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ABSTRACT

The reflection of weakly nonlinear Rossby waves (RWs) from a vertical wall is examined analytically through
perturbation methods, with the 3-Rossby number (&) as the small parameter. A uniformly valid solution up to
O(€%) is constructed using multiple scales. At O(¢), the nonlinear interaction between an incident and the
reflected RW leads to 1) an Eulerian steady flow, u{", parallel to the (nonzonal) wall and 2) a transient flow
oscillating with a frequency twice (2w) that of the RW pair. The steady forcing, whose response is u{", can
never be resonant, which implies, under the weak nonlinear regime, that u{! is stable to the driving RWs. At
the next order, the nonlinear interaction between the incident-reflected RW pair and u{" plus the transient
flow produces, in general, resonant forcing leading to a modification of the RWs’ phases: a shift in their offshore
wavenumber. The steady flow that occurs at O(¢?) is driven by the modified RWs as well as through interactions
of several components of the solution up to second order; it is the next correction to u{". This correction can
be significant for reasonable wave parameters that allow, at the same time, a meaningful perturbative solution.
The entire steady circulation induced by the nonlinear dynamics, up to O(e?), is immune to resonances for
|sina| > 1/3, where « is the angle between the wall and the circles of latitude [except for the resonance that
occurs at O(€?)]. Thus, the waves produce a mean current, the mean current affects the waves, which change
the current, and so on. There is new observational evidence of the existence of the North Hawaiian Ridge
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Current (Mysak and Magaard ), which has been hypothesized as an RW-driven current.

1. Introduction

Mysak and Magaard ( 1983; hereafter MM ) showed
that the reflection of baroclinic Rossby waves (RWs)
from a nonzonal wall leads to the generation of a steady
Eulerian mean flow (secondary flow) parallel to the
wall. The authors incorporated Rayleigh friction in
their analytical model to reduce the inviscid flow to
realistic values; however, it is not a necessary ingredient
for the production of the steady flow. The theoretically
predicted secondary flow was computed using the field
of baroclinic RWs incident on the Hawaiian Ridge
(Magaard 1983) and compared fairly well with the
surface flow field found in White’s (1983) analysis of
historical hydrographic and XBT data. Oh and Ma-
gaard (1984) added lateral friction to MM’s model,
producing smaller Eulerian mean current speeds but
wider current bands. Sun ét al. (1988) applied Oh and
Magaard’s model to the Hawaiian Ridge with both
Rayleigh and lateral friction coefficients determined
by a least-squares fit to the high-resolution hydro-

Corresponding author address: Dr. Federico Graef, CICESE, P.O.
Box 434844, San Diego, CA 92143-4844.

© 1994 American Meteorological Society

graphic observations of Roden (1985). The authors
concluded that the model fits the data reasonably
well.

The data used for the comparisons between theory
and observations in MM, Oh and Magaard (1984),
and Sun et al. (1988) did not allow an averaging along
the ridge or a time averaging, but the authors justified
that such comparisons were meaningful because the
steady current was an order of magnitude larger than
the currents associated with the Rossby waves. We will
show in this paper that this statement is not correct
due to the transients, and that a fair comparison be-
tween the theoretically predicted mean current and
observations requires data that allow an average along
the ridge or over time. Preliminary results from a da-
taset of these characteristics have been made available
to us by Firing (1993, personal communication).
Measurements of the currents on the northeastern side
of the Hawaiian Ridge averaged over a period from
October 1988 through January 1993 show significant
resemblance to the current (North Hawaiian Ridge
Current) predicted by MM. We consider these mea-
surements to be the first evidence that this current ac-
tually exists.
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The main shortcoming of MM theory is that it ne-
glects the influence of the secondary steady mean flow
on the driving RW fields, both incoming and reflected.
The theory developed here studies this influence and
addresses two additional questions: the stability of the
RW-driven steady flow and the poor comparisons in
some instances between theory and observations. It in-
vestigates also whether the reflection problem of RWs
can be strongly nonlinear when more or less realistic
wave parameters [obtained from the observed RWs,
for example, from Kang and Magaard (1980)] produce
a B-Rossby number of the reflected RW (for western
boundaries) that is of the order or larger than one.

Higher-order nonlinearities produce new contribu-
tions to the steady flow of MM, which should provide
a more accurate steady circulation resulting from the
nonlinear interactions in the reflection problem.

The ocean model is kept very simple in order to
focus attention on the complications introduced by
higher-order nonlinearities.. The model is quasigeo-
strophic (QG) on a semi-infinite oceanic § plane
bounded by an infinite lateral straight boundary, has
a flat bottom, no friction, and no external forcing.

This paper is organized as follows. Section 2 presents
. the formulation of the reflection problem and the so-
lution up to first order in the 8-Rossby number ex-
pansion. By definition, the “effect” of the RW-driven
steady flow on the waves themselves occurs at second
order in our perturbation scheme, which is examined
in section 3. Section 4 poses the third-order problem
but only the steady response is calculated, which is
precisely the next higher-order correction to MM’s
steady flow. Observational evidence and numerical ap-
plications [e.g., the first-order steady flow (MM’s flow
in the absence of friction) is compared to the steady
flow up to third order] with some oceanographic im-
plications are presented in section 5. The last section
is devoted to discussion and conclusions. The appendix
includes details of the third-order problem.

2. Formulation of the problem and solution up to
first order

a. Governing equation and boundary conditions

The governing equation is the QG potential vorticity
equation (QGPVE), which in nondimensional form
and using a coordinate system with x parallel, y per-
pendicular to the wall, and z vertically upward, takes
the form

€, V3
(8, + eJ(¥, )]{ ¢+a[s( ) w]]

+ cosadp + sinad,y = 0. (2.1)

Here, V2 = 9,0, + 9,9,, J(4, B) = (8x4)(8,B)
— (8,4)(8,B) is the Jacobian operator, f is the non-
dimensional time, ¢ the QG streamfunction, « the an-
gle that the wall makes with the circles of latitude,
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e = U/(BL?) the B-Rossby number, and S(z)
= H’N*(z)/f3L? the stratification parameter (Ped-
losky 1979), where L and U are horizontal length and
velocity scales, § is the northward gradient of the plan-
etary vorticity, f; is the Coriolis parameter, H is the
water depth, and N(z) is the Brunt-Viisild frequency.

The scales L and U have been used to introduce the
nondimensional variables of (2.1) as follows: (x, y, z,
t’ \[/) = [X*/L, y*/L> Z*/H, 614{*9 ll’:l:/( UL)]a Where
the time has been scaled by the Rossby wave period.
Dimensional variables are denoted with an asterisk as
subscript.

Since (2.1) holds in the domain —o0 < x < o0, y
> 0, —1 < z < 0, the following boundary conditions
(BCs) must also be imposed.

* No normal flow at the reflecting wall; that is, 3,y
=0aty=0.

* No normal flow at a flat bottom and at a rigid lid:
[0: + eJ(¥,: )]0y =0atz=—1,0.

¢ At infinity  must remain bounded and satisfy the
radiation condition: the only energy (associated with
a homogeneous QGPVE) approaching the boundary
is that of the incident wave. In other words, when the
need arises to supplement a forced solution with a ho-
mogeneous solution of the QGPVE (an RW in our
case) to satisfy the BC at the wall, the RW chosen must
have an energy flux away from the wall, that is, must
be a reflected wave. The proposed condition is similarly
used in Anderson and Gill (1975).

In the weakly nonlinear theory of midlatitude RWs,
a perturbative solution for the QG streamfunction is
sought in the form ¢ = ¢ (@ + ey (D 4+ 2y @ 4 . ..

b. Zeroth order

A solution to the zeroth-order problem is given as a
superposition of an incident and a reflected RW

(LeBlond and Mysak 1978; Pedlosky 1979):

YO = AV, (2)(cos8’” — costy’),  (2.2)
where 0(0) =kx+Ly—wi+¢,i=1,2,
—(k cosa + I; sina) .
= 0y, s [i = = 1, 2’
ool = e,
(2.3)

A is the wave amplitude, ¢ is an arbitrary constant
phase, and ¥,(z) is an eigenfunction of the vertical
Sturm-Liouville problem with corresponding eigen-
value A,. The offshore wavenumbers /; , are the real
roots of (2.3) when vertical mode number 7, frequency
w, and wavenumber component along the wall k are
given. The root with the positive (negative) radical,
chosen to be /; (), corresponds to the incident (re-
flected ) wave for all boundary orientations (Graef-Ziehl
1990; hereinafter GZ). If the roots /,, are equal or
complex, the solution is unbounded with a linear
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growth in y in the first case and an exponential growth
away from the wall in the second case (GZ).

c. First order
The first-order [O(¢)] perturbation equations are
VAWM + 8 ——= 34|} + cosady M

6,{¢ [S()"b” COS ald, ¥

+ sinadp V= — B, ¥2(z)[cos(8}” — 05)

—cos(8 + 651, (2.4)
where By, =2 4%(l — b)( = 1),
dyM=0 at y=0, (2.5)
394N =0 at z=-1,0, (2.6)
v bounded as x— *oo,y—> 0, (2.7)

and the radiation condition remains in effect. Note
hat J(¢ 9, 9,9 @)= 0.

Henceforth we will assume that By, # 0. For 4
# 0 this is equivalent to assume that £k # 0 and |/;|
# || (i.e., sina # 0).

Since the problem for ¢ (! is a linear, forced problem,
the solution can be written as ‘" = ¢ + ¢»
+ \L(h’o)m, where

312‘1’5(2)
(I} — b) sina

is the steady forced solution that gives the MM flow
for their special case of no friction,

Y = — sin[(/y — L)y] (2.8)

o bm .
Yy = Z XL/, ¥, (2) sin(81” + 65”)
= F(z)sin(8'” + 05), (2.9)
in which bm —B; f‘l \I/"‘I’de/(ZCO) = ——BIZEnnm/
(2w) and

—[(Zk)2 +(h + b)?

+ 21 [2k cosa + (I} + 1) sina]}, (2.10)
w

and x,bhom is a homogeneous solution of (2.4), which
is chosen to satisfy (2.5). It is given by

1) b

hom = — Z N—Lifin, V,,(2)

X sin(2kx + N2y — 2wt + 2¢)
b, 0

U, (z)e” Y

X sin(2kx + 90y — 2wt + 2¢), (2.11)
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where 2w = 6,,(2k, n,,), m=0,1,2,. . .,

sina [ 1 _ 2,
w

271/2
(2k+%)] . (2.12)

m, is the smallest m such that the radicand in (2.12)
becomes negative, 1)’ = -—sina/(4w), and &
= {L2f§A\n + [2k + cosa/(4w)]? — 1/(16w?)} /2,
d. Discussion of first-order solution

1) STEADY PART

Since ' = —9,¢ (", the steady Eulerian mean flow
is

B
=Y = — \I’n(Z) cos[(/y — L)y],
(2.13)

or in dimensional form, which simply means multi-
plying (2.13) by eU = U?/(BL?), it is

ui'(y, z) =

B
—2 §2(z,) cos[ (/4

8 sina — he)Ys],

(2.14)
«)/2 and A,

(1) _
Usw (Vx» Z4) =

where Bioy = Adky(liy — he)(lix — 13
= ULA.

It is noteworthy that in the inviscid case, the Eulerian
steady flow u{") has exactly the same magnitude as the
Stokes drift produced by the incident-reflected RWs
but of opposite sign, yielding a zero Lagrangian mean
flow (MM).

The production of a steady flow parallel to the
boundary occurs only for nonzonal walls; this result
holds true for any number of arbitrary incident-re-
flected RW pairs. However, the steadiness of the current
alone, generated by the nonlinear interaction of inci-
dent-reflected RWs, can happen in zonal walls. Con-
sider a zonal wall and imagine we choose, for example,
two incident-reflected RW pairs with the same » and
w, that is, on the same (7, w) circle. We would obtain
two nonzero steady forcing terms (four terms combined
into two) with a nonzero zonal wavenumber. These
steady forcing terms would drive, in general, a nonzonal
steady flow; that is, a steady flow not parallel to the
wall, but whose normal component vanishes at the
(zonal) wall. This is perhaps not a coincidence, since
otherwise (2.5) cannot be satisfied, because the only
homogeneous and steady solution of the linear QGPVE
is a zonal flow.

A time-independent forcing term with zero zonal
wavenumber requires two interacting RWs of the same
frequency and of the same zonal wavenumber; but
this is impossible, for such two waves will not interact!
This proves that the steady forcing is never resonant,
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which has the following important consequence: the
steady flow is stable when the nonlinear effects are
weak, since in such a case, instability proceeds only
via resonant interactions (Gill 1974; Plumb 1977).
There cannot be energy exchange between u{!’ and the
“parent” RW pair(s); the steady flow is neutrally stable
to these RWs. But we cannot say whether the steady
flow is stable to “other” disturbances, and whether it
makes sense to disregard the RWs, sources of the flow.
Pedlosky (1979; pp. 425) comments on this point:

. . . Consequently the structure of the observed mean
flow already implicitly assumes the existence of fluc-
tuations, and it is a generally misleading fiction to sup-
pose that the stability of the averaged state accurately
portrays the stability of the fluctuation-free states, since
in most cases the nature of the fluctuations alters the
Sluctuation-free state in the direction of stability. . .

Technically, of course, one could study the stability of
the RW-driven steady flow. We have a brief discussion
on this in the last section.

In MM, friction acted only upon the short reflected
wave (for western boundaries). Mathematically it
meant to have /, complex, so the reflected wave had
an exponentially decaying amplitude away from the
wall. With such friction, the forcing for ¢ ‘" in our
problem would have an exponentially decaying (in y)
factor. Consequently, the steady flow would be expo-
nentially decaying away from the wall and thus would
be a boundary current, as found by MM.

2) TRANSIENT PART

Clearly, solution (2.9) is valid when A is not one of
the eigenvalues L2/ 3\,,. If X is an eigenvalue, say A
= L?f § s, ¥as(z) is the corresponding eigenfunction
and if £,,,, = O—that is, if there is no projection of the
vertical structure of the forcing onto the Mth mode—
then there is a solution of the form (2.9) with

o bm
F(z) = c¥ S R
(@)=l + 2 s T

m#*M

¥, (2),

(2.15)

where c is an arbitrary constant, thus giving an infinite
number of solutions. The case A = L2f3\,, and &,r
# 0 is resonant, although to have a solution of the
resonance conditions with k real it is necessary that
|sina| < 1/3 (Graef 1993).

In (2.11), each RW mode has parameters m, 2w,
and 2£; the dispersion relation then yields two offshore
wavenumbers, 7,,,,, of which only one is chosen either
as the reflected RW (using the radiation condition) if
Mm1,2 are real, or as the exponentially decaying RW
(use the boundedness of ¢ () if 9, , are complex.

We note that m, could be zero or that 7,,,, could
be complex Vm, since one cannot show in general by
using the inequality |k + cosa/(2w)| < [1/(4w?)
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— L*f3\,]1'%, or equivalently /, , real and different,
whether 59, , are real or complex.

If the incident and reflected wave are relatively short
(for given n and w), then the response is an exponen-
tially decaying oscillation in y, trapped to the wall. The
higher the baroclinic mode, the shorter the length scale
of decay is and the smaller its amplitude, which should
decrease faster than 1/m”. We have that n{y
~ LM’y = yu/ri, for large m, where 7,
= 1/(foA\/?) is the mth mode internal Rossby radius
of deformation. Thus, for large m, the length scale of
decay (of that mode) is given approximately by 7; ,,.
On the other hand, if the wavelengths of the incident—
reflected RW pair are relatively long, then part of the
response is oscillatory in y and the rest is trapped.

In summary, the response to the transient or 2w
forcing consists of two parts.

1) Physically, the 2w forcing induces a flow (YY)
that does not satisfy the physical constraints on the
motion. This is a direct response, whose phase lies at
90° from that of the forcing.

2) The fluid then adjusts by generating free RWs to
balance out the forced flow normal to the wall
(y&f,]o)m); these waves must have outgoing energy flux,
that is, must be reflected, or exponentially decaying
away from the boundary. This is the indirect response.

Our first-order solution is then (for A not an eigen-
value) given by the sum of (2.8), (2.9), and (2.11);
that is,

e ! bm‘I’m(Z) - (1)
Y= —,EO ST 2N, sinf ;3
hod bV, (2) o,
— Z e Mm' YV Slng(lr)
o, A—L2f2EN, m
BVi(z) |
_-— I — 1
(I, — 1) sina sin[(/; = L)y]
i b ¥ (2) . 0) 0)
+ Y + .
m§=]0 N_ L2/ 2n sin(#; 67), (2.16)
where we have introduced the abbreviations
0507 = 2kX + npy — 20t + 2¢,  (2.17)
0% = 2kx + 9y — 2wt + 2¢.  (2.18)

As indicated in (2.4), the series in (2.16) and their
partial derivatives up to second order must be uni-
formly convergent in order to differentiate ¢ (!’ term
by term (this has been checked).

e. Barotropic case

The first-order solution just presented is quite general
inasmuch as it is valid for any arbitrary oceanic strat-
ification.
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To obtain the first-order solution in the particular
case that the incident-reflected pair is barotropic, we
put #n = 0 into the equations. Then b,, = —B) 36,0/
(2w) and the infinite series in (2.16) become each a
single term. The solution is then

(1) — (1) _ 12 . l _l
‘P hom (ll _ 12) sina Sln[( 1 Z)y]
0 : 0) 0)
+>\—;L—2j”3_7\(,81n(01 +607), (2.19)
where
sinfly, k.<k<k,
b o
:1103n =- m;)f?(; e " ysmﬁﬁ,l,), k<k_
or k>k,.,
(2.20)
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in which k., = }{-cosa/(40) * [1/(16w?)
— L?f3Xo1'?}. For a rigid lid, Ao = 0 and for a free
surface, Ao = 1/(gH).

All baroclinic modes disappear from the first-order
solution when the incident-reflected RW pair is baro-
tropic, since the interaction of two barotropic waves
cannot excite baroclinic modes.

3. Second-order problem and solution

A major limitation of MM theory is the absence of
any influence of the RW-driven steady flow on the RWs
themselves. By definition, such influence must appear
at second order. If we succeed in solving the second-
order perturbation equations, we must be able to de-
termine what happens to the incoming-reflected waves
when they encounter the steady flow, whether there
are second-order resonances, and if so, whether they
are inhibited by the orientation of the wall.

The second order problem is

1 .
6,[\7%[/‘” + 62[—— ay‘”” + cosad P + sinad, Y ? = -F

§(z)

1
— 0) w2, (1)
= J{\b‘),V\// +6Z[S(z)

ANy @ =0 at (3.2)

804 = —J(W, 9 M) = I, 8.4 @) = 0
at z=-1,0 (3.3)

y=0

By cos[(l, — h)y] 2

¥ = A\If,,k[ -
sina -

sina

1
"Wl - 2,4, (0) — o @
azxp“” J{\b“),v\ﬁ +62[S(z) oy ” (3.1)

@ boundedas x> *oo,y—> 0. (3.4)

The forcing for ¢ (?, being the rhs of (3.1), in which
the RWs advect the vorticity of the steady flow plus
transients, and vice versa, is

d

2
S (-1 )"[(a,-ll% 8} = 20h — k2 — L2 fia w2 — 2 (1 ‘”’")}

dz\S dz

me—1 2
Xsing{” = 3 v, ¥, 3 (1) o (T2 = 21:)? sin8'” cosh))
w

m=0 i=1

b w2 Ssina . (o ) e 1 . .
= 2 e Z (1) == sind i (2l — D) sind S + 2 [(n) — 24)7 — 0] coshlY

m=m, i=1 w

0 2
~(hh = ) cos(85 + 65) 3 v, ¥, S sinof-‘”[(

m=0 i=1

1
2

_, Sina
_1)1—1

AV, { F\(z) sind” + Fy(z) sinfy> + Fy(z) sin(26$% —

—— (L — L)Y+ L2 ff\, — A]}
2w

05”) + Fy(z) sin(26% — 9\

+ Fs(z) sin(261” + 65 + Fo(z) sin(205” + 8y + - - .}, (3.5)

where the first two coefficients in the last equality are
Bip(—1)"!
sina

Fi(z) =

+h=h) 2 Ym‘l’m[

m=0

[u% — 2Ll — k= L2 3NV —

OIS (h= B+ L3N, = A|, i=1,2.
w

4 (1 av}
dz\S dz

sina (3.6)
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To arrive at (3.5), we used the dispersion relations
(2.3) and 2w = 0,,(2k, n,,) repeatedly, as well as the
definitions of A and 7, and introduced the abbrevi-
ation v, = bu/(X — L?f§\n) = —Bizknum/[20(X
- sz(2)>‘ln)]

a. Secular terms

Although the x, y, 1 dependence of the forcing terms
proportional to :;in0(,» , i =1, 2, is that of the incident
RW for i = 1 (and reflected for i = 2), it is not im-
mediately obvious whether these terms are resonant,
since we need to check if their z dependence has some
nth mode (recall that the incident-reflected RW pair
is nth mode).

Using the Sturm-Liouville (SL) series expansion of
W2 5% o EnpmVom, it is straightforward to show that
F\(z) + F,(z) = 0 Then the terms whose secularlty
is bein 1nvest1gated are proportional to F 1(2)(51n0(
- sm0 ) so that more and more these two forcmg
terms resemble the incident-reflected RW pair we
started with, except for the amplitude and a phase
change of w/2.

The solution to (3.1) will be sought in terms of a
SL series expansion. We write

% 7 (x, y, 1)¥/(2), (3.7)

w(Z) =
where P =[° yb‘z)\I//(z)dz The equation governing

) is obtained by multlplymg (3.1) by ¥, and inte-
gratmg over the depth. It is written symbolically as

Q
M3 = —Ak f_l V(2)¥,(2){+ - }dz, (3.8)
where the linear operator /1, is defined by
M, =9,(V?— L f3\) + cosad, + sinad,, (3.9)

and the dots within braces indicate that the corre-
sponding lengthy expression on the rhs of (3.5) fits
there. The BCs (3.3) have been used to derive the
equation for <I>§ ).

Defining £, = [°, ¥, ¥ 3dz and using that

1 d¥2\.
f Ty (S dz )a’z

- _szO( A+ A )Elnnn(n > 0), ‘310)

obtained by integrating by parts severa(l)l times, the coef-
ficient of the forcmg ~sinf; — smﬂ(z )is proportional
to B|,C, = f W, ¥, F,(z)dz; that is,

CI [(ll -2/ 12 2f0 n)glnnn

sina

+ L2f0( Al + >‘ )g/mm]
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gnnmglnm
+(ly — 1
(hmh) zozw(x L?f3\)

Sino
[_ (L -

L)+ A — székm} . (3.11)

For | # n (=n), Msing@] # 0 (=0), i = 1, 2, and
sm0 is not (is) a homogeneous solution of (3.8).

Therefore, the forcing proportional to C, (s1n0(1 )
— sinf 20 ) will be secular unless the coefficient C, van-

ishes. Here, C,, is given by

— L 2 _ N ) l 2,2
Cn—[sina (ll 2]1[2 k +3L fO)\n

(L —b) (, = h)?
+ nnnn +
2w ¢ 4u°
v 2
X . nnm .
sina ’EO _‘—0\ L N (3.12)
where we have used the identity 2 -0 £2um = Ennnns

obtained by considering the SL series expansion of
W2, squaring it and then integrating over depth. In
general, C, # 0; thus there usually will be resonance.
[It is shown in GZ that there are roots k, (for given w)
that satlsfy C, = 0.] Note that the resonant forcing
originates in the nonlinear interaction between the in-
coming-reflected RW pair (¢®) and the forced
ﬁrst-order solution, given by the steady mean flow
(¢ 5) plus the transient forced solution (1// (1)), It does
not involve the homogeneous solution ¢hom

There is an important difference between this res-
onance at second order, where resonant forcing occurs
“naturally,” and resonance at first order in ¢, which,
as we mentioned, is possible only if A = L2f 3 s, Ennnr
# 0, and 0 < |sina| < 1f3.

The particular solution to

M[BD] = — —AanC (sind'” — singy”)  (3.13)
is given by
AkB,,C, . .
PP = — 227 y(sing\” + sindy”);  (3.14)

2(.0(11 — [2)

that is, it grows linearly away from the boundary (GZ).
A uniformly valid solution to O(e?) will now be found
by using the method of multiple space scales.

b. Multiple scales

The method of multiple scales is described for ex-
ample in Bender and Orszag (1978) and Nayfeh
(1981). The pedestrian expansion solution, which
would grow linearly in y, suggests that the amplitudes
and phases of the incident-reflected RW pair be func-
tions of

Y, = €%y, (3.15)
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a longer space scale, because Y is not negligible when
yis of order e 2 or larger. The formal procedure consists
of assuming a perturbation expansion of the form

V= O,y 2, 1 Y, Y, - )
+€\l’(l)(x,y,2,t; YZ: Y3: "')+ ) (3'16)

where Y, = ¢y, m = 2, 3, -+ +. Even though the
exact solution ¥ is a function of y alone, multiple scale
analysis seeks solutions that are functions of the vari-
ables y, Y,, . . . treated as independent variables. It is
emphasized that expressing Y as a function of several
y-space variables is an artifice to remove secular terms ';
the actual solution has yand Y,, related by Y,,, = ¢y,
so that y and Y,, are ultimately not independent. We
do not consider the dependence on Y, here, since it
has been assumed that the first-order solution is non-
resonant.

The y derivatives in the QGPVE are transformed
according to 9, = 9, + €?dy, + - - - and ), = 9,,
+ 2€¢*dyy, + -+ -. The first two orders in € of the
QGPVE remain unchanged; the O(e?) equation has,
in addition to the two Jacobians on the rhs of (3.1),
the terms —29,d,y,¥ ‘* — sinady,y .

The leading-order solution is written now as

YO = 4,(Y;, « - ) ¥,(2) cosf”
— Ay (Ys, - )V,(2) cosby’, (3.17)
where 81 = kx + Ly — ot + ¢;(Ya, +++),i=1,2.

The BCs on 4; and ¢;,i = 1, 2 are at Y, = 0; that is,
aty=0:4, = A, = Aand ¢, = ¢, = ¢. The additional
forcing terms on the rhs of (3.1) are

~28,8,y,¥'? — sinady, ¢ @ = —(2wl, + sina) ¥,
X (3y,A; cos8” — A,dy,¢, sind!")
+ (2wl, + sina) V¥,
X (3y,A2 0805 — 4,8y,, sing5”). (3.18)

When (3.18) is multiplied by ¥,(z) and depth inte-
grated, its rhs is proportional to §;,. It is precisely for
! = n that we need these extra terms. We want to elim-
inate the secular terms from the rhs of (3.8) plus the
depth integral of ¥, times the rhs of (3.18). The secular
terms are removed by demanding that

ayzAl = ayzAz =0

. 1
(2wl + sina)Ady,¢; — 5 AkB12C, = 0 (3.19)

~ (20l + sina)Ady,¢; + 5 AkB1,C, = 0

! What we actually mean by removing secular terms is that each
forcing term that would otherwise produce a secular term is anni-
hilated by choosing its coefficient to be zero.
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which immediately implies using the BCs that 4, = 4,
= A [a constant at this order of approximation, but in
general A(Y3, - - +)], and

(—1)"'kB)>C, .
=Y, + (Y3, - - ), =1, 2.
¢ el —1) 1 (Y3 ), i
(3.20)
Therefore, second-order nonlinear interactions

change the phase of the waves but not their amplitude,
in contrast to resonant interactions at first order, which
change their amplitude but not their phase (GZ; Graef
1993). The linear growth in ey of the phases ¢, » could
also be interpreted as an O(e?) correction to the off-
shore wavenumbers /| ,, respectively, so that now we
could write /; + ¢2/!* with

., kB,C
[P = (=)t
( ) 20)(11"12)
AL — L)Cysi
= (=1 AKX ‘4522)C M i=1,2. (321)

Thus, the effect of the steady flow plus transients on
the incident-reflected RW field is to change their
wavenumber normal to the wall, that is, /; ;. Note that
&1+ ¢ = 2¢(Y3, -+ ) but ¢, — ¢y = kB,C, Y/ [w(!,
— b,)]; this implies that only the steady part of the first-
order solution needs to be modified (at second order).

It is easy to show that to O(e2y), or in loose terms,
close to the boundary,

VO =~ O+ lved,
corrected  uncorrected (3.14)  (3.22)

indicating that the straightforward expansion is correct
near the reflecting wall.

The change in the waves’ phase is a general result
for nonlinear wave-wave interactions at O(e?) when-
ever the dynamics has a quadratic nonlinearity. In
Graef (1994), an example is worked out in a laterally
unbounded ocean and taking  ‘°) as the superposition
of two arbitrary RWs. At second order, multiple
timescales lead to an O(e?) Doppler shift of the fre-
quency of each wave, proportional to the amplitude
squared of the other one.

¢. Second-order solution

To minimize the amount of algebra, we will restrict
the second-order solution to the barotropic case. The
forcing for ¢ (2 in the barotropic case is obtained put-
ting n = 0 in the foregoing analysis and realizing that
JWO, = L*fiayD) + J( ", — L*fiA @)
= (. Since the form of \//fll,)m depended on the interval
in which k lay [see (2.20)], we have to consider two
different cases.

1) Y4 OSCILLATORY: k € [k_, k. ]
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The equation for ¢ ) is

My P] = — %AkBlZ{Q sin(261” — %)
+ G, sin(205 — 6')
+ Cs[sin(8” + 65" + sin(68\” - 84")]
+ Colsin(85” + 65”) + sin (85 — 65)]
+ G, sin(20% + 6
(0) 0) .
+ Cssin(205 + 60)), (3.23)

where M, is the linear operator of the QGPVE in the

barotropic case and the coefficients C; through C; are
0103+ 8:002 — 201, — K

C2+,‘:(—1)l P12 2.1 162 ,

Sina

i=1,2 (3.24)

2
> (A5 cos(261 — 5,017 —

i=1

‘P(Z) =

0
3.0 + A,

+ A48 c0s(20' + 5,207 + 5,00

where

03 = 3kx + pay — 3wt + 36, (3.28)

(3.29)

in which the dispersion relation 3w = 0¢(3k, p) is sat-

isfied, yielding

sina [ 1
+

M2 e 13602

08 = 3kx + u"y — 3wt + 3¢,

280

27172
(3k + C—O—S—“) ] . (3.30)
6w
and the upper (lower) term within the large braces is
taken if the roots y, , are real (complex). If the roots
are real, we choose u, (negative radical ) because it cor-
responds to the reflected RW; if they are complex we
choose p; = u” + iu'?, the exponentially decaying
RW. In the rigid-lid case, u, , are real if k € 3[k_, k. ].
The amplitudes in (3.27) are, for i = 1, 2:

(2) 3 AkB>Coy;

Azvi = [w — ao(k, 2]; — 8;20) — 8;15)]
X [k? + (2 = b6i2ly — 8i1h) + L2 f§)0]
(3.31)
A, = 2 AKB1Cas, (3.32)

[3w — 00(3k, [; + 12)]
X [(3k)? + (I + m2)* + L? fENo]
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Cavi = (=1) 0 1y i= 1.2 (325
4+i Y n — » 1=1, (3.25)
_=b)[, ..., sina B
Co+i TN (-1 e (h—hL)—A
i=1,2, (3.26)

in which A= X — L2/ 2\,. Note that the secular terms
with coefficient C, do not appear in (3.23), since they
have been eliminated using multiple scales, and we
have omitted the subscript 0 (coming from # = 0) in
02 b and n2.

The procedure to solve (3.23) is the same as in sec-
tion 2c: we find a particular solution to each forcing
term and supplement it with a homogeneous solution
to satisfy (3.2).

The final solution to the second-order problem is

cos(ﬁf-o) + 0(2”) + Aﬁ),»,d cos(ﬁf»o) - 0(2”)
2)
0) 2) @) cosf;
) cosf> — (Asyis + Ay, [e"‘“)y 008052)”’ (3.27)
3 AkB,Cyz;
AP, = 2 : 3.33
arid [~w—ogo(—k, I —n2)] ( )
X [(k)* + (I —m)* + L2 fFNo]
A

_ } 4kB,,Cei
" [3w — a0(3k, 21; + 8;5l, + 8;15)]
X [(3k)? + (21 + 8;2, + 8;15)* + L* f§Xo]
(3.34)

We examined whether the amplitudes in (3.27) be-
come infinite. Their numerators [e.g., see (3.34) and
(3.26)] are bounded if |sina| > 13, for this implies
that A’ # O for k real. If their denominators vanish, we
have resonance. In all four possible cases of second-
order resonance, one can arrive at an equation §(k,
w) = 0, relating k and w. Thus, there is only one free
parameter left. For example, in the case w = ao(k, 72

~1;), we also have w = oo(k, [;) and 2w = a¢(2k, 1,);
that is, three equations and four parameters: w, k l,,
and n,. We found that A2+), is bounded, A62+;, is
bounded if /;n, = 0 and Lsmal > 13, Aii),,d 1s bounded
if |sina| > 1/3, and A3 is bounded if (—1) ! sina
< 0 and |sina| > 1/3. These are suﬂicxent conditions
preventing resonance.

2) ¢4 EXPONENTIALLY DECAYING: k & [k_, k]
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The PDE to be solved is
M[y D] = — -;—AkB,z {Cssin(20 —
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6(20)) + C4 sin(20(2°) — 0(10)) + e_,,(i)y

X (Cs[sin(8 + 6D) + sin(8'” — 0(9)] + Cylsin(65 + 8D) + sin(8Y — 6{V)])

+ G sin(20 + 6) + Gy sin (205 + 647) + ¥ (Co[cos (85" —

where C; 474 are given exactly as in (3.24) and (3.26)
and Cs 9.0 are given by

sina
40\

Cari = (=1 5 () = 20,)* = 0],

2 N
S 142 cos(26 — 5,208 — 5,65) + e

i=1

,10(2) =

65y — cos (8 + 0(M)]
+ Crolcos(8Y — 8y — cos(85” + 0E)D}, (3.35)
o sinae . .
Cgvi = (1) PN Q2L =), i=1,2
(3.37)

Again, we have omitted the subscript 0 (coming from
m=0)in 0!V, ”, and ‘.

The final solution to the second-order problem for
k€ [k, ki1 N (ka, k1), where [k_, k.]¢ is the com-
plement of [k_, k,] and (k, k;) is the interval?® in
which /, , are real and different, is

X {AD,sin(0 + 00) + 42, sin (8 — 00) + A48, cos(01” + 0D) + A4 cos(81” — 6D)}

+ 42 cos(26%” + 6,207 + 5,,05) —

0
+ A4+id 51n0( )

where Aéi), and Aéi), are given in (3.31) and (3.34),

and the rest of the amplitudes are, for i = 1, 2:

2) _ %AkBlZ(C!Hidi — C4+iﬁ)

atis = 2+ /2 (3.39)
YAKB»(Cyyidi + Csii f})
4@, = 224kl s 72 eeif)(3.40)
— L AkB5(Csyigi + Carihi)
A(Z)i — 2 12008+ 8i +ifl; 341
a+id glz +i’1,2 ( )
} AkB12(Cari& — Cyihi)
2y _ 12 4+iSi 8+ilti
A =2 e =2, (3.42)

where in turn

d; =[3w— a0o(3k, [; + n)]
X [(3K)? + (L + )2 + L2f3No] — 3w
fi=nV[=6w(l; + n”) — sina]
= ~o ~ oolk, 77 ~ )]
X [k? + (n(’) —I)?+ L?fixo] + wn©
=V 2w(l; — ) — sma]
(3.43)

It can easily be shown that if  is complex, then u
is complex This is the reason why only the trapped
RW ~ e+ appears in the last term of (3. 38) Note
that this case 2 reduces to case 1, where 1,0,,'0),,, is Os-

2 2 0 2 (i) .
(AL + A8 1) costy” — A% eV sing @

(2)

— (AP + A2 e "7 cos8 D], (3.38)

c111atory in y, by putting 0 = 0, 77 = 5,, and "
=6 In case, 1 if p is real, we put p? =0, u? = py,
and 0(2) = 9%, Indeed, we can see that if 7” = 0,
then A4y = Aﬁr), 2=0and 4 ;(;.23, ssa Of case 2 becomes
Aﬁr),,s sa of case 1.

Finally, we show that the denominators of the am-
plitudes defined in (3.39)-(3.42) cannot vanish.
Ifp #0thenf, = 0= [ + 3 = — sina/(6w),
which when substituted into d; results in d; = 15wk?
+ % sin%a/w > 0, since we have assumed k # 0 and
sina # 0 (see page 1869). In exactly the same fashion
one shows that for n? # 0, h; = 0 implies g; = 3wk?
+ & sin2a/w > 0. Therefore, the amplitudes in (3.38)
that have the e~ ""? factor remain bounded if |sine|
> 1/3.

4. Third-order problem

The main reason why we go to third-order is the
realization that the forcing at O(e?) contains steady
and x-independent terms, whose response contributes
to the steady flow found at first order. The steady flow
at O(€3) is the next higher order correction to the MM
flow; the x average (or time average) of the second-
order flow is zero.

2 Given by (ki, k;) = (—cosa/(2w)

— Ry, —cosa/(2w) + Ryp),
where Ry = [1/(4w?) — L2f 37o]"2.
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Although one may argue with reason that if € < 1
then an O(€?) correction is too small to really care for,
this might not be true in the reflection problem. In
fact, the third-order correction to the MM steady flow
is not negligible at all for cases in which the perturbative
solution is still valid, as shown in section 5.

We shall restrict the third-order problem to the
barotropic case, to minimize (?) the amount of algebra,
and anticipating that we will have forcing functions
that produce secular terms in ¥ ), we include the ad-
ditional terms in the forcing that arise because of the
multiple space scales (section 3b). Noting that J(y (¥,
—L A P) + JP, —L2f 3¢ @) = 0 and
J(WD, ~L*f3\o¢ V) = 0, the third-order barotropic
problem is

Mol D] = —J(§ @, YD) = S, vy 0)
= TP, VY O) — (043, TY
+ (@9 )T = 2[4 3,01, @
= B )83, V1 = 20,8y ¥ + By )
= sina( 3y, ¢ @ + dy,p V) (4.1)

1
uP(y) = - Sinoe
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W =0 at y=0 (4.2)
¥ boundedas x> +o0, y > oo. (4.3)

In (4.1), the Jacobians indicated by J, the Laplacian
operator and the spatial derivatives in the ./, operator
imply differentiation with respect to x and y. The de-
rivatives with respect to the longer space scales Y, and
Y3 = €’y are explicitly indicated. The calculation of
the forcing for ¢ (¥ is done in the appendix.

The corrections to the steady flow of MM

To get the steady response at O(e3), we consider
only the steady forcing in (A.21). If we are interested
only in the steady current #{> and not in the corre-
sponding streamfunction, we do not have to solve any-
thing, since the steady streamfunction satisfies

sinad, {3 = steady forcing on the rhs of (A.21),
(4.4)

and u{? = —9,¢!®. Therefore, the O(€?) correction
to the steady flow parallel to the wall is

2) kB3,Co

atly— O 0D

1 .
= 5 AK{(Hs 1 + Hoa) sin(61” = 657) + (Cx + Car) cos2(61” — 65)]

; B3,k
+ e L 4k + - =22
e [[2 (Csap + Coan) Y

2

1 B
- [5 Ak(Ss 2 + Seu1) — ?;,

—= G;:l cos(6” + 65 — 91

k
G4] sin(85” + 65 — 6(V)

+ 2 AK[Cs 4 co5(201 = 08) + Co gz cos(205” — 0S0) — S5 4. sin(26%" — 61)

The coefficients Cyy,; (e.g., C31), Hyj, + -+, i,j =1,
2 are defined in the appendix. Recall that the case 5
real is recovered in (4.5) if we put ) = 0, ) = y,,
and 6D = g

The flow given by (4.5) is the modification to the
steady flow found by MM (in the absence of dissipa-
tion) due to higher-order nonlinearities. In dimensional
units, it is simply {3’ = Ue’u{>. Note that #(* is not,
in general, a periodic function of y (in case 7 real,
u{» would be periodic if the ratios of its wavenumbers
were rational numbers). We have analyzed whether
the amplitudes of the terms in u{* could blow up
through first- or second-order resonances. Qur main
result, supported by the analysis of section 3c, is that
if |sina| > 1/3 then u{* is bounded.

If we did a time average over a wave period (or x

— Se.q2 sin(265) — 05”)]} - Gﬁe*zv"”y> . (4.5)

average over a length 27 /| k|) of ¢ + ey () + 2y @
+ €’y ® everything vanishes except ey§) + €3¢,
which is the steady circulation induced by the nonlinear
interactions in the reflection of RWs.

5. Numerical applications

For numerical applications, the wave parameters #,
w, and k are chosen, in that order, such that /, , is real
and different. The wave amplitude A4, is determined
using one of the following two methods.

1) The dimensional amplitude of the O(1) pressure
is Py (z) = ps JoA+ ¥ ,(2), where p, is a reference density.
At the sea surface we can write Py |, = p,ga, where g
is the acceleration of gravity and a is the amplitude of
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the sea surface elevation associated with the RWs,
Then, for given a,

ga
Ay = ———.
Jo¥.(0)

We can choose 4 = 1 so ¢ @ ~ O(1) and 4, = UL
[see text following (2.14)]. Note that 4, is independent
of the RW’s wavelength.
2) Choose Uy, to be the maximum horizontal speed
of the incident wave field at z = 0. Then
= —_.—Umc'—‘"’ R (5.2)
| kinc* l \I’,,(O)

(5.1)

Ay

where E-nc* is the dimensional wavenumber vector of
the incident wave. Thus, the wave amplitude depends
linearly on the incident wave’s wavelength. Again, U
=A,/L(A=1).

In the dimensionalization of %!’ the L drop out, so
the choice of L is irrelevant; what matters is the value
of 4, and the wave parameters k, and /, 5, involved
in B2, . In other words, how L is chosen is arbitrary,
but once we do choose an L, U must be computed
from U = A, /L and ¢ from e = U/(BL?) = A,/(BL?)
in the dimensionalization. The actual numerical value
of e = U/(BL?)is then also irrelevant. Perhaps a better
measure of the nonlinearity is

_ amplitude of J,(¢{?, Viy?)
amplitude (maximum)
of B(cosady, " + sinad,, ¢ ")

€est

_ | Bize | ¥3(0)
B max;_, 2| (kg cosa + [ sina)|
X A, ¥,(0)

. (5.3)

To O(e), the strength of the nonlinear terms is es-
timated by €., which compares the amplitude of the
nonlinear forcing with the amplitude of the linear
terms. Given the complete ¢ ¢, we can check the va-
lidity of our perturbative solution by dividing the max-
imum amplitude of all the components of ey (!’ by the
amptlitude of ¢ (®). This ratio, €y, should be smaller
than one, since otherwise the first-order correction is
as large or larger than the leading order term. For ex-
ample, in the barotropic case

€wrue = € max{|bo/(A — L* 3o},
| Bio/[(], — L) sina}|}/A4. (5.4)

Nonetheless, ¢, could have the disadvantage of un-
derestimating (or overestimating) the size of the first-
order correction if there is constructive (destructive)
interference of the ¥ '’ components.

The perturbative solution up to third order is peri-
odic in time with frequency w. The z dependence is
given in terms of vertical normal modes that depend
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on N(z). Thus, the solution is shown by plotting maps
of the streamfunction as a function of x and y at z
=t = (. A single number that compares the size of the
ith-order correction to the size of the jth-order solution
is the ratio of their root mean squares; that is,

VZ (ei¢(i))2

_mms(eY) 5

T ms(e D) V3 (g D)2
Xy

(5.5)

The size of the second-order correction relative to the
solution up to first order can be obtained from r; g,
= rms(e2y @) /rms(y @ + ey V).

a. Observational evidence

Oh and Magaard (1984 ), MM, and Sun et al. (1988)
compared the theoretically predicted steady current
with geostrophic currents derived from “‘synoptic” ob-
servations along isolated sections more or less orthog-
onal to the Hawaiian Ridge. The available data did not
allow an averaging along the ridge or a time averaging,
but the authors justified that such comparisons were
meaningful because the steady current was an order of
magnitude larger than the currents associated with the
Rossby waves.

30

(cm/sec)

.30 s . . N R N N
[

20 40 60 80 100 120 140 160
y (kms)

FI1G. 1. Comparison between the steady (solid line) and the tran-
sient (dashed line) flow at z = 0: the steady flow and the velocity
component parallel to the wall of the transients; that is, uf"
= — y(\b(hl,)m + ¢ %) (dimensionalized) at x = ¢ = 0, as a function
of y, . Note that they are of the same order of magnitude. Parameters:
reference latitude 6, = 25°, wall orientation o = 25° (measured
clockwise from eastern direction), vertical mode number of incident-
reflected RW pair n = 0, depth H = 4500 m (free surface), period
T = 1 yr, wavenumber parallel to the wall k, = 0.001 km™*, angle
between k;, and east 8;,. = 268.6°, maximum horizontal speed of
incident wave field Ui, = 2 cm s~!, maximum horizontal speed of
reflected wave field U = 33.4 cm s™!, incident wave’s wavelength
Ajne = 2516 km, reflected wave’s wavelength Ay = 151 km, angle
between the group velocity of incident wave and east ¢i,c = 177.3°,
et = 0.79, e = 0.79, Max(€inc, €rr) = maX(Uincl;inct lZ/B’
Ut | Krera 12/ 8) = 28.
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FIG. 2. As in Fig. 1 but for 6, = 35°, & = 90°, n = 1, H = 4500
m, stability period Ty = 40 min, fipc = 170°, Uppe = 1 cm s™, U
= 15.5cms™!, Ajpe = 1098 km, Agr = 71 km, ¢inc = 181.4°, e
= 0.34, €rue = 0.36, and max (€inc, €.r) = 46.

The 2w transients, however, were not studied. The
steady flow and the x velocity component of the tran-
sients (at a particular x and ¢, since the transients are
x and ¢ dependent) are plotted as a function of the
offshore coordinate for two different cases (Figs. 1 and
2). The boundary orientation in Fig. 1 has a = 25°,
the value used by MM for the Hawaiian Ridge. Both
figures show clearly that the transient flow parallel to
the wall is of the same order of magnitude as the steady
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flow. This is generally true, but one can imagine cases—
for example, making A “large”—in which the transients
are much smaller than the steady flow.

What this means is that the transient flow super-
imposed on the steady flow will depend on where one
measures along the boundary and when (disregarding
the relatively weak contribution from the driving
RWs—again, this is not always true). Assuming that
the reflection of RWs is the only physical process that
takes place along the northern side of the Hawaiian
Ridge, the observed currents parallel to the ridge will
not be the MM flow alone, but an MM flow highly
contaminated by the transients. It is then not surprising
that in some instances there was little resemblance be-
tween the MM flow and the observations. A fair com-
parison between the theoretically predicted mean cur-
rent and observations would require data that allow
an x or time averaging to remove the transients and
the incident-reflected waves.

In the mean time, observations pertaining to this
paper have been made in the Hawaii Ocean Time-Se-
ries (HOT) project (Chiswell and Lukas 1990; Chiswell
et al. 1990; Winn et al. 1992; Winn et al. 1993). In
that project, time-series cruises have been made since
1988 on approximately monthly intervals between two
stations: the ALOHA station located at 22°
45'N,158°W is about 100 km north of Kahuku Point,
Oahu, Hawaii, and the Kahe Point station located at
21°20.6'N,158° 16.4’W near Kahe Point, Oahu, Ha-
waii (Fig. 3). Current measurements are made on HOT

. Hawaii

1580 1550

FIG. 3. Locations of station ALOHA and Kahe Point Station (from Karl and Winn 1991).
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cruises using a shipboard Acoustic Doppler Current
Profiler (ADCP) when a ship with the necessary equip-
ment is available for monthly cruises. In addition, low-
ered ADCP measurements have been made on several
HOT cruises (Chiswell et al. 1990).

Preliminary results from the current measurements
have been made available to us by E. Firing (1993,
personal communication ). Figure 4 shows the profile
of currents along the Kahe Point~ALOHA station
course averaged over a depth range from 20 to 50 m
and over an observational period from October 1988
through January 1993. This current profile shows sig-
nificant resemblance to the current (North Hawaiian
Ridge Current) predicted by MM and Oh and Magaard
(1984) and later studied by Sun et al. (1988 ) based on
two hydrographic sections. The HOT dataset is, of
course, far superior for the study of the current than
the data used by Sun et al. (1988), and we consider
the results of the HOT current measurements as the

HOT CRUISES

Qct. 1988 -- Jan. 1993
64 Sections ; Mean at[20 - 50] m

24.0°N T T T
0.0 25.0 50.0
Velocity(cm/s)
23.0°N =
-
~
-~
-—
-—
5 -— J
-
—
e
-~
\
==
-
220N - = -
-
*
°
21.0°N L
159.0°W 158.0°W 157.0°W

FIG. 4. Mean currents north of Oahu, Hawaii, averaged over a
depth range from 20-50 m and over a period from October 1988
through January 1993 (from E. Firing 1993, personal communica-
tion).
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first significant evidence that the North Hawaiian Ridge
Current may actually exist. According to E. Firing
(1993, personal communication), the currents mea-
sured in the HOT project have the following additional
features: Their strength decreases with depth but their
direction remains largely unchanged. They do not show
a strong annual cycle, but they do show strong inter-
annual fluctuations. Annually averaged currents
maintain their basic westward direction with a small
deviation to the north; their direction is never reversed.
Standard deviations of the measured currents are of
the same order of magnitude as the maximum mean
values. As mentioned above, much of the variability
occurs at interannual frequencies. But significant vari-
ability also occurs at timescales smaller than a year.

b. Characteristics of solution in parameter space

One of the main advantages of an analytical solution
(versus a numerical one, for example) is that it is rel-
atively easy to explore its behavior in parameter space.
For instance, one can compute the correction to the
offshore wavenumbers (section 3b) as a function of
different wave parameters without actually computing
the solution.

If the correction to a quantity 7 is &7, the size of the
correction in % is 100|67/7|. The shift in /, , leads to
a correction of the wavelengths Ajpcand Aep whose 51ze
is given by 100|A(}; + €2:7) — AU I/AWL), i
and / = 2, respectively. The correctlon to the wave-
number of the steady flow is 1006218 = 1521 /(L = b)

= 100e?A%k?*|C, sina|/(2w?). These corrections and
other parameters are plotted in Figs. 5-7 as functions
of A;jn and the angle between ki, and east, 6i,., for
three cases.

The first case (Fig. 5) has U, ~ O(1) cm s~} for
all waves and U,.; < 20 cm s~ ! for waves with periods
less than 2 years. Note that €., and ¢, are very similar;
this is perhaps not surprising since the problem for
YD is linear (as for all orders). As expected, there is
good correlation between e, and the amplitude of
ul. For e < 0.7 the corrections to /; — &, Ainc, and
A are less than 20%, 30%, and 15%. (It would be less
than 5% if it were not for the lower-left corner maxi-
mum.) The correction is alwa?'s larger in the long
RW for all boundaries, because /, ). The largest
corrections are for incident RWs w1th 0.,‘c < 125° and
O;nc > 250°. In general, the more meridionally oriented
the incident wave vector is, the more nonlinear the
problem becomes (see also Figs. 6-7).

In Fig. 6, 6;,. < 165° since for 165° < 6, < 260°
the incident wavelengths would exceed 3000 km, and
we consider only incident RWs with A, € [100 km,
3000 km]. Here, €. < €yue in all the domain, but with
similar values; et = Uper | kret |2/ 8 (not shown ) is an
order of magnitude larger than e, indicating that al-
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FiG. 5. Maps of (a) wave period T in years; (b) A in km; (c) amplitude of the steady flow at z = 0, B2, ¥2(0)/(B sina), in cm s7!;
(d) €csts (€) €rue; (f) the correction in % to /; — k; (g) the correction in % to Aj..; and (h) the correction in % to A as functions of (A
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Binc). The domain is (600 km, 3000 km) X (100°, 260°). (The offshore component of the group velocity is negative, that is, incident, for

though the reflected waves might be highly nonlinear,
this is not necessarily true for the reflection problem.
The tendency for the amplitude of the steady flow, the
e's, and for the corrections to be smaller for larger A;,.
is a consequence of both 4, ~ Ajl and the increase
of w with Aj,.. The upper left of the corrections maps
(Figs. 6f~h) shows large values, especially that of /,
— b, whereas the same region of the amplitude of
uly, €1, and e maps (Figs. 6¢c—¢) shows small values.

This is attributable to a relative maximum of C,, there.
A case with 8, = 160° and T = 0.3 years, a point in
such a region, yields r; o = 0.43, r,o = 2.31, and ry,
= 2.13, which shows that the perturbative solution is
not valid even though e, and ¢, are small. What we
learn from this is that the smallness of e and €y is
not sufficient for the perturbation expansion to be valid.
The problem with annual period waves is strongly
nonlinear (e, €re) > 2), but it is possible still to find
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f) Correction in % to I; — I
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FIG. 5. (Continued) all waves defined in the region.) Parameters: § = 25°, a = 25°, n =1, H = 4500 m, Ty = 40 min. Wave amplitudes
calculated from a = 1 cm. The zero contour line in the amplitude of u{Y is for 6, = 245° = 270° — « and corresponds to waves with k

= (. See Fig. 1 for meaning of symbols.

moderately nonlinear cases with ee, €re < 1, and most
importantly 7,0, 20, and r20; < 1, by putting Ujpe = 2
cm s~! (see Figs. 1 and 8).

Finally, the typical case (Fig. 7) of a meridional
midlatitude western boundary with first mode baro-
clinic RWs, with the wave amplitude chosen from Uy,
= 1 em s™}, is clearly more strongly nonlinear than
the case in Fig. 5; the region in (Ainc, finc)-space where
€est < 1 is reduced. But interestingly enough, the cor-
rections to /; — b, Ajnc, and A s are less than 5%, 30%,

and 5% in that region. Note that there is no apparent
difference between €. and € ye.-

¢. Examples of the solution

The horizontal domain of the maps has x spanning
a distance along the wall from —7/|ky| to 7/l k|, so
the pattern shown repeats itself in the x direction (along
the wall). The range in the offshore direction was cho-
sen from y = 0 (the wall) to y, = 2w /min(| /4 + byl
lix — by). The field variables are, in general, not pe-
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FIG. 6. As in Fig. 5 but for barotropic free surface waves (n = 0) and the wave amplitudes calculated from Uine = 10cm 571,

The domain is (100 km, 3000 km) X (95°, 165°).

riodic in y. All maps shown are for nondimensional
streamfunctions taken at z = 0. To get the dimensional
streamfunction, one must multiply by UL = 4,.

An example of the solution for an annual barotropic
free surface RW as the incident wave (parameters of

Fig. 1) is shown in Fig. 8. We got €.y =

€rve = 0.79,

ro = 0.90, 0 = 0.68, and r, o, = 0.50; these numbers
together with the maps suggest it is a case where non-
linear effects are sufficiently strong to allow their easy

recognition, but weak enough to permit a perturbative
solution. The solution to first order appears as a sub-
stantially distorted ¢ ‘) (Figs. 8b, d, f). The modifi-
cations to ¢ ¥ and ¢© + e (" due to the shift in L2
are very small [Figs. 8a and 8b are almost identical to
Figs. 8c and 8d, respectively (the highs and lows in 8c
have shortened a bit)]. The first-order correction is the
largest and the rms of ey () relative to the rms of the
solution to first order is almost 50%, somewhat more
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FI1G. 6. (Continued)

than what one would have guessed by just looking at
Figs. 8d-e and 8f-g. Comparing Figs. 8b, 8d, and 8f,
one concludes that the correction to 7, is larger than
the correction to /, — /,. The consistency of the ratios
r; —for example, r; o = 0.91,0.92, and 0.90—suggests
that although the corrections do change the stream-
functions, they are stable indicators of ratios of rms
values.

Another definitely weaker nonlinear case is shown
in Fig. 9, where we have chosen a barotropic free surface

incident RW with a 36.5-day period. There is little dis-
tortion in ¢ (@ + e/ when compared to ¢’ (Figs.
9a and 9c). To increase the nonlinearity, we have dou-
bled the wave amplitude in Fig. 10 to U, = 10cms™.
Obviously we do not show ¢ @ again [to O(e)], but
the solutions up to first order could be compared, and
as expected, Fig. 10a looks more distorted than 9¢. The
correction to the steady flow, that is, to /; — J,, is un-
noticeable (cf. Figs. 9a with 10b and 10a with 10c), a
result that can be confirmed by looking at Fig. 6f at
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FIG. 7. As in Fig. 5 but for 8, = 35°, & = 90° (a meridional western boundary) and the wave amplitudes calculated from Upe = 1 cms™!,

the point (A, = 2097 km, 6;, = 106.9°). There is no
difference between Figs. 10 and 10c, which show ()
+ eV correct to third and second order, indicating
that the correction to 7, is negligible. This is also con-
firmed by Figs. 10f and 10d.

d. Comparing ut{ and uy) + u(%

We would like to make a comparison between the
steady flow at O(e), that is, MM’s flow in the absence
of friction, and the steady flow up to O(¢3) for different

values of wave parameters. Unfortunately, because of
the very nature of u{®, it is not possible to generate
any meaningful plot of #{*) in parameter space. For
example, it would be worthless to plot one of the am-
plitudes of the terms in u{* as a function of any two
parameters—it would tell us very little about (3.
We have to limit the calculation of #{> to just a few
cases.

A measure of the magnitude of the O(e?) correction
to the steady flow of MM is given by
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where the sum over y must extend at least over one
wavelength of u{".

In Figs. 11 and 12 we show two examples (with the
parameters of Figs. 1 and 10) of the correction

u{2(y,) and the comparison between u{y(y,) and

ulD(yy) + ul3 (). The first example clearly shows
the nonperiodicity of u{3. We obtained r,3, = 0.40,
which means that the rms-of u{3) is 40% of the rms of
ull. As r,3, < ro = 0.68 (Fig. 8) we could say that
the second-order correction relative to the zeroth-order
solution is more important than the third relative to
the first. The ratio ©{3/u!}) at the coast is 0.64, over-
estimating 7,3,. Note that the largest differences be-
tween u{l and u!) + u{3) occur near the coast. This
example illustrates clearly that for a moderately strong
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FIG. 8. (Continued) and (g) ¢ @ + e ) + 2y, correct to O(€®),
a0 = 0.68, and r2, = 0.50. The parameters are as in Fig. 1.

nonlinear problem with e ~
= 0.90

e the O(¢) steady flow is by no means negligible, in
this case of the same order of magnitude as Ur;

o the transients at O(e) are very important, of the
same order of magnitude of the steady flow;

e the third-order correction is not negligible and
substantially changes the MM flow, so that the steady
flow up to O(e3) is quite different from the O(¢) steady
flow.

erve = 0.79 and ryp

In the second example (Fig. 12), u{3 looks periodic;
we got r,3, = 0.26, this time larger than r,p = 0.15
(Fig. 10). As already mentioned, this is a nonlinearly
weaker case than the first example. This example has
€est = 0.12, €pe = 0.42, and ry o = 0.30; it shows that

e the O(¢) steady flow is not negligible, about 45%
of Uinc and 20% of Uk,

e the transients at O(e) are of the same order of
magnitude of the steady flow (not shown in figure);

e the rms of u{3) relative to the rms of u{} is 26%.

6. Summary and conclusions

The weak nonlinear interaction of an incident and
the reflected RW has been studied. Their interaction
at first-order produces

1) a steady forcing that leads to an Eulerian steady
mean flow parallel to the nonzonal wall (MM flow
without friction); and

2) a transient forcing oscillating in time with a fre-
quency twice that of the incident-reflected RW pair,
that is, 2w.

The steady forcing, whose response is the steady flow,
cannot be resonant, which implies, under the weak
nonlinear regime, that there cannot be energy exchange

GRAEF AND MAGAARD
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FIG. 9. Instantaneous map of (a) ¥‘; (b) ¢ s and (c) ¢ + ¢ 1.
Parameters: 6, = 25°, « = 25°, n = 0 (free surface), H
= 4500 m, T = 0.1 yr, ky = —0.002 km™', 8, = 106.9°, Uinc
=5cms™!, Ue = 11.6 cms™!, Ajpe = 2097 km, Ayr = 907 km,
Dine = 213.5°, € = max(€nc, €er) = 0.27, €y = 0.06, e = 0.21,
and ryy = 0.16.
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FIG. 10. Instantaneous map of (a) ¢ @ + e/ ‘"), r, o = 0.32; (b) corrected ¢, due to shift in h125 (c) corrected ¢ + ¢V due to shift
in 2, rio = 0.32;(d) @ + e ") + X ®, correct to O(e?), 19 = 0.15, 100 = 0.15; () ¢ @ + ey ", correct to O(e?), ro = 0.30, and
(D YO+ D+ 20D, correct to O(e?), 1, = 0.15, and r20. = 0.14. The parameters are as in Fig. 9 but with a larger wave amplitude:
Uine = 10 cm s7', Uper = 23.1 cm 87", € = max€ine, €rer) = 0.53, €eqr = 0.12, and eyye = 0.42.
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FiG. 11.(a) The O(€*) correction (in cm s~') to the steady flow—
that is, u{3>—vs distance from the wall. (b) A comparison between
the steady flow at O(e), u!y (dashed line), and the steady flow up
to O(€3), ul + uld (solid line), as a function of distance from the
wall. The parameters are as in Fig. 1; r,3, = 0.40.

between the steady flow and the incoming and reflected
RW; the steady flow is neutrally stable to the RWs that
generated it in the first place. This is true for any num-
ber of incident-reflected RW pairs, but does not imply
that the RW-driven steady flow is stable; it could very
well be unstable to other perturbations.

The response to the transient or 2w forcing consists
of two parts: a direct (forced solution) and an indirect
response (homogeneous solution, needed to balance
out the forced flow normal to the wall). The transient
forcing can be resonant, but only if 0 < |sina| < 13,
that is, for more zonally oriented walls (Graef 1993).

At second order, the nonlinear interaction between
the incident-reflected RW field and the forced first-
order flow (steady plus transient) produces, in general,
resonant forcing, which leads to a modification of the
RWs’ phases: a shift in their offshore wavenumber.
Therefore, the effect of the steady flow plus 2w tran-
sients on the incident-reflected RW pair is to change
their offshore wavenumber.

The O(€?) correction to ¢ () influences ¥ () through
the steady flow u{"’; qualitatively, the widths of the
steady currents in MM flow are modified.

In contrast to first-order nonlinear interactions,
where one has to search for resonant triads, there is
always resonant forcing at O(e€?), unless the coupling
coefficient vanishes (in general it will not). Resonant
forcing is thus the rule rather than the exception.

The analytical solution allows us to compute some
of the corrections to /, 5, etc., as a function of (Ajn,
0inc), that is, to explore some characteristics of the so-
lution in parameter space.

There is no steady forcing at all at O(€2); hence it
becomes necessary to go one order higher to see the
next correction to MM steady flow.
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The steady flow occurring at O(e3), u{® is driven
by the modified RWs as well as through interactions
of several components of the solution up to second
order. Two examples of u{>) were shown: one in which
the rms of the third-order correction u(3 was 40% of
the rms of 1!y, which is perhaps too strongly nonlin-
ear,’ and the other, clearly a (nonlinearly) weaker case,
in which r,3, = 26%. There are cases for which the
third-order correction to u!'’ can be negligible, or of
the order of u!"?, or unrealistically large.

An analysis of the second-order resonances and of
the amplitudes of the terms in u {*) leads to the following
remarkable result: if |sina| > 5 then u{* is bounded.
In other words, the entire steady circulation induced
by the nonlinear dynamics, up to third order in ¢, is
immune to resonances for |sina| > '3, except for
those resonances that lead to a shift in the offshore
wavenumbers of the RWs.

A fair comparison between the theoretically pre-
dicted mean current and observations requires data
that allow averaging along the coast or in time to elim-
inate the transients and the incident-reflected RW pair.
The 2w transient flow at O(e) is of the same order of
magnitude of the steady flow u{".

Recent observations relevant to this paper have been
made in the Hawaii Ocean Time-Series (HOT) project
(Chiswell and Lukas 1990; Chiswell et al. 1990; Winn
et al. 1992; Winn et al. 1993). Preliminary results from
current measurements ( E. Firing 1993, personal com-
munication ) on the northeastern side of the Hawaiian
Ridge along a section perpendicular to it and averaged
over a period from October 1988 through January 1993
show significant resemblance to the North Hawaiian
Ridge Current predicted by MM. These observational

3 For this case, the condition for weak’ nonlinearity would be only
marginally satisfied.

2 a) 'l'Tne third order correction
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FIG. 12. As in Fig. 11 but with the parameters of Fig. 10;
rsg = 0.26.
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results emphasize the importance and potential appli-
cability of our work.

Itisclear (e.g., see Figs. 6, 7, and 8) that the reflection
problem of RWs can be strongly nonlinear. In many
cases, and using more or less realistic wave parameters,
the B-Rossby number, chosen to be the maximum be-
tween that of the incident and reflected RW, is larger
than one. Although this does not necessarily imply that
the reflection problem is highly nonlinear and that our
perturbation expansion is invalid, it may give an in-
dication of the strength of the nonlinear terms. We
believe that to actually validate the expansion, one must
calculate the r; ;, but this implies, of course, computing
the solution.

By a systematic use of perturbation expansion and
multiple scales, the following picture emerges:

©)

@

steady flow
+ 2w transient

A

A

i
{waves]

®

There is a clear feedback between the waves and the
steady flow: in a very simplistic way, the waves produce
the steady current, the current affects the waves, which
change the current, . . . and so on.

Future work

This (hopefully) improved theory of the steady cur-
rent driven by the nonlinear interaction of an incoming
and the reflected RW has a flat bottom. For example,
the topography of the real Hawaiian Ridge is complex
and can probably not be considered in analytical cal-
culations. Also, the stability of the steady flow would
have to be addressed (perhaps). One disregards the
origin of such flow* and studies its stability. The non-
zonal steady flow is an exact nonlinear solution to a
Jorced QGPVE. However, when the steady flow plus
the perturbation is plugged into the forced QGPVE,
the forcing drops out. One is left with a PDE having
coefficients that are periodic functions of y and z.
Nonzonal flows are in general more unstable than pure
zonal flows (Pedlosky 1979).

The theory developed here assumes an inviscid fluid.
Dissipation effects are expected to play an important
role near solid boundaries and there is no doubt that

4 Whether this is conceptually correct is not a trivial question.
Keep in mind that the very existence of the steady current is due to
the nonlinear interaction of incoming and outgoing RWs.
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adding friction to the model will make it more realistic.
On the other hand, it will make the algebra even more
cumbersome. For western boundaries, the reflected
RWs are short and thus more susceptible to dissipation.
Mysak and Magaard incorporated Rayleigh friction
(acting only on the short reflected wave) in their model;
as a consequence, the steady flow had an exponentially
decaying (in y) amplitude and became a true boundary
current.

Finally, it is encouraging that recent observations
have provided the first significant evidence supporting
the existence of the North Hawaiian Ridge Current.
However, an actual application (e.g., a full comparison
between our theory and observations) would lie outside
the scope of this paper. Furthermore, the interannual
fluctuations of the observed currents poses additional
challenging questions: Theoretically, the secondary
flow is steady, but there exists the possibility of having
resonant interactions between three incident—reflected
RW pairs, which would imply that the amplitudes of
the flows parallel to the wall would fluctuate slowly in
time (Graef 1993). In view of the observed fluctuations,
it may be worth exploring this possibility furthér.
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APPENDIX

Forcing for ¢

Since ¥ ("’ (because of Yhon) and ¥ depend on
where k lies, the forcing for y ) will also depend on k
and we would have two cases as in section 3c. However,
we saw at the end of section 3c that case 2 reduces to
case 1 if we put ) = 0, n = p,, and 6" = 43",
thus, we will consider only the second case.

There is an additional consideration when n is
real (case 1). The forcing for ¥ ‘® contains terms
~ cos83' ) that is, homogeneous solutions of (4.1)—
that would produce secular terms unless they are elim-
ine}sed. This is accomplished if we write the phase of

N
¢hom as

05" = 2kx + my — 20t + 2¢ + ¢ (Y5, + - ),
(A.1)

with ¢ (V(0, - - +) = 0 to satisfy the BC at the wall
(2.5). The introduction of ¢ ("’ is analogous to what
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we did at second order w1th ¥ using multiple scales;  these forcing terms do not produce secular terms. The
now it is done with \[/hom at third order Note, though, response (or particular solution) to such forcing func-
that here it is only in the phase of 1Phom that we have tions is bounded:

the freedom of addmg a dependence on Y-, since its

amplitude, ~ B, is fixed and turned out to be inde-

pendent of Y,. As usual, the dependence of ¢ ") on Y 1y~ COS
is found when secular terms are eliminated (shown sin
below). In case 2, although there are several forcing
terms on the rhs of (4.1) that are homogeneous solu-
tions of it, specifically those

b,

These are clearly uniformly valid solutions in y and
there is no need i?l this case to introduce a phase
ey S0 1y ¢ (Y5, + + ) in Yhon.

cos The three Jacobians on the rhs of (4.1) give

TGO, @) + IO, VD) + TP, T )

2 2
AT S [ConiTcos(8 — 201 + 5,,0%7 + ,05”) — cos(8S” + 2617 — 5,201 — 6:1657)]

i=1 j=1

4 e Capis 008 (0 — 8 — D) — cos(85” + 0 + 81)] + Sris fsin(6;” — 817 — 051

1
2

+sin(0 + 02 + 0] + Casigjlcos(85” — 617 + 01D) — cos(6;” + 6,7 — 61)]
+ Sarra sin(0® = 0 + 00 + sin (9 + 017 = 9]} + Couu Leos(85” = 2017 — ;2617 — 8105
— cos(8 + 207 + 6,261 + 6,65")] + Hylcos(6)” — 05) — cos(6}” + 5]
+ Hevra,lsin(0 — 057) + sin(85” + 057)] + e { P[sin(6;” + 07) + sin(6” — 0()]
+ Q;lcos(8” — 62 — cos(8)” + )] }] + Ge ™Y

Bzzk
2 N

z (G, c0s20'® + e=17 [ G, cos[6) + (—1)1(65” — 01)] + G5 cos[61” + 65 + (—1)'05D]

+ Gasin[08) + (=10 + 05)] + Gs sin[6) + (—=1)(85 — 6111, (A2)
where the coefficients in (A.2) are, for i, j = 1, 2:
Caovij = (—1) AL = 801l — 8i2h)? = Y2l — byl = 8k — ) (A.3)
Caring = (=1 {(=nP)PR; + PM;(3,,— I, — 1) + (k> + I A3 — I, — 1) — 0 D401}
(A4)
Savisy = (=17 {(=nD)PM; + PR.(; + 0 = 30) + (K* + I)A&5a(l + 0 = 30) = nD450,1} (AS)
Cariay = (=1 {(=nD)VPN; = PVi(l; = 0 + [) + (K> + ) Agha(n® =l — [) = nPA4Z5al}  (A6)

Saria; = (=1)H{(=n )PV, + PN;(li = 70 + ) + (K> + DALl = 0 + 1) = 0 D401} (A7)

Corij = (—1)A(3K)? + (2L + 8ioly + 611k)2 — k* — 2Y(2; + 8ialy + 811y — 31) (A.8)
Hy = (—1)/ (A3 + AD NG = BY(L— 1) (A.9)
Hypig; = (=148 (3 — B)(L = 1) (A.10)

Py = (=1){PA;(u” = 3[) + PG, (—pu®) + (K2 + [)[(Afhis + A6 + 450,35 — ™)1} (A1)
0y = (—1){ PG, (3l — p ) + PA;(—uD) + (K* + IV[(A§s + A& = 30) + D48 1),  (A12)
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where in turn
PR = AL (3K)7 = (L + 1) + 5 O] 4 20048 (), + 5 )
PM; = AS0[=(3K)2 = (I + 1) + @] = 27D 42 (1, + 50
PN = Adal=k> = (b =2 ) 4 5P + 29 04B(l — 7 ) | (A.13)
PV; = Agha[=K = (b = 1) + 59 = 2004 (1, — 7
Pai = A0 00) + w7 = u 0] — (40, + 4Z) 2000
PGy = AL 2000 + (A0 + AZDI(3K)? + w07 — ) J
The remaining coeflicients are
G, = (2k)? + (4 "'.12)2 — (L —h)? )
SIno
G, = = B)? = (k) = 0@ 4 4"
Sino .
Gy = 17 =0 = (4 )N — (4 b)) = 29Dy
2w’ - (A.14)

(9

_"
G = 2w
I (D (D)
Gs = _77_77_
Sino
G, = B> 24k (D (1
6 2N n n

The fourth and fifth terms on the rhs of (4.1) are
—Jr, (¥ 9, V3 ), where J,y, is the Jacobian oper-
ator with respect to x and Y,. Analogously, the sixth
and seventh terms are —2J(y 9, 9,5,y ‘©)) We obtain

Jer, (0, VR O) 4+ 204 @, 9,4 )

= B13[cos(01” ~ 65) — cos(8” + 657)], (A.15)

where B1Y = 1 4%(L — 1)[3(1h — 1P1) + 1,12
— bl 52 1. The higher-order contribution to the steady
flow on the rhs of (A.15) arise from the O(€?) correc-
tion to ¥ (V. As in first order, the nonlinear interaction
of the now modified incident and reflected RW pro-
duces a steady flow parallel to the wall. The next forcing
terms are, upon recalling that 4 = A(Y3, - - -) and ¢
= ¢(Y3, -+ - ) (see section 3b),

26,6yy3¢‘0) + sinaft‘))@tp(o)
= (2wl; + sina)(dy,4 cos8’” — Ady,¢ sind'\")

— (2wl + sina)(dy,4 cos8y” — 49y, sind ).
(A.16)

[(h+5)> =30 + 9D+ 200 + L)n™]

Finally, if 5 is real,
2(9,8},)/24& M + Sina(‘)yzlﬁ i

B
= (4wn, + sina) 2‘01;, dy,¢ ) cosd’”
_B2_, 0 - 6%, (A.17
TS (1 — ¢2) cos(0; 2 ), (A.17)

where we have used that aYz(a‘l"’ + 0(20)) = 0 and
dy,B1> = 0, since By, ~ A? is not a function of Ys; or,
if n is complex, dy,¥hom = 0, so that

26;6J,y2¢(1) + sina6y2\// M

12 (0) (0)

=22 5 (- 8 — g
=1 v,{1 — ¢2) cos(8; 2)

_ —kBYLG,

= m cos(ﬁ(,o) - 6(20)).
1

(A.18)

The complete forcing for ¢ ® is given by the sum
of (A.2), (A.15), (A.16), and (A.17) or (A.18). The
forcing that would produce secular terms in ¢ is
eliminated by demanding that

dy,A =03y, =0, (A.19)
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and in case 7 is real dence on Yj; is concerned, A4 and ¢ can be considered
2 o 5 constants. That ¢ ‘" depends linearly on Y, we can
(4omy + sma) 2w >\' 2® interpret as an O(ez) correction to the offshore wave-

1 _ number #,; that is, we now see a modification (two
+ EAk(CS.s,l + Ces2 + Csay + Cou2) =0, (A20) orders higher) in the RW ¢4\,

which immediately implies that 4 = A(Y,, - - +), ¢ For completeness, we write down the governing
= ¢(Yas, - + +), and ¢ V) ~ Y. As far as their depen- equation for ASEE

3) ! @, kBHG ©) _ (0
Mol¥ ] = _EAk(CM+C42+H11+H21)—BIZ +—‘_ cos(f; —03")

w(ly —h)?
—‘Ak[(HSdl + Hey1)sin(85% = 05) + (Cy + Cay) c0s2(81” — 65)]

2

; ok
+ e—"“y[[ AK(Cs g2+ Coan) =5, G ] cos(61” + 05" —6¢")

2)\

Bhk
- [gAk(Ss.d,ﬁSe.d‘l)—ﬁ@] sin (8" + 057 — 051 + 2 AK{ Cs 4y cos(261” — 0£")
+ Coupc05(205” = §11) = S5 4 sin (201 — D) — S 42 sin (205" — 0}")1] — Goe™"

—[%Ak(CnnLng—H“ Hy)) — B(z)]cos(0(0)+6(°) %Ak(HS‘d,l+H6,d,,)sin(oﬂ°’+a‘2°))

2 2

1 2k 1 Bk
+[§Ak(C32 Cn)=— )\,GI]COSZ(J([O)-F[EAk(CM—Cgl)—ﬁG.]cos20(o)

4= Ak[c3,cos(3a‘°’ 05) + Cazcos(305 — )]

2

Dy Bk
+e—"()’[[_%Ak(cs,s,z*‘Cb.d.x)“ﬁ:Gz]COS(g(lm_0(20)'*'9;]))

2 AK(Cos + C Bik g O g 4 g0y 4| Bk
6.5,1 5”'2)'1‘2 )\ 2 COS(02 —01 +9, )+ EAk(SS,s,Z'—SG.d‘I)_ ,Gs
WA
. 2k
><sm<0<.°)—e‘2°’+05”>+[%Ak(ss‘sl Ssa2) =55 )\,Gs]sm(o‘o)—f)(.o)+0$”)

1 .
- EAk[( Cssi+ Cosot Csgn+ Coa)cos0 — (Sss1 + Ses2— Ss.ai — Se.a2) smﬂﬁ”]]

— 2 Ake™ "7 {(Qu1 + Q) cos(85” — 012) + (Q1z + Q) cos (85" — 6)
+(P“+P21)sm(0(0) 0P) + (Pyy + Py)sin (05 — 012}

+- Ak[Cncos(30(0)+0(0))+ngcos(30(°) ) + (Cyy + Cg1)c0s2(8'” + 6]

2

i 1 Bk
+e "”y[[EAk(CS‘S,z+C6‘S,1)—HG3]C (05 + 65 +0(1)

B%Lk
[ Ak(Sssz+Sﬁs|)+2 X 4]sin(0(,°)+0(20)+0}‘))+%Ak[C5vs,,cos(20(10)+0£‘))
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+ Co2008(205” +8(V) — S5, 1 sin (2017 + 6Dy — Se.s.28in (205 + 0§1))]}

+34ke™ {(Qy1+ On) cos(8” + 6) + (013 + Q) cos(00 + 62))

—(Piy+Pyy)sin(8” +62) — (P, + Pyy) sin(8 + )}, (A21)

The coefficients C,,; ; and Cgy;, ; have been written
without the comma; for example, Cs; = Cj,. The first
nine trigonometric functions plus the term ~Gjs on
the rhs of (A.21) are x and time independent.
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