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ABSTRACT

Convective flow in baroclinic vortices is studied analytically, taking viscosity » and thermal diffusivity « into
account. The meridional circulation depends strongly on the Prandtl number Pr = v/x. If Pr > 1, there is
upwelling in the interior of the vortex and the vertical heat diffusion is therefore inhibited by advection. The
radial flow is inward in most of the vortex, which is compensated by outward flow in a viscous boundary layer
just below the surface. The authors focus on the strongly nonlinear regime, when the background stratification
is much weaker than that of the vortex. It is found that the nonlinear equation governing the flow in the limit
Pr > 1 has a class of exact time-dependent solutions. In this class the evolution of the vertical temperature
profile is determined by Burger’s equation, whereas the horizontal profile is determined by the Liouville equation.

Both these equations can be solved analytically.

1. Introduction

Isolated circular vortices are very common in the
oceans (McWilliams 1985; Monin and Zikharev
1990). Their lifetime can be up to several years; thus
they can clearly be regarded as stationary to a first ap-
proximation in the framework of quasigeostrophic
theory. One reason for nonstationarity and slow decay
is the radiation of Rossby waves, which has been stud-
ied by several authors (Flierl 1984; Korotaev 1988;
Hesthaven et al. 1992). It is caused by the g8 effect,
which is quite weak for typical amplitudes and sizes of
oceanic vortices. Another reason is viscosity and dif-
fusion of heat (or sait). These dissipational effects give
rise to a slow convective {meridional) flow, which is
the subject of the present work.

The most important parameter determining the
character of the meridional circulation is the Prandtl
number, Pr = v/, where v is the viscosity and « the
thermal diffusivity. In water Pr ~ 6. (The correspond-
ing Schmidt number Sc = »/«., where k. is the salt
diffusivity, is about 5000 in the ocean.) However, in a
realistic model one should use effective turbulent
transport coefficients, which are not very well defined
but certainly much larger than the laminar values. The
correct value of Pr is then, unfortunately, not known.

The previous study most closely related to the pres-
ent work is the one by Flierl and Mied (1985). They
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studied the meridional circulation and gradual decay
of a warm core ring analytically and numerically using
both large and small Prandtl number (Pr = 10 and
0.1, respectively). In the analytic calculations they used
a simplified linear model, which means that the strat-
ification of the density anomaly in the vortex is as-
sumed to be much weaker than the background strat-
ification. The advection of the temperature anomaly
can then be neglected, while the advection of the back-
ground field is included, just as in the conventional
quasigeostrophic approximation. They found that the
direction of the meridional circulation depends on
whether Pr is larger or smaller than unity.

In their numerical simulations Flier! and Mied used
fully nonlinear balance equations (allowing also for a
Rossby number of order unity), and judging from their
figures the nonlinearity (i.e., the ratio between the
stratification of the density anomaly in the vortex and
the background stratification) was of the order 102,
This may be unrealistically large, but the nonlinearity
in real vortices can clearly exceed unity (Monin and
Fedorov 1983). The simulations confirmed that the
direction of the meridional circulation depends on the
Prandtl number. They also showed that the vortex de-
cays much faster if Pr = 0.1 than if Pr = 10. This
cannot be explained from the linear model.

These results indicate that a particularly interesting
case is when both the nonlinearity and the Prandtl
number are large. The meridional circulation is then
inward and upward in the vortex core, and the advec-
tion will oppose the diffusion, prolonging the lifetime
of the vortex. In the present article we will derive some
analytic results for this regime. Assuming the Rossby
number to be small, we find that in the limit Pr > 1
the dynamics can be described by a relatively simple
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nonlinear equation. Moreover, we find that this equa-
tion has a class of nonstationary exact solutions. In this
class the vertical dynamics is determined by Burger’s
equation, which is integrable. The horizontal temper-

" ature profile is independent of time and depth, and
determined by the Liouville equation, which can also
be solved exactly. The solution can have the form of
an isolated vortex with no background stratification,
which corresponds to large nonlinearity, as in the nu-
merical simulations by Flierl and Mied.

2. Basic equations

We start our considerations from the three-dimen-
sional Boussinesq equations. For large-scale geophys-
ical flows we can use the shallow-water approximation;
that is, H/L < 1, where H is the vertical and L the
horizontal length scale. This allows us to replace the
vertical component of the equation of motion by the
hydrostatic approximation:

dp
— = gpoaT, (1)

0z

where p and T are the pressure and temperature de-
viations from a basic state, which is assumed to have
constant temperature and density, and « is the volume
expansion coefficient defined by p = po(1 — T ), where
p is the density. In the shallow-water approximation
we can also neglect the horizontal viscosity and dif-
fusion, so that the horizontal component of the equa-
tion of motion is
av, Vp 9%,

- tfzXv =——=+4y
dt f + Po 822

. (2)

The gradient operator here and below only contains
the horizontal components, V = xd/dx + yd/dy. and
the Coriolis parameter fis considered constant. The
remaining two equations are the incompressibility
condition,

P
vy, + ¥ _o.

3z (3)

where w is the vertical velocity, and the diffusion equa-
tion for heat (or salt)
dT T
=g 4
i (4)

3z
We now assume that the Rossby and Ekman numbers
are small, so that Eq. (2) is dominated by the Coriolis
term and v, by the geostrophic velocity:

(5)

Solving Eq. (2) by perturbation theory and including
the lowest-order ageostrophic terms, we obtain
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where the operator dg/ dt is defined by
d, 9 d 1
— = 4 .V == _ .
dt at Vg al+[fof J(p, ),

and the Jacobian by J(f, g) = 0,/ 9,8 — 9,fd,g. Sub-
stituting Eq. (6) into Egs. (3) and (4), we obtain

ow 1 dV°p v 92
- = 5~ - 5723 VoD, (7)
9z pof* dt pof” 8z
da,T oT v
g wT v2 2p_ lzdng VT
dt dz pof* 9z pof° dt
9T
kT (8)

The Laplacian in Eq. (7) contains only horizontal de-
rivatives.

Equations (1), (7), and (8) are our basic equations.
They must be supplemented by appropriate boundary
conditions. "At the bottom there is a rigid, no-slip
boundary, that is, w = 0 and v 1 = 0. This leads to the
formation of an Ekman layer, which gjects fluid into
the interior with the pump velocity wy. Taking the
boundary of the domain to lie just-above this layer, we
obtain the condition

he
2p0f

where hr = (2v/f)'/? is the thickness of the Ekman
layer (cf. Gill 1982, p. 331).

We assume the surface to be rigid, so that the baro-
tropic Rossby radius is infinite, which is a good ap-
proximation in the cases of interest. However, we can-
not use a no-slip condition as at the bottom. Instead,
the appropriate boundary condition at a free surface
of a viscous fluid is that the normal derivative of the
tangential velocity vanishes, that is, 9v 1/9z = 0. If there
is a horizontal temperature gradient this condition is
violated by the thermal wind relation, and a viscous
boundary layer is formed. Taking the boundary of the
domain to lie just below this layer, the appropriate
condition is

Vip at z=-—H,, 9)

W= wg =

gah;zg 2 h% 2617
=-2Evr=--"EvX 4, .-
Y 200f 9z & F

(10)

This condition was used by Flierl and Mied (1985),
and a short derivation is given in appendix A.

The temperature changes very little across the
boundary layer at the surface; hence if the temperature
is held fixed at the water surface, the same boundary
condition applies at the boundary of the domain, just
below the boundary layer. The heat flux, on the other
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hand, varies significantly across this layer, which leads
to a jump condition for the vertical temperature gra-
dient:

oT

aT _aT
0z

or| _ _gahi
0z

2«f

where z = 0— is a point just below the boundary layer.
This result is also derived in appendix A. The additional
heat flux is due to the temperature advection by the
radial flow in the boundary layer. Thus, if the boundary
condition at the surface involves heat flux, the corre-
sponding condition at the boundary of the domain is
modified. Finally, there are no boundary conditions
for the pressure.

Equations (1), (7), and (8) contain a number of
different dynamical regimes, with different typical
timescales. For instance, in the isothermal case, T
= 0, Eq. (1) shows that dp/dz = 0, and it then follows
from Eq. (7) that wis a linear function of z. The coef-
ficients of this function are determined by the boundary
conditions (9)-(10), and Eq. (7) is reduced to

1 4 oy he 2
iy = ——Vp.
7 d p p

This is the barotropic vorticity equation with bottom
friction included. The fastest timescale is usually given
by the advective term on the left-hand side, while the
right-hand side results in a spindown time 7E given by

L Jhe
2H, "

(VT)?,

(11)

surface z=0—

(12)

(13)

Another special case contained in Egs. (1), (7), and
(8) is the three-dimensional quasigeostrophic potential
vorticity equation [Eq. (12.8.7) in Gill (1982)]. To
obtain this, one assumes that the background stratifi-
cation Ty(z) is strong and neglects the nonlinear ad-
vection terms in Eq. (8), while keeping the term
wTo(z).

3. Derivation of the reduced equation

We are interested in circular vortices, where the
nondissipative dynamics (described by the quasigeo-
strophic potential vorticity equation ) is stationary. In
this case the Jacobians in the advective terms in Egs.
(7) and (8) vanish identically, and dg/dt can every-
where be replaced by 3/d¢. The equations then still
describe two kinds of processes with different time-
scales. The first one is the spindown of the barotropic
component with the timescale (13). The second one
is baroclinic diffusion and convection, which is the
main subject of the present work.

We must first understand how the two kinds of dis-
sipational processes can be separated. The timescale 7,
for baroclinic diffusion and convection is determined
by Eq. (8):
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(14)

Here H is the vertical scale of the baroclinic vortex
(which may be much smaller than the total depth Hy),
and Pr™! = «/v is the inverse Prandtl number. We will
assume Pr~' to be small. Compare the timescales for
diffusion and barotropic spindown:

' hgH,
- ~ HZ

TE

Prt. (15)
This means that unless the vortex is very shallow (i.e.,
H/H, very small), the spindown is much faster than
the diffusive processes. We then have approximately
dT/dt = 8/9z(dp/dt) = 0 during spindown. Thus, the
pressure perturbation decreases uniformly at all depths,
until it is zero at the bottom and the Ekman pumping
ceases. The barotropic component has then vanished,
and we can consider the baroclinic mode in isolation.
Alternatively, if the vortex is so shallow that the ratio
(15) is large, we simply assume that the initial ampli-
tude of the barotropic mode is so small that it can be
neglected.

To check that it is consistent to neglect the pressure
perturbation p, at the bottom, we then estimate the
bottom pressure induced by the baroclinic mode. In-
tegrating Eq. (7) from z = ~Hyto z = 0 and using the
boundary conditions (9) and (10), we obtain

2, - _ 2 f Ry
VD hef o \% 3 dz, (16)
assuming that the temperature perturbation is zero at
the bottom. If the perturbation is localized in the Xy
plane, the Laplacian is invertible and may be removed
from both sides of Eq. (16). Using Eq. (1) it can then
be written as

2H, 9 2gp0a f° f or |

1+=2=) p, = — =8k = dz’.

( Ths az)"’” PRV I
(17)

The second term on the left-hand side here comes from
the boundary condition at z = —H, when integrating
Eq. (1) and describes spindown of the barotropic mode.
Ifthe ratio (15) is small, this term Jjust results in a small
time lag, while the right-hand side of (17) gives the
bottom pressure excited by the baroclinic mode. We
can estimate its magnitude as

~ 8Poc

hef

Estimating the typical pressure perturbation in the
baroclinic vortex as p ~ HgpoaT, we obtain

Dy HzTK—lT.

Py he

D 2H (18)
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Thus, the induced bottom pressure is small compared
to the baroclinic pressure perturbation; that is, the ver-
tical viscosity and diffusion drive the vortex flow toward
compensation. Also notice that the zero-angular-mio-
mentum condition for steady translation on the beta-
plane found by Flierl et al. (1983) would require p,Ho/
(pH) ~ 1, that is, that the ratio (15) is of order unity.

We should also compare the typical baroclinic ver-
tical velocity w with the barotropic vertical velocity wy,
caused by the Ekman pumping (and evaluated at the
vortex ). Estimating w from the last term in Eq. (7),
which is the dominating term for the baroclinic mode,
we obtain

wy _H® pp  H
w 4hEH()p 2H0

Thus, assuming Pr~! to be small, we can neglect the
vertical velocity due to the Ekman pumping, and set
p» = 0. (However, this is not true if Pr! is of order
unity or larger, unless the vortex is very shallow.)

Using the timescale 7;' from (14), we can also
compare the two terms on the right-hand side of Eq.
(7). It is found that the ratio between them is of the
order Pr™!, so that the first term can be neglected.
[From Eq. (17) it is also seen that this approximation
is consistent with p, = 0.] Equation (7) can then be
integrated, assuming 7 = O at the bottom:

Pr!.

(19)

W= — = (20)
where we have used Eq. (1). This result is then sub-
stituted into Eq. (8). In that equation we may also
neglect the term d(Vp)/dt - VT, since it is smaller than
the first term of the equation by the Rossby number.
The result is

aT T

aT _ vga (oVT 20T T
P fz(az vT VTaZ)+KaZZ,(21)
which is our final dynamic equation. In the planar case
(for a straight front) it has earlier been obtained by
Gill (1981) and Garrett (1982). The first and second
terms on the right-hand side describe the effect of hor-
izontal and vertical advection, respectively. For the
lifetime of the vortex to be much longer than the linear
estimate, these advection terms should almost com-
pensate the diffusion (the last term). This condition
leads to the order-of-magnitude estimate

Q

Ro ~ =~ Pr7!, 22

7 (22)
where Ro is the Rossby number and  the vorticity.
Thus, if Pr ! is small, the Rossby number is also small.
The same condition can be expressed in terms of the
baroclinic Rossby radius rr, defined by

) g'H gaTH
r'r =~ _‘fT ~ f2 >
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where g’ is the reduced gravity. The horizontal scale
L of the vortex can then be estimated as

L~ rg Pr'’2, (23)

Thus, the vortex is larger than the baroclinic Rossby
radius.

We finally summarize the scaling region in which
Eq. (21) is valid. The appropriate scaling is Ro ~ Pr!
< 1,8/3t ~ k/H?, and Ek < 1, where Ek ~ v/fH?
is the Ekman number. The ratio between Ro and Ek
is arbitrary. [In fact, Eq. (21) is valid without the re-
striction to circular symmetry if Ro < Ek, and then
describes the general three-dimensional dynamics.
However, in oceanographic applications we of course
usually have Ro > Ek.] To estimate the bottom pressure
and separate the baroclinic and barotropic modes, we
also have to make some assumption for H/H,, the
depth of the vortex compared with that of the ocean.
From (15) and (19) it can be seen that anything be-
tween H/H, ~ (Ek)!/? and H/H, ~ 1 will do.

To clarify the relation between the present work and
that by Flierl and Mied, we now derive a diagnostic
equation, similar to their Eq. (4") or (5), from Egs.
(1), (7), and (8). We first introduce the field 5, defined
by w = V2. For localized solutions the Laplacian is
invertible and can be removed from all terms in Eq.
(7). We then take the time derivative of Eq. (1) and
eliminate all time derivatives by using Egs. (7) and
(8). The resulting equation can be written

f?8* T _, dVn a’T

ga 922 + 9z Vi = VT 9z (k=) 3z% " (24)
Both in this equation and in Egs. (4") and (5) of Flierl
and Mied, the Rossby number is small. However, they
differ in two other ways. First, Flierl and Mied included
horizontal diffusive processes, which have here been
neglected. Second, and more important, they neglected
both the advection terms on the left-hand side of Eq.
(24), except the vertical advection of the background
temperature field, which gives a term proportional to
N2V2y. (Here N is the buoyancy frequency.) In this
way they obtained a simple linear equation for the me-
ridional circulation, driven by the temperature field
(or, equivalently, by the azimuthal velocity) on the
right-hand side.

In the strongly nonlinear case, this diagnostic equa-
tion is generally less useful. Even the case Pr = 1 (in
which the right-hand side vanishes) is nontrivial, since
the meridional circulation is still driven by the viscous
boundary layer at the surface [cf. Eq. (10)]. Therefore,
n = 0 is no solution unless we neglect the vertical vis-
cosity. (Flier] and Mied assumed the horizontal vis-
cosity to be much larger than the vertical one.)

For Pr > 1, however, the first term on the left-hand
side and the last term on the right-hand side of Eq.
(24) are larger than the others. Thus, in this case the
equation reduces to Eq. (20), and we again obtain a
simple diagnostic equation.
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4. Exact solutions

We will now examine a class of exact solutions to
Eq. (21) that can be found by separation of variables:

T = &(r)F(1, z). (25)

Substituting (25) into Eq. (21) and setting the sepa-
ration constant equal to 1/r3, where r, is an arbitrary
length that will be chosen as the vortex radius, we ob-
tain

dF wvga _OF &*F
LAl L 26
a  r3f? oz “9z2° (26)
90\? 1 13 906
BOY —g[5+-2,2). 27
(8r) g(r% ré)rrar) 27

Equation (26) is Burger’s equation, which is known to
be integrable. In appendix B it is shown that Eq. (27),
which determines the horizontal profile of the vortex,
can be integrated also. One solution is

1
o~ [g[l Sl <

0, r>nr

(cf. Fig. 1). The maximum azimuthal velocity is
at 7 = roV3. The solution is continuous up to the first
derivative, whereas the second derivative is discontin-
uous at ro. This means that the heat flux and the radial
velocity are continuous, while the vertical velocity w

_is discontinuous, according to Eq. (20). This is per-
missible since we have neglected the horizontal vis-
cosity. In reality it will presumably lead to the for-
mation of a boundary layer whose width is of the same
magnitude as the height H of the vortex. Since this is
much smaller than the horizontal scale L of the whole
vortex, it can be neglected in the lowest-order approx-
imation.

For a baroclinic vortex with the horizontal temper-
ature profile given by (28), the vertical evolution is
determined by Burger’s equation. Qualitatively, a so-
lution of this equation will sharpen its profile at places
where dF/dz is negative, until a chock front appears
that propagates steadily upward. However, dF/dz
< 0 means that the fluid is unstably stratified, since ©
> 0, and such a flow will therefore quickly be disrupted
by Rayleigh—-Taylor type instabilities. Physically real-
izable flows must have dF/dz > 0 everywhere, and the
profile will then in general tend to become smoother.

To solve Burger’s equation, we introduce the func-

tion
= —— —p '
¢ CXD( B ) »

where p’, defined by dp’/dz = (vga/xrf?)F, can be
thought of as normalized pressure. [To get the full
pressure field we must of course multiply by ©(r).] We

(29)
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FIG. 1. Radial profile of the temperature and the azimuthal velocity
[ from Eq. (28)]: ©(r) (dotted) is proportional to the temperature,
and ©'(r) (solid) to the velocity; ry is the vortex radius.

assume that the depth of the ocean is infinite, and that
p’— 0asz— —o0.Using Eq. (29), (26) is transformed
to the linear diffusion equation

W _ 0%

— 30
o " 9z2’ (30)
which can be solved by standard methods. Then F is
obtained from the relation

L, Kr8S ¢

F= .
vgo ¢

(31)

For illustration, we solve Eq. (26) with the boundary
condition F = F, at z = 0, which gives the following
boundary condition for ¢:

i)
—¢+C¢=O at z=0, (32)
0z
where
_ e B
kréf? 2

The general solution of Eq. (30) with this boundary
condition, and the initial value ¢ = f(z) at ¢t = 0 and
z < 0, can be found by Fourier transformation:

1 0 _(z+ £)?
= 2Vt J‘—oo d&f(g)[exp( 4kt )
2
+ exp(— ————(Z:Kf) )
_ 0 _(z+E+ )
2Cf_ooexp( yw +C§')d§‘].

The simplest case is /= 1, corresponding to F = 0.
The solution can then be written
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o=l

— 2C«kt
+ exp(Cz — Cz 1+erf(z —)]
p(C*k )[ ZVK_t

where erf is the error function. Using Eq. ( 31), we
finally obtain

z -1
erf exp(Cz — C?¢
(21/:«7) ( <)
S o=
2Vt

Physically, this solution describes how a vortex is ex-
cited by heating the surface. Its behavior in various
asymptotic regimes can easily be understood. There is
a characteristic time 7, = 1 /(xC?), and for ¢ < t.it may
be shown that the solution is approximately

FzFo[l +erf( (34)

7
2Vie
This is the solution of the linearized version of Eq.
(26), with the same boundary condition and initial
value. Thus, before ¢, the meridional circulation is still
too weak to affect the development, and the heat is
simply diffusing downward. For ¢ > ¢., the heat advec-
tion is very important. There are then two different
asymptotic depth regions. At z > —(«¢)"/2 (i.e., small
depth) we obtain

1—-Cz’

Thus, the upper part of the vortex is stationary, and
heat advection and diffusion almost exactly balance.
At z < —(xt)"/? we obtain, using the asymptotic ex-
pansion of the error function, :

F 2F0 Kl 172 22
~ s X - —1}.
2kt—z\x) P\ 1

This describes a diffusive front, where advection is not
yet important. It has two subregions. For z < —Ck{ the
solution is the same as the linear solution, obtained by
asymptotic expansion of Eq. (34). In the subregion
~Ckt <z < —(«xt)'/?, the solution is curiously enough
independent of the surface temperature Fy.

In Fig. 2 we have plotted the solution ( 33), both
before and after z.. We also show the linear, purely
diffusive solution (34) at the same value of 7, and the
stationary solution (35). The general development is
that the full solution (33) follows the linear solution
until this crosses the stationary curve. After that (33)
is approximately equal to the smallest of the linear and
the stationary solutions, and everywhere smaller than
both.

The pressure perturbation at the surface increases
logarithmically with the depth of the stationary region,

F~ (35)

(36)
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FIG. 2. Plot of the exact solution (33) (solid curve). We also show
the linear, purely diffusive solution (34) (dotted) and the stationary
solution (35) (dashed). The values used are C = Fo = « = 1, which
givest. = 1:(a)t=0.1¢;(b)z=10 t..

as can be seen by integrating Eq. (35). Thus, in an
infinitely deep ocean, the solution cannot be stationary
everywhere, and the vertical diffusion cannot be com-
pletely canceled by advection, even when the Prandtl
number and the nonlinearity are large. In the initial
stage of the solution (33), before ¢, the surface pressure
increases as Vz. After ¢. it grows more slowly, ~log(t),
but without bound. At some time the azimuthal ve-
locity and the Rossby number therefore become too
large for the model to be valid. The reason for this is
of course that the surface is heated in this problem. If
there is no heat flux into the vortex, the surface pressure
can only decrease.

The meridional flow and the isotherms in the baro-
clinic vortices studied here are shown qualitatively in
Fig. 3. Notice that the radial velocity is inward (toward
the center of the vortex) everywhere in the interior of
the fluid. This is compensated by an outward flow in
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r/ro
0 0.5 1

FIG. 3. Qualitative structure of the vortex, where /g is the thickness
of the Ekman layer at the surface and H the vortex depth (i.e., the
depth of the thermocline). Solid curves: streamlines of the meridional
flow; dashed curves: isotherms.

the boundary layer near the surface. This requires, of
course, that the radial velocity is much larger in the
boundary layer, and from the solution given in appen-
dix A it may be estimated that it is indeed larger than
the radial velocity in the interior by the factor H/hg.
Nevertheless, it is still smaller than the geostrophic azi-
muthal velocity by the same factor.

Since T = 0 for r > ry, there is no background strat-
ification in the exact solution given here. In the pres-
ence of background stratification, we set T = Ty(z)
+ T, in Eq. (21), and obtain the same equation for
the temperature anomaly T, but now with an addi-
tional term that looks exactly like horizontal diffusion,
as was pointed out by Gill (1981). Separation of vari-
ables as in Eq. (25) is then impossible. The reason is
clearly that some horizontal spreading of the temper-
ature anomaly will occur, so that the radial profile
changes in time. Physically, this spreading is not caused
by horizontal diffusion (which we have neglected) or
horizontal advection, but rather by the vertical advec-
tion of the background temperature field.

5. Discussion

In this paper we have studied dissipational processes
and the induced meridional flow in circular baroclinic
vortices. This is one of the main candidates for an ex-
planation of the gradual decay of the vortices. (The
other one is radiation of Rossby waves.) These processes
also determine the evolution of the vertical structure
of vortices, for example, the profile of the thermocline
and the relative importance of the barotropic and
baroclinic modes. In the framework of ideal, dissipa-
tionless theory, the vertical structure is arbitrary, and
simply determined by the initial conditions.

Our analysis has shown that unless the vortex is very
shallow compared to the total depth of the ocean, or
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the Prandtl number small, the spindown of the baro-
tropic component is much faster than the diffusion time
for the baroclinic mode [cf. (15)]. We also found that
after the barotropic spindown time has passed, the
pressure excited by the baroclinic mode is much smaller
at the bottom than in the interior of the vortex [cf.
(18)]. That is, the vertical viscosity and diffusion drive
the flow toward compensation. Nevertheless, the con-
tribution from the Ekman pumping at the bottom to
the meridional circulation cannot be neglected unless
the Prandtl number is large, or the vortex very shallow
[cf. (19)].

The major simplifying assumption in our subsequent
analysis was that the Prandtl number is large. The me-
ridional flow in the vortex core is then upward and
inward, so that the advection opposes the diffusion. If
the nonlinearity (i.e., the ratio between the stratification
of the density anomaly in the vortex and the back-
ground stratification) is also large, this can result in a
substantially longer lifetime of the vortex, as is seen in
the simulations by Flierl and Mied (1985). We focused
on this regime and found that in the limiting case (with
zero background stratification) there exists a class of
exact, nonlinear time-dependent solutions. The hori-
zontal profile of the vortex is then given by Eq. (28),
while the vertical profile is determined by Burger’s
equation, Eq. (26), which is integrable. We have also
shown an explicit example of such an exact, time-de-
pendent solution.

Although the simplifying assumptions are perhaps
not entirely realistic, this result should serve as a valu-
able reference point for future modeling. It also has
intrinsic interest, being perhaps the first case where the
profile of the thermocline can be determined analyti-
cally and self-consistently in a nonlinear convection
problem.
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APPENDIX A
Viscous Boundary Layer at the Free Surface

When solving the problem for the viscous boundary
layer, we can approximate the equation of motion (2)
by

2
szvl=—Y£+vav2l.
Po 0z

We have here neglected the term dv,/dt, since the
main ageostrophic contribution in the thin boundary
layer is the viscous term. (The neglected term would
merely result in a slight change of the functional re-
lation between the azimuthal velocity and the pressure.)
The velocity may then be decomposed into the slowly
varying geostrophic velocity v,, which dominates in

(A1)
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the interior, and is approximately constant within the
boundary layer, and the rapidly varying boundary
contribution ¥, that is, v, = v, + V. The equation for
the rapidly varying part is

v %%
f 8z*’
which is the same as in the usual Ekman layer at the

bottom. The boundary condition at the surface is dv L/
9z = (; that is,
_ v _ag

ov

e e G ZX VT at
where we have used the hydrostatic approximation (1).
The right-hand side of Eq. (A3) is the thermal wind,
which gives a vertical dependence of the geostrophic
velocity if there is a horizontal temperature gradient.
This thermal wind must be compensated at the surface
by the boundary-layer contribution to satisfy the
boundary condition. The other boundary condition is
v —> 0,z > —o0. Equation (A2) then has the unique
solution

ZX§= (A2)

z=0, (A3)

k=
V= 5; %k— [(=2 X VT |0 — VT |,—) cos(kz)

+ (_Z X VT|2=0 + VT[Z=0) sin(kz)],‘ (A4)

where k = hi' = (f/2»)'/2. Notice that at the surface
one velocity component is directed from warm toward
cold regions. The incompressibility condition gives

P
Y e vy =&,

i kz
= 7 e (cos(kz)e™).

1
2k?
_ (AS)
Integrating this with the boundary condition w = 0 at
z = (0, we obtain

_ gahi
2f

which gives the vertical velocity below the boundary
layer. This is the analog of Ekman pumping at a free
surface (and should of course not be confused with the
Ekman pumping caused by wind forcing).

We also calculate the temperature profile in the
boundary layer. We first decompose the temperature
into the slowly varying component 7; in the interior
of the vortex, and the boundary layer contribution T,
which is much smaller than 7; and varies on the scale
hg. To lowest order the temperature equation (4) in
the boundary layer then takes the form

*T |
K @ = V- VT, 5
where we have neglected the vertical heat advection in
comparison with the horizontal one, since the radial
velocity is much larger in the boundary layer than in

VT ..o for kz<—1, (A6)

(A7)
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the interior of the vortex. Integrating Eq. (A7) across
the boundary layer, using the result (A4), we obtain
_ _ 8ahi

or 2 kz

% 7S (VT;)*e* cos(kz),
where T; on the right-hand side can be approximated
by the total temperature 7. We see that there is a jump
in the vertical temperature gradient across the bound-
ary layer.

We also remark that if the horizontal temperature
gradient is constant, the analogous problem can be
solved exactly, without the boundary layer approxi-
mation (Aristov and Frick 1988).

(A8)

APPENDIX B
Solution of the Equation for the Radial Profile

To solve Eq. (26) we first make the transformation

r2
= — ®(£), (B1)
ro
where £ = In(r/ry). The equation becomes
3P \? 3%d
-] =¥ 1+—]). B
(as) ( ) (52)
We then make the substitution
® = 4e¥, (B3)

which transforms Eq. (B2) into the one-dimensional
Liouville equation (Bateman 1944 ):
PV ¥

R oY

After multiplying by ¥ /9% it can easily be integrated,
giving

+ C, (B5)

¥\ 2e ¥
(%) =%
where C'is an integration constant. Equation (B5) can
be integrated by elementary methods. We get a number
of different cases depending on the signs of 4 and C.
We do not show all of them here, but note that for
none of them O(r) is localized, or even bounded.
Choosing the integration constant in the most conve-
nient way (without loss of generality since 1o is arbi-
trary), and transforming back to @(r), two of the so-
lutions can be written

1 272
I
8 fo
where 1, is arbitrary, and
o-—" k(L (B7)
- 2r3K? cos n ro) |
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where rp and K are arbitrary. Notice that the solutions
touch the r axis smoothly, so that it is possible to match
different solutions at these points and still have ® con-
tinuous up to the first derivative. [ The reason is that
Eq. (27) is singular at ® = 0.] In this way it is possible
to construct a localized vortex from the solution (B6),
and vortex rings from (B7).
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