), let us define a new coordinate system
(x, n) with (see Fig. 1)

n=yx % [0,1], (3.2)
and seek a similarity of the form
¥ = x"¢(n), (3.3)
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F1G. 1. A schematic of the model configuration
that defines some symbols used in the model.

where b is a constant yet to be determined. Substituting
(3.3) into (3.1), and requiring the equation to hold
over a finite range of x, yields

b=1-—a, (3.4)

or, as alluded to in the previous section, the x depen-
dence of the flow is determined by the model geometry.
In particular, a = 1 (a divergent wedge) marks the
transition from increasing to decreasing transport with
x, and since

u=—y,=—x'""2%(n), (3.5)

the value a = 1> marks the transition from increasing
to decreasing u with x. In terms of the similarity vari-
able ¢, (3.1) becomes

Re[(1 — a)$¢” — (1 — 3a)¢'¢"] = ¢", (3.6)

where the two terms on the left-hand side represent
the advection of vorticity across and along constant-y
lines, referred to henceforth as “‘spanwise” and
“streamwise,” respectively, which are balanced by the
diffusion of vorticity on the right-hand side.

The boundary conditions, as stated earlier, become,
for a forward jet,

#(1)=¢'(1) =0, ¢'(0)=-1
and ¢"(0) =0(¢"(0)>0). (3.7)

That is, the coastal boundary is nonporous and nonslip,
and u has a maximum along the jet axis (by definition)
with a unit magnitude at (1, 0) (by scaling). For a
backward jet, the signs in (3.7) are reversed, but since
(3.6) is invariant to the transformation ¢ = —¢, Re
— —Re, the backward jet case can be accommodated
by the same equations (3.6) and (3.7) but with a neg-
ative Re.

As alluded to before, the mathematical problem is
reduced to that of solving an ordinary differential
equation (3.6), the numerical method of which is de-
scribed in the Appendix. As the solution depends only
on the parameter g characterizing the boundary shape,
and the Reynolds number Re, the flow property can
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be fully explored on the parameter plane of (a, Re),
with both parameters assuming positive as well as neg-
ative values. To facilitate the discussion, I shall first
consider the linear solution (Re = 0), then its modi-
fication by the advective terms (|Re| < 1), and then
the strongly nonlinear solution (|Re| > 1) which are
more pertinent for the present problem.

a. The linear regime (Re = 0)
Setting Re = 0 in (3.6), the equation becomes
" =0, (3.8)
or there is a uniform diffusive flux of vorticity trans-

versing the model domain. The solution is given by

p=-(n*—1)—(n—1), (3.9)

W -

and the corresponding u at x = 1 [i.e., —¢' from Eq.
(3.5)] for a forward jet is plotted (the solid line) in
Fig. 2. Since the linear balance involves only spanwise
derivatives, this velocity profile is independent of the
boundary geometry; the jet is thus broad with increas-
ing shear toward the coastal boundary. The x depen-
dence of the streamfunction (and hence the transverse
flow) is however a function of the model geometry as
given by (3.3) and (3.4), and the flow exactly reverses
for a backward jet.

b. The weakly nonlinear regime (|Re| < 1)

Since the advective term in (3.6) is of lower order
than the viscous term, they only regularly perturb the
linear solution. One may thus expand the solution in

Re =0
———— R.110,011/3

— +— Ry =10,022/3

0 5 1

FIG. 2. The profile of u at x = 1 of a constant-depth ocean for the
linear regime of Re = 0 (the solid line), and the weakly nonlinear
regimes of Re = 10, a = 153 (the dashed line) and Re = 10, a = 23
(the dash—dotted line).
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perturbation series in Re, uniformly valid in 7, and
then derive the expression for the perturbations. While
such exercises show that the advective term may vary
in sign in the model domain, its net effect on the vor-
ticity balance of a (spanwise) strip of fluid, however,
is more definitive and may be used to infer the mod-
ification of the linear solution. Integrating (3.6) from
7 = 0to 1 yields

Re(1l — 2a) = [¢"16. (3.10)

So for an accelerating jet when Re(1 — 2a) > O [re-
calling Eq. (3.5) and taking into account the sign of
Re], there is an enhanced diffusive flux of vorticity
from the coastal boundary relative to that exiting the
jet axis, and for a decelerating jet, the opposite is true.
This modification of the linear solution is clearly dem-
onstrated by the numerical solutions shown in Fig. 2.

To understand this result, one notes that since the
spanwise vorticity flux vanishes at the coastal boundary
(because of zero normal velocity) and the jet axis (be-
cause of zero relative vorticity ), the net advection de-
pends on the x variation of the streamwise vorticity
transport, which is directly related to the jet speed via

Vb Vb [
f utdy = —f uu,dy = 3 u(0)2. (3.11)
0 0

So for an accelerating jet, for example, one has a di-
vergence of this vorticity transport, which must be bal-
anced by a net diffusive input or a sharpening of the
vorticity gradient at the coastal boundary relative to
that at the jet axis, as deduced above.

One, however, may not extrapolate from above
modification of the linear solution to infer that the
viscous effect will be increasingly confined to the re-
spective boundary as Re increases, since such an in-
ference presumes the existence of an inviscid interior,
which, as we shall see below, may not be attainable,
and viscosity may remain important throughout the
model domain even as Re = 0.

¢. The strongly nonlinear regime (|Re| > 1)

The approach adopted here is to first presuppose the
existence of an inviscid interior and then inquire
whether a viscous boundary layer can be appended to
satisfy all the boundary conditions. If the answer is
affirmative, one hopes the derivation of the solution
would ensure its uniqueness. If, on the other hand, the
answer is negative, one has to accept the falsehood of
the above presumption and conclude that the viscous
effect remains important throughout the model do-
main. This latter possibility of course stems from the
singular nature of the viscous term, which may dom-
inate the balance given sufficiently small scales (i.e.,
the flow undulates sufficiently rapidly in ) even as Re
becomes large.

In the inviscid interior (and hence the subscript I),
the solution satisfies the equation

ou
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(1 —a)¢pi" — (1 — 3a)eié7 =0, (3.12)

which is of the third order and, in general, can satisfy
only three boundary conditions, with the higher-order
condition of (3.7) at either boundary remaining un-
satisfied. The two cases will be labeled as case “0” and
“1,” corresponding to the ‘“value of 5” where the
boundary conditions are not fully satisfied by the in-
viscid flow and where there is a possible viscous
boundary layer. :

For case 1 with the nonslip condition at n = 1 re-
laxed, (3.12) can be integrated once to yield

(1 —a)¢p] — (1 —2a)(¢? —1)=0, (3.13)
which has a trivial solution
¢r=1-n, (3.14)

and the corresponding « is uniform in .

To show that this is a unique solution, let us assume
the existence of nontrivial solutions so that (3.13) may
be multiplied by ¢7¢ 7' (¢7* — 1)~! and integrated once
to yield

¢ = 3[1 + Apj( /=012, (3.15)

where A is an unknown constant. Because of the square
root appearing on the rhs, ¢} can be of only one sign
through the model domain, and hence the boundary
condition ¢;( 1) = 0 necessarily implies ¢,;(0) # 0. To
satisfy the boundary condition ¢7(0) = —1, one then
requires 4 = 0 and the negative sign be chosen in
(3.15). One thus has ¢; = —1 identically, contradicting
the nontrivialness of such solutions.

To assess whether the nonslip condition at 5 = 1
can be satisfied by appending a viscous boundary layer,
one integrates the full equation (3.6) across such a
boundary layer and uses the interior solution (3.14)
to yield

Re(l — 2a) ~ ¢"(1). (3.16)

Since to adjust a positive u in the interior to zero at
the boundary implies ¢”' (1) > 0, the balance is possible
only if Re(1 — 2a) > 0 or the flow is accelerating
downstream, a result well known in classical fluid dy-
namics (see section 5.9 of Batchelor 1970). The phys-
ical reason is a trivial extension of that offered in section
3b; namely, only an accelerating flow in the interior
can provide a divergence of vorticity flux to the viscous
boundary layer, necessary to remove the diffusion of
vorticity from the coastal boundary. For an accelerating
jet, the solution thus behaves regularly as Re increases,
with the viscous boundary layer increasingly pressed
against the coastal boundary. The width of this bound-
ary layer can be seen from (3.16) to be scaled as
Re~!/? since ¢’ varies through a unit magnitude across
the boundary layer. The numerical solution for the
case of Re = 50, a = 1/3 is plotted in Fig. 3, which
exhibits the above structure.
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FIG. 3. Same as Fig. 2 but for the strongly nonlinear regime of Re
= 50, a = /3. The coastal geometry and the streamlines are also
plotted. The advection has expelled the viscous effect to the coastal
boundary where there is a strong shear layer.

For case 0, when the zero vorticity condition at g
= 0 is relaxed for the inviscid flow, (3.12) can be in-
tegrated repeatedly to yield

¢r=a(l —a) ' (1 =)= (3.17)
with the requirement that
0<a< % . (3.18)

It is trivial to see that outside this parameter range the
solution (3.17) cannot satisfy the two coastal boundary
conditions and hence there is no solution. ,

To examine whether a viscous boundary layer can
be appended at n = 0 to satisfy the relaxed boundary
condition that ¢”(0) = 0, we again integrate the full
equation (3.6) across such a boundary layer and use
(3.17) to obtain

Reag[(0) =~ —¢"(0), (3.19)

which states the balance between the advective (in the
spanwise direction ) and diffusive flux of vorticity. Since
¢"(0) = 0, ¢”(0) is of the same sign as ¢7(0), the
balance is possible only if Re < 0, or the jet is directed
backward. Physically, this is because in the parameter
range of (3.18), the transport increases with x [Eqgs.
(3.3) and (3.4)]; hence, only a backward jet is accom-
panied by an offshore flow that can balance the diffusive
flux of vorticity across the jet axis.

For a more formal derivation, one can decompose
the solution as the sum of the interior solution (3.17)
and a boundary-layer correction ¢g:

¢ = ¢1 + |Re| 2¢5(£), (3.20)
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with {(=|Re| 'y) being the stretched coordinate.
Substituting (3.20) into (3.6), ¢p satisfies the linear
equation

Zagpe: = Goiese (3.21)

and the boundary conditions ¢z(0) = —¢7(0), and
¢z —> 0as £ = oo. The two signs in (3.21) correspond
to the sign of Re, hence and as expected, a solution is
possible only if Re is negative. A numerical solution
for the case of ¢ = 1/3, Re = —50 is plotted in Fig. 4,
which exhibits the deduced flow structure. Since the
boundary layer has a width scaled by |Re| ™!, it is much
narrower than that of case 1, and it is characterized by
large vorticity gradient rather than large shear. But de-
spite these differences, u is of a single sign for both
cases with no counterflows in the interior.

- By way of above analysis, we have exhausted the
parameter ranges for which there is an inviscid interior;
namely, Re(1 —2a4) > 0forcase l and Re < 0,0 < a
< 1/ for case 0. Outside these parameter ranges, the
viscous effect should be important throughout the
model domain by the generation of undulating flows,
a numerical example of which is plotted in Fig. 5 for
the case of Re = 10, a = 2. Using (3.10), one can
crudely estimate the spanwise scale § as

6 ~ O[|Re(1 — 2a)|7"%), (3.22)

which expectedly decreases as | Re| increases or as the
model geometry becomes more divergent. One may
further estimate the critical Reynolds number | R,|
for the onset of the nth oscillatory mode (i.e., with n
zero crossings in u inside the model domain). Since
such onsets coincide with a vanishing shear at the
coastal boundary, and recalling that current shear also

1 — U
-1 -5 0 .
FIG. 4. Same as Fig. 3 but for a backward jet of Re = ~50, a
= 1f3. The advection has expelled the viscous boundary layer to the
jet axis where there is a large vorticity gradient.
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Rq=10
Q=2

1
¢/ .5 1

FiG. 5. Same as Fig. 3 but for the case of Re = 10, a = 2. The
viscous effect is important throughout the model domain due to its
generation of undulating flows.

> U

vanishes at the jet axis, the model domain should con-
tain n half-cycles, or

8 ~ O([n=x]™"). (3.23)
Combining (3.22) and (3.23), one derives
| Ryl =~ O[n*x2|1 — 2a|™'). (3.24)
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We have plotted the expression within the above
bracket for the first mode (n = 1) in Fig. 6 (the dashed
lines), the order of magnitude of which encompasses
the numerical values shown as vertical bars. Fora = 1,
incidentally, our numerical value agrees with Batche-
lor’s (1970) value of 10.31 [his Eq. (5.6.15)], affirming
the accuracy of our numerical calculations. Since | R,|
varies as n°, the prospect of generating higher modes
is rapidly diminishing with the mode number.

Since the fluid in the counterflow inshore of the jet
may either be entrained into or detrained from the jet,
depending on the coastline geometry [Egs. (3.3) and
(3.4)], one can discern four distinctive nonlinear flow
regimes as indicated in Fig. 6 (separated by hatched
lines and labeled by Roman numerals). In Regime I
[Re(1 —2a)> 0], the jet accelerates downstream. The
strong flow extends through the inviscid interior to the
coastal boundary where a viscous shear layer is con-
fined. In Regime I (Re < 0, 0 < a < 1/5), the jet de-
celerates downstream in a convergent geometry. There
is also an inviscid interior where the flow has an off-
shore component that expels the viscous boundary
layer to the jet axis characterized by a large vorticity
gradient. In Regime III (Re > 0, I/ < a < 1), the jet
decelerates in a divergent and concave (seaward) ge-
ometry. Viscosity is important throughout the model
domain by the generation of undulating flows (only
the schematic for the first mode is shown). The jet
entrains fluid from both the adjacent counterflow and

FIG. 6. A diagram showing the nonlinear flow regimes of a constant-depth ocean on the parameter
plane of g, characterizing the boundary shape, and the Reynolds number Re. Different regimes
are separated by shaded bands and labeled by Roman numerals, and the associated flow directions
are indicated by arrows (only the first mode is shown for undulating flows). The dotted regions
indicate where the viscous effect is important. The dashed lines are the order of magnitude estimates
of the critical Rossby number for the onset of the first undulating mode [ from Eq. (3.24)], and
short vertical bars are its values determined from numerical calculations.
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across the jet axis, which converges at the cyclonic flank
of the jet. In Regime IV (Re > 0, a > 1 and Re < 0,
a < 0), the jet decelerates in a divergent and convex
(seaward ) geometry. The flow is again undulating and
viscous throughout the model domain, but the water
in the jet is detrained into the counterflow and across
the jet axis.

d. Applications

While the topography may be important in explain-
ing the flow in the MAB (see section 4), it nevertheless
is useful to infer the flow structure from a constant-
depth model to assess the curvature effect of the coastal
boundary and to reveal possible shortfalls of such a
model. For obvious reasons, the coastal boundary of
a constant-depth model should be identified with the
shelfbreak, along which the boundary conditions of
vanishing normal and tangential velocities can be jus-
tified by the shallowness of the shelf and the enhanced
bottom drag that prohibit strong flows.

One notes from the topography map shown in Fig.
7 that the coastal boundary assumes different similarity
forms depending on the x scale of interest. Over the
smaller scale immediately downstream of Cape Hat-
teras, the coastal boundary curves convexly (seaward ),
but over the larger scale of the MAB, the coastal
boundary is concave. Superimposed on Fig. 7 are some
model approximations based on the observed mean
position of the Gulf Stream front [the hatched line,
taken from Halliwell and Mooers (1979)]. Specifically,
we have used X = 100 km, Y = 100 km, and a = 2 for
the small-scale case, and X = 600 km, Y = 300 km,

and a = 1/3 and 2/3 for the larger-scale case. If one uses -

in addition U = 3 ms™!, f= 10"s"!, and » = §
X 107 cm s72, one estimates that (¢, E) = (3 X 107},
5 X 1073), and (107!, 1073) for the small- and large-
scale case, respectively, and the corresponding Reyn-
olds number is 60 and 100. While these estimates are
highly uncertain, they are only used to infer possible
flow regimes.
Judging from Fig. 6, the small-scale case (a = 2, Re
= 60) would fall in Regime IV, or there should be a
detrainment of the Gulf Stream water into a counter-
flow inshore of the stream. The model flow thus resem-
bles the observed Gulf Stream intrusions described in
section 2. For the large-scale case, the uncertainty of
the geometric parameter a allows the possibility of two
distinctively different flow regimes I and III. While the
latter is consistent with the observation of a Gulf
Stream entraining fluid from an inshore counterflow,
the former, however, shows a Gulf Stream extending
to the shelfbreak, clearly at variance with observations.
Because of the smaller Rossby number in the large-
scale case, one expects an enhanced topographic effect
in the vorticity balance. Does the inclusion of topog-
raphy qualitatively change the solution so as to remove
the above ambiguities and improve the model com-
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parison with observations? To answer this question,
we shall next consider an ocean of variable depth.

4. A variable-depth ocean

One can see from the vorticity equation (2.4) that
the importance of the vortex stretching is measured by
the axial topographic slope (normalized by Dy X ') at
(1,0). Based on Fig. 3 of Watts (1983), we use a phys-
ical slope of 4 X 10~ and D, of 2 and 4 km, respec-
tively, for the small- and large-scale case; then the cor-
responding normalized slope has a value of 0.2 and
0.6. With the respective Rossby number estimated in
the previous section to be 0.3 and 0.1, the topographic
stretching would dominate the advective effect in the
large-scale case. Since the vortex stretching as the jet
enters the deeper water tends to increase the cyclonic
shear, opposite the advective effect of an accelerating
Jjet in a constant-depth ocean (section 3b), one foresees
the possibility that the flow in Regime I could be qual-
itatively altered by a finite topographic slope.

To facilitate the similarity solution, one considers a
depth of the form

d = x‘D(n), (4.1)

where 7 is the similarity coordinate defined in (3.2), ¢
is an external parameter characterizing the axial slope
of the topography, and D specifies the transversal depth
profile. Since isobaths are generally oriented as the
coastal boundary, c is taken to be positive, so that the
Jjet enters the deeper water in a divergent geometry.
Seeking a similarity solution to (2.4) of the form

¥ = x""(n), (4.2)
one derives, in addition to (3.4), that
1
a= 5 . (43)

The inclusion of a finite topographic slope thus further
constrains the allowable model geometry for similarity
solutions. But since a = 1/3 can be representative of the
large-scale geometry of the MAB (Fig. 7) and since it
is this geometry that the constant-depth solution is the
most at variance with observations and needs rectifi-
cation, one may still address the question posed at thé
end of the last section. Furthermore, as we shall see
later, a finite topography tends to insulate the jet from
the coastal boundary and hence reduce the flow de-
pendence on the specific form of such boundaries.
For later references, one notes that for this model .

geometry,

u=-d'y,=—x'"’¢/D, (4.4)
the magnitude of which increases with x, and
§=—u,=(¢'/DY, (4.5)

which is constant in x. In terms of the similarity vari-
ables, the vorticity equation (2.4) becomes
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(§ + c>¢>Q’ +e#Q = E($/D)",  (46)

where Q= D7 '[1 + & ¢'/ D)'] is the potential vorticity.
The two terms on the lhs represent, respectively, the
span- and streamwise advection of potential vorticity,
which is balanced on the rhs by the diffusion of vor-
ticity. Equation (4.6) can also be written as

(5] ][5 9els) +<5)

~

STR
2 ¢' ¢I ” ¢/ mw
3 H
Q3 /DAD] AD) ] (a7
ADV VIS

where the advection of potential vorticity is separated
into vortex stretching (the term marked STR) and the
spanwise advection of relative vorticity (the term
marked ADV)-—recall from (4.5) that the relative
vorticity is constant in x so that its streamwise advec-
tion vanishes. The viscous term is marked VIS. Based
on the earlier estimates of ¢, E, and ¢ for the large-
scale case, we shall only be concerned with the param-
eter range of

& E<c<0O(1). (4.8)

Taking into account of the variable depth, the bound-
ary conditions (3.7) are slightly modified to

~ ¥ =0 %0)=-—
#(1)=2(1)=0, Z(0)=-1 and
¢I ! ¢I ”
— = - >0|. (4
(foo-sgfo-o]-
" To facilitate the following discussion, we shall first
consider the linear and then the strongly nonlinear so-
lutions.
a. The linear regime (e = 0)
Setting e to zero in (4.7), we have the linear equation

2 1 ! ¢’— ?-/'vlll
(§+C>¢>(5) +CB_E(D) . (4.10)

Since E < 1, one can expand the solution in the interior
as ’

¢I = 2 End’n-

(4.11)
n=0
Substituting (4.11) into (4.10), one derives that
¢o = Ao D?, (4.12)
and
n = c—lefpl—p<¢In)—l) dn (n=1,2,+-°),
(4.13)
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where p=1 + 2/(3c¢), and A, is an unknown constant.
Depending on the depth profile D(%) and the value of
D, the series may either terminate after finite terms or
the higher-order terms are singular at n = 1 where the
depth vanishes. To satisfy the homogeneous boundary
conditions at n = 1, there is a trivial solution of 49 = 0
corresponding to a motionless interior. Indeed, as we
shall argue below that since there cannot be a viscous
boundary layer at » = 1, this is likely to be the only
solution except for some specialized topography when
the interior solution (4.11) satisfies by itself the coastal

- boundary conditions.

To advance this argument, let us suppose there is a
viscous boundary layer at » = 1, and express the
boundary-layer solution as the sum of the interior so-
lution and a boundary-layer correction

¢ = ¢+ ¢p(£), (4.14)

where £ (=0"'[1 — 7)) is a stretched coordinate with &
being a small parameter to be determined below. For

- convenience, we assume D’(1) # 0, although the fol-

lowing derivation is not significantly altered otherwise.
Substituting (4.14) into (4.10), one deduces that &
= E'/3 and ¢ satisfy the equation

(g + c)¢Bg-2 ~ chmt™ = (gt e (4.15)

Since in the matching region (£ = o0, 1 — n = 0) the
approximate balance is

—Copr =~ Dpere, (4.16)

it allows only one decaying solution, not sufficient to
satisfy both boundary conditions at n = 1. We infer
then that there cannot be a viscous boundary layer at
n = 1 and the only permissible interior solutions are
the ones that satisfy by themselves the coastal boundary
conditions at n = 1. As an example, for a bottom slop-
ing uniformly in  (i.e., D’ = —1), it is straightforward
to see that the degenerate case (i.e., there exist non-
trivial solutions) requires p to be an integer other than
2+3n(n=0,1, -+ +).

The validity of the interior solution also depends on
whether the two boundary conditions at » = 0 can be
satisfied by appending a viscous boundary layer. To
examine this, we again expand the boundary-layer so-
lution as in (4.14), but with the stretched coordinate
£ now defined as E~'/3y, the boundary correction ¢
then satisfies, to the lowest order,

Chp; =~ by, (4.17)

which allows two decaying solutions, and hence, both
boundary conditions at # = 0 can be satisfied regardless
of the interior solution. We have thus deduced through
asymptotic analysis that either 4, is arbitrary for a de-
generate case requiring specialized topography or Ay
= 0 otherwise. Since the nontrivial solution is more
susceptible to modification by changing topography or
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addition of other physics such as the advection to be
included later, one expects the trivial solution to be of
more practical importance. Furthermore, since E is
not infinitesimal, one can only conclude that 4y < 1
in the trivial case, or the interior flow is severely con-
strained by a finite topographic slope. The strong flow
is thus confined to an offshore viscous boundary layer
next to the jet axis where the vortex stretching is bal-
anced by the lateral diffusion of vorticity [Eq. (4.17)].

A linear solution for the forward jet is plotted in Fig.
8, which is seen to contrast sharply with the corre-
sponding solution in a constant-depth ocean (Fig. 2).
Instead of a broad flow of increasing shear toward the
coastal boundary, the velocity component # undulates
as it decays shoreward. Since the net transport is di-
rected forward and, according to (4.2), increases
downstream, there is a shoreward flow crossing the jet
axis. It is worth noting that since the boundary-layer
width is scaled by E'/3, even for this example of E
= 1073, the forward flow extends quite deeply into the
interior.

b. The strongly nonlinear regime (¢ > E'/3)

Since, as seen above, the linear flow has a shoreward
component at the jet axis where the relative vorticity
is zero, the incorporation of advection tends to reduce
the local shear and broaden the jet. But as the advective
terms are of lower order than the viscous term, they
do not substantially alter the argument put forth in the
previous section regarding the absence of a boundary
layer at n = 1, the interior flow thus remains severely
constrained by topography. That is, to the lowest order,

ou
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with

Ay <O(e, E) < 1. (4.19)

Thus, in contrast to the constant-depth case when the
strong flow extends to the coastal boundary by the ad-
vection, the finite topographic slope confines the strong
flow to an offshore boundary layer next to the jet axis.
To elucidate the dynamical balance of this boundary
layer, one expands the boundary-layer solution as

¢ = ¢i(n) + 8¢5(£) , (4.20)

where £(= 6_,7) is the stretched coordinate with 6 being
a small parameter yet to be determined. The boundary-
layer correction is of O(é) due to the condition that u
is of unit magnitude at = 0. Substituting (4.20) into
(4.7) yields, to the lowest order,

- _1{2 —
(1 + €d ld’BEE) cd)BE + € l(g -+ C)(a le + ¢B)¢BEEE

STR ADV
~ E6_3¢Bffff . (4.21)
| S—

VIS
If one balances the stretching with the viscous term,
one obtains a viscous boundary-layer width of ¢
= E'.If, on the other hand, one balances the stretching
with the advective term and recalls (4.19), one obtains
an inertial boundary-layer width of 6 = e. So the nature
of the boundary layer depends on the relative magni-
tude of E' and e. The linear regime discussed in the
previous section corresponds to the case ¢ < E'/, and
for the nonlinear regime considered here, ¢ < E'7,

¢r = Ao D%, (4.18) (4.21) becomes
/]
A
\ —rr— i
/ |
|
'2.4% 1 8
N ) _—
d=8
\ 6 €=0
| E=1073
} a4k c=2/3
N\ _02% ¥
/ 2
\
o ———— v,|§ STR
905 T /) I I -u
A -5 0 5 © 5 1

FIG. 8. Same as Fig. 3 but for a variable-depth ocean and for the linear regime of e = 0, E
= 1073, ¢ = 2/3 and a depth profile of D(n) = tanh(5[1 — 5])/tanh(5) (the corresponding isobaths
are plotted in thin solid lines). The magnitude of the terms in the vorticity balance (4.7) are also
plotted (the advective term is zero for the linear regime).
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FIG. 9. A schematic for the strongly nonlinear flow in a variable-depth ocean. The jet is confined
to an offshore inertial boundary layer where the vortex stretching as the jet enters the deeper
water is balanced by flow convergence toward the maximum cyclonic shear (the dashed line)
where an inner viscous boundary layer is confined. The entrainment of the inshore water by the
jet induces a weak and broad counterflow in the interior.

(1 + ¢B$E)C¢B£ + (% + C)

X (€ '4o + ¢5)bpees =~ E€ bppere, (4.22)

so there will be an outer inertial boundary layer en-
compassing an inner viscous boundary layer.

To see how the presence of the inertial boundary
layer constrains the interior flow, one notes from (4.22)
that in the matching region to the interior where the
boundary-layer correction is small, it satisfies the ap-
proximate equation

C¢B§ + (% + C)G-IAOqSBffE ~ 0 , (4.23)

which has a decaying solution only if 4, is negative, or
the interior flow is directed backward and entrained into
the jet. One should point out that this entrainment is quite
different from that of a classical jet caused by conservation
of the momentum flux (section 5.12 of Batchelor 1970;
Rossby 1936). The present entrainment is caused by the
vortex stretching that requires a convergence of low vor-
ticity water at the cyclonic side of the jet.

n
\ 11\
\ —
/ {
W2 4 s’///// .er
) — €=0.1
d=8 1
6k E=10"3
‘ c=2/3
| a
I
-.025"_’
S~
P 2+
0 7/ ADV STR
5/ v1>s’./J )
1 /,02.65_//4’,—»";——-_» 2T~ I
o1 5 0 5 0 5 Rt

Fi1G. 10. Same as Fig. 8 but for ¢ = 0.1. From the vorticity balance, one observes the displacement
of the viscous boundary layer to the cyclonic flank of the jet, as suggested by the schematic of

Fig. 9.
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For the inner viscous boundary layer, there appears
to be two possible configurations, depending on
whether the streamfunction [¢ !4y + ¢5in Eq. (4.22)]
vanishes within the inertial boundary layer, or equiv-
alently, whether the net transport is directed forward
within the model domain. If this is the case, the viscous
boundary layer is confined to the line of flow conver-
gence, which must also align with the maximum cy-
clonic shear because of the inviscid balance outside
this boundary layer; that is, the vortex stretching is
balanced by the convergence of low-vorticity water. If,
on the other hand, the transport in the counterflow
cannot be fully absorbed by the forward flow within
the model domain, there would be an offshore flow
across the jet axis where the viscous boundary layer is
expelled. But since this case requires a greater interior
transport, it implies some degeneracy in the interior
and, for the same reason given in section 4.c, is judged
to be of less practical importance. With regard to the
present problem, the observed transport in the coun-
terflow is at most a small fraction of the Gulf Stream
transport.

One thus expects a nonlinear flow field as sketched
in Fig. 9. Because of the finite topographic slope, the
jet is confined to an inertial boundary layer next to the
jet axis. Within this boundary layer, the vortex stretch-
ing as the jet enters the deeper water is balanced by a
flow convergence toward the maximum cyclonic shear
(the dashed line) and where an inner viscous boundary
layer is confined. The entrainment of the inshore water
by the jet induces a weak counterflow in the interior.

It is evident from above analyses that we have only
derived a necessary condition for an inertial jet; namely,
it must entrain the inshore water and induce a coun-
terflow, but unlike the linear solution, we have not
established the existence of such a flow. Indeed, com-
pounded further by possible numerical instabilities, I
have not yet obtained a numerical solution for the
strongly nonlinear regime. But as we shall see next, the
asymptotic analysis presented here nevertheless helps
us to understand the modification of the linear balance
when nonlinear terms are included.

¢. Applications

A numerical solution using the parameter values of
the large-scale case of MAB (section 3.4) and the same
topography as in Fig. 8 is plotted in Fig. 10. Since ¢
= E'/3, the flow is not strongly nonlinear as depicted
in Fig. 9; the balance of terms nevertheless shows the
displacement of the viscous boundary layer to the cy-
clonic side of the jet, consistent with the asymptotic
analysis. While the model flow is similar in appearance
to the linear flow shown in Fig. 8, one should be aware
of the significant difference in the underlying vorticity
balance.

Although the similarity solution has required a spe-
cific boundary shape of a = 1/3, the fact that the jet is

(020]
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confined offshore suggests that the gross flow structure
as shown in Fig. 10 is not overly sensitive to the
boundary shape and should persevere in less idealized
situations. One concludes then the variable-depth flow
differs qualitatively from the constant-depth flow
shown in Fig. 3, as has been suspected. Instead of a jet
extending to the coastal boundary, there is a broad and
weak counterflow inshore of the jet, which compares
more favorably with the observed slope sea gyre. In
addition, the predicted flow convergence toward the
inshore edge of the jet is consistent with observed oc-
currence of the shelf water there and the inferred
shoreward flux of nutrients across the jet axis (Csanady
and Hamilton 1988).

5. Summary

To provide possible dynamical interpretations of the
Gulf Stream induced circulation in the Middle Atlantic
Bight (MAB), I have considered the inshore flow driven
by a steady and straight jet in a homogeneous ocean.
Similarity solutions are used to depict possible flow
fields and the underlying dynamical balance.

To isolate the curvature effect of the coastal bound-
ary, I have first considered the constant-depth ocean
from which various nonlinear flow regimes are dis-
cerned, as illustrated in Fig. 2. Only with an accelerating
jet (Regime I) can the strong flow extend to the coastal
boundary where a viscous shear layer is confined. For
a decelerating jet in a convergent geometry (Regime
II), on the other hand, the viscous effect is expelled to
the jet axis by an offshore flow, characterized by a large
vorticity gradient. For a decelerating jet in a divergent
geometry, the viscous effect remains important
throughout the model domain by the generation of
undulating flows. The counterflow immediately inshore
of the jet is entrained into the jet when the coastal
boundary is concave (Regime III) but is fed from the
jet when the coastal boundary is convex (Regime I'V).
This last regime can explain the observed shoreward
intrusion of the Gulf Stream water just downstream of
Cape Hatteras.

Over the larger scale of the MAB, scale analysis sug-
gests the importance of the topographic stretching in
the vorticity balance. When the topography is incor-
porated, the similarity solution shows the jet to be con-
fined offshore, flanked inshore by a weak counterflow,
consistent with the observed slope sea gyre. In addition,
there is a flow convergence toward the inshore edge of
the jet, consistent with the observed occurrence of the
shelf water there and the inferred shoreward flux of
nutrients across the jet axis.
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APPENDIX

The Numerical Method for Solving Eqgs.
(4.7) and (4.9)

Because of the presence of a regular singular point
at the coastal boundary in the variable-depth model,
we adopt a procedure of forward shooting. Namely,
we guess the two unknown conditions at = 0 and
then integrate the equation forward to n = 1, upon
which we check the other required boundary condi-
tions, and the process is repeated until these boundary
conditions are satisfied to the desired accuracy.

One may visualize a two-dimensional plane spanned
by the axes representing the two unknown conditions
at n = 0, that is, the values of ¢(0) and (¢'/D)"(0),
and two curves on this plane representing the required
boundary conditions at n = 1, that is, ¢(1) = 0 and
(¢'/D)(1) = 0; the task is then to determine the in-
tersect of these two curves. The procedure can be au-
tomated by first choosing an initial domain large
enough to encompass the intersect and then system-
atically halving its linear dimension until the desired
accuracy is achieved. For all the numerical solutions
presented in this paper, a fourth-order Runge-Kutta
scheme is used for integration, the grid spacing is 0.035,
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and the boundary conditions are satisfied to the third
decimal place.
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