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ABSTRACT

A major error source in the numerical simulation of tropical oceans is the uncertainty in wind stress forcing.
A reduced-gravity shallow-water model has been used to test how assimilated ocean data correct simulation
errors caused by erroneous wind stress in the tropics. The geometry of the basin is rectangular and symmetric
about the equator, and the long-wave approximation is applied. All experiments are of the identical-twin type:
the “observations” are generated by sampling the desired reference solution, and the data are assimilated by
optimal interpolation into the same model, with wind stress forcing different from that in the reference case.

In this paper, three types of wind stress errors are considered: errors of timing only, as well as persistent
errors, systematic or stochastic. The relative usefulness of thermocline depth and current observations, and the
effect of data distribution on state estimation are examined. The role of equatorial ocean waves in the process

of data assimilation is also studied.

1. Introduction

Tropical ocean circulation plays an important role
in the global climate. Recent simulations of the seasonal
cycle and the El Nifio phenomenon using ocean models
forced with observed wind stress fields exhibit consid-
erable verisimilitude, whether the models were rela-
tively simple or more elaborate (e.g., Busalacchi and
O’Brien 1981; Cane and Zebiak 1985; Philander et al.
1987a). These results suggest that the tropical ocean
is largely a forced system, with little internal variability
on seasonal and interannual timescales. Given good
knowledge of surface forcing—surface fluxes of mo-
mentum, heat, and freshwater—and a perfect model,
it seems that one can simulate the low-frequency vari-
ability of the tropical ocean. However, since ocean
models are not perfect and the surface forcing is poorly
known, measurements of the ocean state are needed
to correct model errors, for both simulation and pre-
diction.

Extensive experience with data assimilation has been
gained from its operational application in numerical
weather prediction (NWP), Still, data assimilation in
a tropical ocean model differs from NWP. A major
factor that limits the predictability of an atmospheric
model is errors in the initial state. As NWP concentrates
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on timescales of hours to days, the inertia—gravity waves
excited by imbalance in the initial state can affect neg-
atively the assimilation cycle (Baer 1977; Daley 1981).
However, the timescales considered in tropical ocean
simulations are longer than a month, and over such
long timescales, the inertia-gravity waves due to initial
imbalance dissipate and become unimportant.

Physical instabilities with a timescale of about a
month are associated with the meridional shear of the
significant zonal currents near the equator but do not
cascade energy to lower frequencies (Philander et al.
1985). No other low-frequency instabilities are known
for the tropical ocean by itself, without coupling to the
atmosphere. Hence, amplification of errors in initial
data is not as important as it is in the atmosphere for
simulations of seasonal and interannual variability in
the tropical ocean (Philander et al. 1987b).

Two factors that substantially restrict the simulation
and prediction capabilities of tropical ocean models
are poorly known surface fluxes and the ad hoc param-
eterization of physical processes. Defects in the param-
eterization of mixing processes cause the sharp, shallow
tropical thermocline to diffuse downward, thus chang-
ing the thermal field, especially the sea surface tem-
peratures. In one-layer reduced-gravity shallow-water
models, this is not a problem because the existence of
the thermocline is taken for granted and only changes
in vertical position of the specified thermocline are
simulated.

Uncertainties in the surface stress field generate dif-
ferences in sea surface temperature and subsurface
thermal structure that are comparable with the ob-
served seasonal and interannual variability of the trop-
ical Pacific OGcean (Leetmaa and Ji 1989). Thus, the



2112

role of data assimilation in tropical ocean models is
not only to correct errors in initial data but, also and
more importantly, to correct errors caused by the model
parameterization and the surface flux deficiencies.

The main questions for data assimilation in general
are (i) how different variables determine the state of
the system and (ii) how the observed information
propagates within the system (Ghil and Malanotte-
Rizzoli 1991). The propagation of information from
data localized in space to other regions of the ocean
has been addressed in tropical oceanography by Moore
etal. (1987), Miller and Cane (1989), Moore and An-
derson (1989), and Smedstad (1989). Their results
suggest that equatorially trapped waves dominate the
information transfer in the zonal direction.

The effectiveness of measuring different variables in
the tropical ocean was first studied by Philander et al.
(1987b) with a general circulation model of the Pacific
Ocean. They found that temperature is the most im-
portant variable to be defined initially in determining
subsequent model evolution. Using model-generated
temperature and velocity data, Moore et al. (1987)
investigated the effect of updating models of the Indian
Ocean. They observed that whether temperature or ve-
locity data are more useful depends on the model’s
diffusion and viscosity coefficients. For the values used
by most ocean models, temperature data are more use-
ful than velocity data. However, increasing the diffusion
or decreasing the eddy viscosity results in velocity data
being better for determining the model state. These
results were ascribed to changes in the energy parti-
tioning from one case to the other, with the ratio of
kinetic energy to potential energy being larger in the
latter experiments.

By using both analytical arguments and a numerical
model, Anderson and Moore (1989 ) examined the rel-
ative information content of mass and velocity mea-
surements for determining low-frequency equatorially
trapped waves. They found that mass and velocity data
are equally useful for estimating the Kelvin wave, even
when dissipation is present, but the Rossby wave ad-
justment is sensitive to the magnitude and form of dis-
sipation used. Most of the above studies assumed per-
fect atmospheric fluxes.

It is important, therefore, to investigate the problem
of correcting the errors caused by poorly known surface
fluxes. Miller and Cane (1989) considered the wind
stress error as their model error in constructing a simple
covariance function for the Kalman filter scheme and
achieved encouraging results. Moore and Anderson
(1989) and Sheinbaum and Anderson (1990a,b) have
assimilated expendable bathythermograph (XBT) ob-
servations into a one-layer linear reduced-gravity model
of the tropical Pacific Ocean driven by observed
monthly mean wind data. They demonstrated that the
XBT data contain large-scale information and improve
the model’s initial state. They also found that the in-
formation from data in the eastern equatorial Pacific
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cannot be successfully assimilated into the model.
Sheinbaum and Anderson (1990b) showed that this
problem stems from the inconsistency between the
forcing and the data. Some experiments in which model
stratification or magnitude of the wind stress were ad-
justed did not identify clearly the possible cause for
this inconsistency.

These authors did not consider the relative usefulness
of the different variables in correcting the error due to
wind stress. Furthermore, the use of the observed wind
stress and observed data in these papers enhanced the
realism of the results but did not permit a complete
understanding of the assimilation process at work. New
observing systems, with different data distribution and
error characteristics, are constantly being planned and
implemented. Therefore, data assimilation in the pres-
ence of wind stress error needs further study, using
simulated data and assumed wind stress patterns.

In this paper, we investigate what can be achieved
with optimal interpolation (OI)—the data assimilation
method most commonly used in NWP (Gandin 1963;
Rutherford 1972; Lorenc 1981)—for different wind
stress errors. The framework used is that of a perfect
model and observations, updating only the model state
and not trying to correct the momentum flux itself.
Here the error in model-simulated fields caused by the
wind stress error is called “simulation error.”

Wind stress error can be considered as the combi-
nation of two components: systematic error and sto-
chastic error, in both time and space. By examining
the performance of Ol in these cases, we can determine
and understand its ability to correct the simulation er-
rors. We are also interested in the relative importance
of thermal and current measurements, and in the im-
portance of their location, for correcting simulation
error. These questions are examined here for the trop-
ical ocean only.

The model and assimilation method are described
in section 2. In section 3, we explore first the case of
switching on a perfect wind stress, and find that the
error in the initial state is damped out more or less
rapidly for different datasets, given as thermocline
depth and zonal velocity observations. In section 4,
datasets similar to those used in section 3 are assimi-
lated to correct a systematic wind stress error. The effect
of Kelvin and Rossby waves excited during the assim-
ilation process on error reduction is also discussed. The
reduction of the simulation error caused by stochastic
wind stress errors is presented in section 5; various data
types are used here too. Concluding remarks follow in
section 6. An appendix gives analytical results.

2. Model and assimilation method

a. Model formulation

A linear shallow-water model modified by the long-
wave approximation on an equatorial 8 plane (Cane
and Patton 1984) is employed. The model equations,
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linearized about a state of rest with constant mean
thermocline depth, are

u,—yv+ hy=F— ru, (2.1a)
yu+h, =G, (2.1b)
h+uy+v,=Q—rh. (2.1¢)

The equations have been nondimensionalized in the
usual way: the timescale is 7= (¢8) !/? and the length
scale is L = (c¢/B)!/?, where ¢ = (g’H)'/? is the scale
for wave speeds. Here, g’ is the reduced gravitational
acceleration due to ocean stratification and is taken
equal to 2.0 cm s~2. The mean thermocline depth H
1s assigned the value of 100 m. A Rayleigh friction with
decay time r~! of 200 days has been included. The
external forcings F, G, and Q are due to the zonal
wind stress, meridional wind stress, and buoyancy flux,
respectively. To give some idea of the scaling, if one
takes 5 # 1072 Nm™2 as the basic unit of zonal wind
stress, for example, the zonal velocity ¥ would have a
basic unit equivalent to 8.8 cm s, and the change in
the thermocline depth, 4, would be 6.3 m.

The model state consists of one diagnostic variable,
meridional velocity v, and of two prognostic variables,
deviation / of thermocline depth from its mean, and
zonal velocity u. Two kinds of observations, # and A,
were used during the assimilation runs. We consider
zonal wind stress forcing F only, so that G = Q@ = 0.

The model domain is a rectangular basin, with a
zonal length of 150 degrees, about the size of the Pacific
Ocean, and a meridional extent from 16.5°N to 16.5°S.
Boundary conditions are no normal velocity at the
northern and southern boundaries, and reflection con-
ditions at the eastern and western boundaries.

With the physical characteristics of the tropical ocean
in mind, the low-frequency solution is divided into two
parts: an eastward propagating equatorial Kelvin wave
and westward propagating Rossby waves, This sepa-
ration is possible since the vector shallow-water modes
(u, v, h); form an orthogonal and complete set (Cane
and Sarachik 1979).

A zonal grid size of 2.0 degrees and a meridional
grid size of 0.54 degrees are used in the numerical
scheme. Because high-frequency waves are filtered out
by the long-wave approximation, a 10-day time step is
employed, which allows efficient integration of the
model. The details of the numerical scheme can be
found in Cane and Patton (1984). The results of the
calculation are given in the model’s nondimensional
units throughout the paper.

b. Data assimilation method

We rely on the so-called optimal interpolation (OI)
analysis scheme, which is commonly used at major
weather forecasting centers, as well as in a semioper-
ational prediction system for the tropical Pacific (Leet-
maa and Ji 1989). The basic idea of Ol is to combine
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the model field and the observed data to estimate the
correct field in a way consistent with the estimated ac-
curacy of each (Gandin 1963; Rutherford 1972;
McPherson et al. 1979; Lorenc 1981). As the method
uses statistical properties of the model and the obser-
vations, it is also called statistical interpolation. A brief
description follows.

The model value, p;, at grid point k is taken as the
first guess. The analyzed value, ay, at k is given by
adding to p, a weighted linear sum of the differences
between observation and model value, b; — p;, at the
observation points i:

ar = pr + 2 wilb; — pi). (2.2)

i=1

The weights w;, are determined so as to minimize the
estimated analysis error E,

Ef={(ax— Te)*)'?,

where angle brackets indicate a statistical mean, and
T, represents the true value at that grid point k.

The true value is defined as the value we wish to
estimate in the analysis, which is not necessarily the
actual true value. In this paper, 1t represents the large-
scale motion, excluding inertia—gravity waves, mixed
Rossby-gravity waves, and short Rossby waves.

The OI scheme requires knowledge of spatial error
covariances for the model field and the observations,
since the weights needed to minimize analysis error as
defined by (2.3) depend on these error covariances.
Following Miller and Cane (1989) and Leetmaa and
Ji(1989), a Gaussian function with zonal length scale
of 10° and meridional length scale of 1.6° is taken as
the correlation function for each of the variables &
and u.

With two prognostic variables, the best results would
be obtained by using a multivariate analysis scheme,
which transfers instantaneously information about an
observed variable to the other variables. In data assim-
ilation, the geostrophic relation is frequently used to
connect mass and velocity updates in the midlatitudes.

(2.3)

Y7 TTT 7T T T 7T T T

Longitude

FiG. 1. The wind stress field; the contour interval is 0.2 nondi-
mensional units, with eastward stress positive. The verification regions
are surrounded by solid lines and marked by WESTERN and EAST-
ERN for the western and eastern region, respectively.
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FiG. 2. Normalized rms errors of 4 (panels a, b, and ¢) and u (d, e, and f) of the control run

(-CT-), and of three assimilation runs with the datasets /&u (-H&U-), & only (-H-~), and u
only (-U-), where the wind stress has only a timing error: (a) and (d) the entire equatorial band;
(b) and (e) the western region; and (c) and (f) the eastern region. Normalization factors are (a)

15.8, (b) 22.9, (c) 4.4, (d) 4.5, (e) 4.3, and (f) 4.4.

However, as the geostrophic relation breaks down near
the equator, the cross covariance between thermocline
depth and zonal velocity becomes more complicated
than that customarily used in midlatitudes. To avoid
this complication, a univariate OI scheme has been
used for all our experiments, as in Leetmaa and Ji
(1989). Information is still transmitted from one vari-
able to another, in the course of the assimilation cycle,
by the model dynamics. No initialization procedure
was implemented to balance the two analysis fields,
since model dynamics lets them adjust to each other
in due time, after updating. Further computational
savings were achieved by applying the “volume” or
“box version” of OI (for details see Lorenc 1981; Hao
1991).

The “observations” used here were model generated
and are described in further detail in sections 3-5. Be-
cause we were concentrating on the physical processes
associated with simulation error correction, no obser-
vational error was added to the data. The ratio between
observational and model error variance, required for
stability of the OI scheme, is assigned the value 0.05
for practical purposes.

Model fields are updated at the end of each month
for all the assimilation runs, except where the updating
frequency is explicitly stated to be different. An up-
dating interval of one month has been used by many
authors in the tropical oceans, given the emphasis on
monthly data in the study of El Nifio (e.g., Leetmaa
and Ji 1989; Moore et al. 1987; Moore and Anderson
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F1G. 3. Normalized rms errors of /4 (panels a and b) and u (c and d) of the control run (-CT-)
and of three assimilation runs with thermocline-depth observations 4 restricted to: eastern
(~E-), central (-C-), and western (-W-) regions. (a) and (c) For the western region; (b) and
(d) for the eastern region. Normalization factors are (a) 22.9, (b) 4.4, (¢) 4.3, and (d) 4.4.

1989); this corresponds here to three model time steps.
The problem of optimizing the updating interval for
tropical ocean models is touched upon in the appendix.

Root-mean-square (rms) errors in each variable are
used as the main measure of assimilation performance.
Total rms error E(h&u), based on the energy (/2
+ h2/2)'2_is also used in comparing the usefulness
of some datasets. To focus on the equatorial ocean,
validation is carried out in the band between 5°N and
5°S (cf. Anderson and Moore 1989). To evaluate how
the assimilation performs in different parts of the basin,
we consider furthermore [ following Moore and An-
derson (1989)] a western region (120°-170°E), central
region (170°E-140°W), and eastern region (140°-
90°W) (Fig. 1).

The rms error of the analysis field is zero for many
of the experiments, when one or both prognostic vari-
ables are observed at every grid point. To make the
visualization of results clearer and less dependent on
our assumptions of perfect observations, we plot the
error curves for the assimilation runs using only the
simulation-error value preceding the actual update. The
more common convention of showing, at each update
time, both this value and the analysis value makes for
messy plots, with larger jumps from large simulation-
error values to very low (or zero) analysis values.
Moreover, it is the analysis error at update time that
depends most on the assumptions about observing er-

rors, more so than the simulation errors in between
updates.

For convenient plotting, the rms errors are normal-
ized. Different normalization factors are used for the
different regions and cases. In section 3, the variances
of the reference state for different regions and for the
whole equatorial band have been used to normalize
the corresponding rms errors of the control and assim-
ilation runs. In section 4, the variance of the simulation
error arising from wind stress error is used. In section
5, mean rms errors of the control run for each variable
are taken as the normalization factors.

3. Assimilation in the case of perfect wind stress

In this section, we consider the case of the model
being forced by a wind stress that is switched on at ¢
= (, remains stationary thereafter, and has zero error.
This case can also be viewed as either the wind stress
having a timing error or the model state having an
initial error. Since any gradual time change of the wind
stress can be decomposed into Heaviside functions, the
case of a sudden switch on is actually more general
than it appears.

The assimilation is useful, as we shall see, insofar as
it reduces the time to reach the equilibrium state with
respect to the pure spinup case. We tried to determine
the relative importance of different observation types
and locations.
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FI1G. 4. Normalized rms errors of /2 (panels a, b, and ¢) and u (d, e, and f) of the control run
(~CT-) and the two assimilation runs with observations #&u made along a single meridional
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and (f) the eastern regions. The normalization factors are (a) 22.9, (b) 14.7, (c) 4.4, (d) 4.3, (e)

4.7, and (f) 4.4.

A westward zonal wind stress is used here with its
maximum at 145°W on the equator, and decaying ex-
ponentially away from this maximum, with different
length scales in the zonal and the meridional direction
(Fig. 1). The control run was a spinup experiment
starting from a state of rest and zero thermocline depth
anomaly. The true state is thus the equilibrium state
corresponding to the constant wind stress. The obser-
vations were taken from the true state.

The stages involved in the spinup of the tropical
ocean basins are well understood, having been docu-
mented by Cane and Sarachik (1979) and Philander
and Pacanowski (1980), among others. The spinup
process involves an initial acceleration of surface waters

by the wind, followed by excitation of a Kelvin wave
at the western and of Rossby waves at the eastern
boundary, with subsequent eastward and westward
propagation, respectively. In addition to the fast Kelvin
wave and slow Rossby waves excited initially, the
Rossby waves and Kelvin waves resulting from the re-
flection of the initial waves affect the adjustment of
the equatorial ocean.

The adjustment due to the Kelvin and Rossby waves
allows the ocean to slow the initial acceleration and
sets up a zonal pressure gradient across the basin; that
is, a slope in the initially horizontal thermocline. This
slope is given by the forced balance between the pres-
sure gradient and zonal wind stress along the equator,
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h, = F, which is also called “Sverdrup balance.” The
spinup time scale of the model is about 18 months [see
Fig. 3.2 in Hao (1991) and discussion there]. An in-
teresting point is the overadjustment of both # and u
fields during months 2-9 after the switch on, a problem
that appears in the increase of rms errors after the initial
decrease (see Fig. 2).

a. Relative importance of observed fields

To determine the relative importance of 4 and u
observations, three datasets were assimilated into the
model. They are observations of / only, u only, or both
h and u (h&u) at all grid points of the entire basin.

Figure 2 shows normalized rms errors of 4 and u,
E(h) and E(u), during the first 12 months of the con-
trol and assimilation runs. The OI scheme combines
the information from both the model forecast and the
observations, and the relative contribution of the two
within the analyzed fields depends approximately on
the ratio of the observational to the model-error vari-
ance. With perfect observations for all the variables
and at all grid points, the OI method brought the model
state to equilibrium in just one assimilation cycle. This
result proves that the small value assigned the ratio of
the observational to model error variance is appropri-
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ate, and the OI scheme works. The small adjustment
after the first assimilation step comes from the
smoothing effect of OI, which gives a somewhat dif-
ferent spatial scale than the true state.

Observations of # are much more useful than those
of u in this case, since the most important consequence
of the equatorial ocean’s adjustment to wind stress is
the balance between pressure gradient and zonal wind
(Cane and Sarachik 1979; Philander 1990; Sheinbaum
and Anderson 1990b). Therefore, the assimilation run
with /4 observations reaches the equilibrium state soon
after its pressure gradient is given the correct value by
the first update. After updating 4 several times, the rms
errors in the u field become negligible. This result in-
dicates that a large amount of 4 information has been
transferred to the u field by the model dynamics. The
overadjustment problem has been completely elimi-
nated with 4 observations.

In the run with u data only, the assimilation is suc-
cessful only in the eastern region, compared to the
control run (Figs. 2¢,f ), and diverges elsewhere. Be-
cause the guess fields instead of the analysis fields are
used to calculate the rms errors, the assimilation error
is not zero at the updating time step and becomes quite
large at the next step due to the adjustment forced by
the wind stress and between the variables. The sawtooth
shape of E(u) in Figs. 2d-f indicates some rejection
of u information during the model adjustment, and
strong month-to-month variability due to the monthly
updating. During the early stages of the assimilation
(for about 3-4 months), the u observations did im-
prove the 4 field (Figs. 2a-c). In the western region, u
observations perform poorly because updating u dis-
turbs the processes that establish the correct thermo-
cline slope and excites spurious Kelvin waves at the
western boundary. Thus, u observations are only valu-
able in the eastern region to correct overadjustment
(Figs. 2¢,f).

The greater usefulness of / observations can also be
explained in terms of the system’s energy partitioning
between potential energy (PE) and kinetic energy
(KE). This division was highlighted for a tropical ocean
case by Moore et al. (1987) and by Anderson and
Moore (1989). Since the meridional velocity of this
model is not a prognostic variable and its value is gen-

15
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F1G. 6. Wind stress as in Fig. | but for the systematic error case.
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erally small, we did not account for it in calculating
the KE here. In a nondimensional shallow-water
model, the PE and KE per unit mass of the equilibrium
state (4, u) are just half the total mean variances of
the reference 42 and u, which are 125.0 and 10.4, re-
spectively. Thus, averaged over the whole equatorial
basin, potential energy comprises about 92% of the total
energy in this case. When the model is updated by 4
observations at all grid points, the dynamical processes
need to convert only a little PE to spin up the balancing
field of KE. Hence, there are just small differences in
rms errors between the assimilation runs with datasets
of h&u and of 4 only in Fig. 2.

b. Role of location of observations

To determine how the location of measurements af-
fects the assimilation, a set of experiments was con-
ducted with 4 observations at different zonal locations:
restricted to the western, central, or eastern region as
defined in section 2. Figure 3 shows that data in the
western region produce the greatest improvement in
all regions for both fields (the results for the central
region are similar to the western one, and not shown).
Right after the first 4 updating in the western basin,
the 4 errors there become negligible. After the first up-
dating in this run, the error curves of both 4 and u in
the eastern region differ from the control run at one
month. Since the Kelvin wave takes about one month

to move from the western into the eastern region, the
updating information in the west seems to be carried
to the east in the form of Kelvin waves. Small im-
provement of # and worsening of u with 4 data from
the eastern region indicates that little information from
the observations has been propagated westward (Figs.
3a,c); this paucity of information traveling westward
might come from the relative slowness of the Rossby
waves carrying it, compared to the rate of error growth
due to the forcing.

The effect of depth observations in-the central region
is mixed for u error in the other two regions. The up-
dating has largely improved the spinup of the u field
in the eastern region (Fig. 3d), but disturbed the field
in the western region (Fig. 3c). The imbalance between
the observed and unobserved areas excites the signal
to be assimilated. When the observations are in the
central basin, one would expect that this signal ~onsists
of the relatively fast eastward propagating Kelvin wave
generated near its eastern side and a relatively slow
westward propagating packet of Rossby waves at the
western side. Thus, the adjustment of the u field in the
western region is hampered by the slowness of the as-
similation signal propagating into it.

To understand better the zonal propagation of the
updating information, we have carried out two assim-
ilation experiments with observations of 4 and u at all
the grid points along a single meridional section. It
extends from the northern to the southern boundary
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of our basin at 140°E and 110°W, respectively. Due
to the OI weights, the immediate impact of these ob-
servations on the analysis field is not limited to the line
of observations, spreading instead through the basin
by about 10° longitude in both zonal directions.

By comparing the rms error curves of these two as-
similation runs with those of the control run, we can
follow the propagation of the updating information
(Fig. 4). We find that Kelvin waves are excited pref-
erentially by updating the depth and velocity along the
western section (at 140°E). This excitation yields a
faster spinup process on their way east. Differences be-
tween the control and assimilation run when observing
along the eastern section (110°W) are small in the
western and central regions (Figs. 4a-d); this small
difference indicates that the Rossby waves excited pref-
erentially by the updating of the eastern section of ob-
servations had only a small effect on their way west.
The contrast in the impact of the two single sections
suggests that eastward propagation of the updating in-
formation is preferred by the model, a preference an-
ticipated from the difference between the wave speeds.
Subject to the same damping rate, the faster wave re-
tains a stronger signal than the slower ones, after trav-
eling the same distance.
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Experiments have also been carried out to study how
many A&u observations are adequate for this case. Fig-
ure 5 shows the rms errors of /# and total rms errors of
the assimilation runs with data taken at an increasing
number of equally spaced meridional sections, from 1
to 9. It shows that even one data section can help the
ocean spinup processes improve dramatically. On the
other hand, the gradual reduction in the rms errors
when increasing the number of sections shows the ben-
efit of more data. The evidence that error curves are
very flat after two sections suggests that this number
might suffice to correct errors in the initial state only,
at least for the very simple dynamics of this low-reso-
lution model. Figure 5 also shows that the error re-
duction rate is larger for the eastern than the western
region.

4. Correction of systematic wind stress errors

The case we study here is that of constant wind stress
error, which could be caused by constantly under- or
overestimating the atmospheric wind speed. The mod-
el’s linearity allows us to 1) define a state of no motion
and zero thermocline anomaly as our true state, and
2) force the model with the error in the wind stress
only. The more the model fields depart from the state
of rest and horizontal thermocline, the larger the model
eITor is.

Before we discuss the assimilation runs, the propa-
gation of an initial thermocline depth disturbance may
help us understand the wave activities excited by up-
dating observations in the later experiments. Philander
et al. (1984 ) showed that an initially bell-shaped ther-
mocline displacement breaks into an eastward-traveling
Kelvin wave and a westward-traveling Rossby wave
packet. We can think of the difference between the
analysis field and the wind-induced equilibrium state
as a sum of such displacements of thermocline or cur-
rent; each update will excite these two types of waves.
The gradual assimilation of data in this section rep-
resents just the superposition of similar waves generated
by each small subset of the data at different locations
during each update.

The zonal wind stress error (Fig. 6) has a sinusoidal
dependence on longitude, and is exponentially decay-
ing to the north and south away from the equator. The
initial state for all the runs in this section is the equi-
librium state induced by the prescribed wind stress error
and gives a constant error for all times if no data are
assimilated. To examine the relative usefulness of ob-
servations for correcting systematic wind stress error,
we assimilated three datasets—#A, u, and A&u—ob-
served at all grid points (Fig. 7).

Assimilation of the dataset h&u reduced the averaged
E(h) to about 10%-25% (in the western to eastern re-
gion, respectively ) and E(u) to 30%-40% of the control
run in all parts of the basin (not all shown). Updating
h only has reduced E(#) but increased E(u) for the
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F1G. 9. Normalized rms errors of / (panels a and b) and u (¢ and d) as in Fig. 4 but for the
systematic wind stress error case. Panels and normalization factors as in Fig. 7.

entire equatorial area (not shown, similar to the western
region).

The impact of 4 data differs for each area. The A
data reduce E(/) to less than one-half of the control
run’s in the western region (Fig. 7a). However, depth
information is lost very quickly in the eastern basin,
as the model thermocline is restored to oscillate around
the wind-induced equilibrium state (Fig. 7b). The dif-
ficulty of improving model depth field over the eastern
equatorial ocean with depth data was also noticed by
Sheinbaum and Anderson (1990a,b). They attributed
this deficiency to the mismatch between their model,
wind stress, and observations. Large E(u) occurs be-
cause the velocity field error is driven directly by the
erroneous wind stress, and the information transfer
from #-data is less efficient. By updating / only, hardly
any net correction to the u field in the eastern basin
(Fig. 7d) occurs, while the error E(u) diverges in the
western region (Fig. 7¢).

Velocnty data are useful in the eastern and central
region. In terms of the total rms error E(h&u), u data
lead to larger errors than /4 data (not shown). In short,
depth data have a strong positive impact only on the
thermocline depth in the western region, while the
zonal current data improve both 4 and u fields in the
other two equatorial regions [see Hao (1991 ) for central
region].

. For this systematic error case, the effect of obser-
vational location was also studied. The observations
used are A&u along a single meridional section at var-

ious zonal locations. The averaged E(/) and E(h&u)
after 12-month assimilation runs are presented in Fig.
8. It shows that, when validating over the entire equa-
torial band, both rms error in % and total rms error are
smaller when the section is at either side and larger
when it is in the middle of the basin; placing obser-
«vations in the western basin will produce the greatest
improvement. Observations are still most useful for
the local area in which they are taken: the errors for
the western region have a lowest point when the section
is there, and likewise for the eastern region.

To understand better the zonal propagation of the
updating information in this case as well, we study in
more detail two particular assimilation runs among
the previous experiments: one section is in the western,
the other in the eastern region. The rms errors for the
two assimilation runs and the control run are shown
in Fig. 9. Updating the western section data increased
E(h) and decreased E(u) in the central (not shown)
and eastern regions (Figs. 9b,d). The increase of E(/)
in the eastern region (Fig. 9b) suggests that information
about one region does not guarantee benefit in another.
The eastern section data improved the simulation error
in the central (not shown) but not in the western region
(Figs. 9a,c).

The impact of data along a western section on
the eastern region, when beneficial, exceeds that of
eastern data on the western region. This can be due
to one of two reasons: either the model is more ef-
ficient in propagating the information eastward or
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F1G. 10. Thermocline depth anomaly along the equator, with only
one meridional section of data h&u: (a) the western and (b) the
eastern section. Location of either section is shown by arrows in the
corresponding panel. The dark solid line corresponds to the control
run and dark dashes to the assimilation run with hA&u data. Light
dots and light solid lines show the results of assimilation runs with
h&u data projected on Rossby waves and the Kelvin wave, respec-
tively. Units are nondimensional and the positive contours represent
a deeper thermocline than the mean.

the position of the wind stress error maxima with
respect to the data section matters.

More generally, the mixed results obtained with a
single section and constant wind stress error suggest
that data from a single meridional section cannot cor-
rect the entire slope of the thermocline: only the ther-
mocline depth near the updating line is corrected. The
depth in other parts of the basin is simply leveled or
pushed down with the same thermocline slope main-
tained by the wind stress. A similar argument was pro-
posed by Sheinbaum and Anderson (1990b) to eluci-
date their result that using data in the eastern or western
equatorial region only was not so successful. Figures
10a,b show the equilibrium thermocline depth along
the equator when updating every time step, to avoid
the adjustment between the updates. The thermocline
profiles shown demonstrate that the observations can
only change the slope within the range of influence of
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the section, given by OIL. Clearly, updating along the
western section (Fig. 10a) improved thermocline depth
in the western part of the basin, but deteriorated it in
the eastern part, as the thermocline is simply displaced
downward.

Effects of the tropical waves on slope correction are
also examined by projecting the A&u updating infor-
mation onto the Kelvin or Rossby waves structures,
respectively [see sections 2a and 4 of Hao (1991) for
details]. The Kelvin wave information elevated the
thermocline to the east of the updating region. The
Rossby waves elevated not only the portion of the ther-
mocline west of the updating region, but also the east-
ern part. These results suggest that the oceanic waves
adjust the thermocline in the areas not directly updated
by the data, to match the updated region. Given data
from a single section, there is little information carried
by the waves to faraway regions about the right state.
Therefore, correction by the excited waves simply re-
duces the difference between the area concerned and
the data-rich area.

Experiments have been carried out to study the ef-
fectiveness of increase in data coverage. Figure 11 shows
E(h) and E(h&u) after one year of assimilation runs
with A&u data taken along an increasing number of
meridional sections that equally divide the ocean basin.
With only one section of data at the basin’s center, the
assimilation run has even larger errors than the control
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in Fig. 5 but for the systematic wind stress error.
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run, due to the thermocline-slope effect discussed
above. By increasing the number of sections, the errors
drop sharply. With four sections of A&u data, errors
for the whole equatorial band are reduced to half of
those with no data. Once the number of data sections
exceeds four, all the error curves become flat, suggesting
that a much denser observation network might be
needed to reduce the errors to a desired level. Errors
for the western region drop faster than for the eastern
region, especially in the depth field (Fig. 11a).

5. Correction of stochastic wind stress errors

Our stochastic model for zonal wind stress errors is
similar to that of Zebiak (1989):

F(x,y,1)
= A[R(2) + R(t — At)] X cos[wp(t + £o)]

2 _ 2
Xexp[—(zgo) ]CXD[_();S.O)‘SO) ], (5.1)
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where R is a normal random variable with zero mean
and unit variance, and ¢, represents a uniform random
variable on (0, 27). The parameters wy and x, were
taken to be 2w /40 day ! and 148°E, respectively, and
the amplitude 4 as 0.5 nondimensional units. The
forcing function used here has a smaller spatial scale
and shorter temporal correlation than that used by Ze-
biak (1989). Figure 12 shows a three-year realization
of F(x,y,t)atx = xyand y = 0, as a function of time;
the last year is also shown in greater detail.

The model was forced to spin up by this random
wind stress for two years. After the spinup, the fields
are updated at the end of each month in an assimilation
run. Again, the observations are taken equal to the
mean equilibrium state, namely, zero, and the simu-
lation field is that induced by the erroneous wind stress.

Figure 13 presents E(h) and E(u) for the control
run and the assimilation run with A&u data at all grid
points. In the eastern region, far from the forcing area,
E(h) and E(u) were corrected down to a marginal
level by the updating (Figs. 13b,d). As the signal of
the wind stress errors is carried eastward by fast Kelvin
wave packets, the small error there suggests that fre-
quent updating effectively counteracts the erroneous
wind stress forcing.

For the assimilation run, the peaks of the rms error
relate to the occurrences of amplitude maxima of the
wind stress error (e.g., months 6.5-7.5 in Fig. 13b);
near these maxima, the assimilation performs poorly
in the region underneath the wind stress error. Large
E(h) and E(u) at the end of month 7 indicate that
much updating information has been lost due to the
wind burst. When the wind stress is weak, data assim-
ilation works very well, for example, the months 2-3
and 8.5-11 in Figs. 12 and 13. During these time in-
tervals, assimilating observations has greatly helped to
reduce the rms error of both variables, as in the case
of switch-on perfect wind stress (section 3).

Table 1 gives averaged rms errors over a two-year
period for the control run, assimilation runs with A&u
data, s data, and u data. The data were observed at all
grid points, and the assimilation runs were extended
for two years beyond what is shown in Figs. 12
and 13.

For the whole equatorial region, assimilating /# data
reduced E (/) to about half of the control run value,
and two-thirds for E(u). By assimilating u data, the
improvement was larger for the u field and lesser for
the 4 field than that with 4 data only. The assimilation
runs with observations of 4 or u only yield total errors,
E(h&u), of about the same magnitude.

To check the effect of the equatorial waves during
assimilation, two other assimilation runs were per-
formed with processed datasets: Kelvin wave-projected
h&u (HU-KP) and Rossby wave—projected A&u (HU-
RP). The averaged rms errors for these two runs are
also listed in Table 1.
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stochastic wind stress error centered over the western region. Normalization factors are (a) 0.96,
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The improvement made by the assimilation of HU~
KP data was much larger than that of HU-RP in the
central (not listed) and eastern region outside of the
directly forced region. This indicates the efficiency of
the eastward propagating Kelvin mode in correcting
simulation error caused by the random wind stress error
to the west. Such a result could be anticipated from
the wave propagation properties. In the western part
of the basin, the Rossby wave-projected information
had larger impact than the Kelvin wave—projected one.
That the HU-RP experiment has smaller errors of both
h and u than the control run in the eastern region sug-
gests that some updating information has been reflected
eastward by the western boundary.

Results from a set of experiments with a random
wind stress error centered in the eastern part of the
basin are given in Table 2. It shows that now observed
Rossby wave information plays as important a role as
Kelvin waves in the previous case. However, the im-
provement made with HU-KP data is limited for this
case.

The impact of the data coverage is also tested for
this case of stochastic wind stress error. The datasets
are h&u data at an increasing number of meridional
sections, as in sections 3 and 4. Figure 14 presents the
averaged total rms errors for the wind stress error being
centered in either the western (panel a) or the eastern
(panel b) basin. It shows that, when increasing the
number of data sections, error is reduced rather slowly

for a directly forced region, like the western region in
the top panel, and faster for an indirectly forced region.
Slow error decrease for the whole equatorial region is
due to the larger contribution from the directly forced
region. The total error for the whole equatorial band,
after two years of assimilation, for the run with nine
data sections is about 75% of that without data assim-
ilation for both cases. It appears that the wind stress
error occurring in the western region needs slightly
fewer observations than that in the eastern region. For
the case of a systematic wind stress error, the corre-
sponding error reduction rate (Fig. 11) seems to fall
in between the curves for the directly and indirectly
forced region.

6. Summary and discussion

A linear shallow-water model with long-wave ap-
proximation has been used to study how data assimi-
lation reduces the simulation errors due to three types
of wind stress errors. A relatively simple optimal in-
terpolation (OI) method was used to assimilate the
data.

The case of timing error for a perfect wind stress is
equivalent to that of an error in the initial state. In this
case, we found that data assimilation very efficiently
brings the model state into equilibrium with the wind
stress, when using observations that include measure-
ments of thermocline depth 4. Kelvin wave activity,
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due to its fast wave speed, seemed essential to the suc-
cess of data assimilation in this case. Observed ther-
mocline depth in the western part of the basin is the
most useful in speeding up the model ocean’s adjust-
ment from initial imbalance along the equator. We
have also observed that velocity data u are useful only
in the eastern part of the basin [as suggested by Phi-
lander et al. (1987b)]. It seems that two meridional
sections of depth and velocity data are sufficient when
the wind stress has a timing error only.

When the wind stress has a systematic error, the as-
similation counters its contribution to the simulation
error. Consequently, the model state asymptotes in
time to an oscillation, which results from the balance
between the erroneous wind stress and the updating
with correct data. Using observations of both variables,
h and u, every month at all grid points, data assimi-
lation reduces substantially the simulation error. With
observations of one variable, A or u, error reduction
for the observed field is reasonably good, but very poor
for the other. In a short time, less than a month, wind
stress forces u first, then the / field adjusts to it; thus
updating 4 is less efficient in this case. The suggestion
that, in general, velocity data carry more information
near the equator than depth data do was made first by
Anderson and Moore (1989); they argued that, to zer-
oth order, kinetic energy is concentrated near the
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TABLE 1. Two-year averaged rms errors of the control run
(CNTRL), as well as for assimilation runs with datasets of h & u
(HU), & only (H), u only (U), Rossby wave-projected h & u (HU-
RP), and Kelvin wave-projected # & u (HU-KP). Stochastic wind
stress error is centered in the western region.

CNTRL HU H U HU-RP HU-KP

Rms error  Western 1.105 0.381 0.564 0.728 0.520 0.863
of h Eastern 0.593  0.040 0.148 0.194 0.456 0.063
Entire 0.887 0.244 0.397 0.511 0.566 0.522

Rms error  Wester 0.927 0.621 0.876 0.730 0.713 0.796
of u Eastern 0.557 0.042 0.204 0.112 0.429 0.071
Entire 0.812 -0.392 0.624 0.485 0.655 0.492

Total rms  Western 1.041  0.526 0.748 0.752 0.635 0.851
error Eastern 0.580 0.043 0.181 0.161 0.444 0.069
Entire ~0.857  0.33 0.529 0.511 0.616 0.521

equator, while potential energy is concentrated off the
equator for the planetary waves. However, the relative
usefulness of /# and u also depends on the updating
interval, the wind stress error scale, and the dissipation
or damping in the system (see appendix; Moore et al.

1987; Moore and Anderson 1989).

Correction of the thermocline slope is limited to the
vicinity of the updating area, for realistic wind stress
amplitudes. Outside of this region, the slope is balanced
by the wind stress. This result suggests the importance
of wider data coverage to correct a systematic wind
stress error. The experiments for coverage by A&u data
show a very small reduction by increasing the number
of meridional data sections over four. To reach a rea-
sonable error level will require fairly dense observa-
tions.

. For both the switch-on case and the case of system-
atic wind stress error, experiments with 2&u data sec-
tions have shown that information about a single lo-
cation or small area may degrade the estimated state
at other locations. The question of how to use obser-
vations in one area to produce consistent improve-
ments in other areas is still open, at least for OI.

The impact of Kelvin and Rossby waves excited by

the updating process in the presence of a systematic

TABLE 2. As in Table 1 but with a stochastic wind stress error
centered in the eastern region.

CNTRL ‘HU-RP HU-KP

Rms error Western 0.455 0.076 0.390
of h Eastern 0.535 0.327 0.509
Entire 0.555 0.223 0.509

Rms error Western 0.332 0.065 0.286
of u Eastern 0.800 0.595 0.787
Entire 0.657 0.378 0.635

Total rms Western 0.414 0.072 0.345
error Eastern 0.693 0.493 0.676
Entire 0.618 0.319 0.581
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wind stress error is complex. In particular, the propa-
gation of these waves does not change thermocline
slope outside the updating area. Unlike the inertia-
gravity waves in atmospheric models, whose effect on
Ol is always deleterious (Daley 1981; Ghil 1989), Kel-
vin and Rossby waves can have either positive or neg-
ative effects on reducing simulation error, depending
strongly on the wind stress error pattern. That pattern
affects the sign of the simulation errors at various lo-
cations (see also Moore 1990).

In the case of stochastic wind stress error, updating
both 4 and u fields reduces the simulation errors
greatly in the unforced region. In the forced region,
it reduces them to about one-third for the thermocline
depth, and two-thirds for the current. The relative
importance of the Kelvin and Rossby waves excited
by the updating depends on the location of the forced
region. If forcing is concentrated in the western part
of the basin, Kelvin waves play a crucial role in cor-
recting simulation error. On the other hand, Rossby
waves are important when the forced region is located
to the east. Our results indicate that correcting sto-
chastic wind stress errors requires more data than
correcting systematic errors.

In a number of experiments with partial data cov-
erage, whatever the nature of the wind stress error,
Kelvin waves were more efficient in carrying the ob-
servational information eastward than were the
Rossby waves in carrying it westward. This appears
to be due to the fact that, at equal damping rate, the
higher speed of the Kelvin wave carries more infor-
mation farther away from the observed area. As a
consequence, better observational coverage in the
western part of a given tropical ocean basin appears
preferable.

When the simulation error arises from the initial
state only, two meridional sections appear to suffice in
correcting for the error. The equatorial waves propagate
zonally, back and forth, through the sections, permit-
ting successive observations of thermocline depth and
slope, as well as current. Asymptotic error reduction
by Ol is thus slower than for the truly optimal sequen-
tial filter (Ghil et al. 1981; Ghil 1989), but considerably
faster than for pure spinup.

The case of systematic and of stochastic wind stress
error are successively harder, as the information on the
true state provided by the data has to counteract sus-
tained, persistent misinformation fed by the forcing
into the simulation error. It is natural, therefore, that
a larger number of meridional sections is necessary to
achieve satisfactory results. In practice, simulation error
contains all three components studied here separately
in sections 3-5. It follows that the number of sections
provided by the full TOGA TAO array (Hayes et al.
1991) should be barely sufficient to provide subsurface
information to a multilevel general circulation model
for the tropical ocean. The array might give, however,
fully satisfactory results (cf. Miller 1990) for a simpler,
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reduced-gravity ocean model, with one or two active
layers, when more advanced data assimilation methods
are used.

The results presented here have to be viewed with
considerable caution, due to all the simplifying as-
sumptions about the model and observations. Still,
our results do show that OI can reduce, in a tropical

~ocean model, simulation errors due to both .initial

and wind stress errors. While these results might ap-
pear too optimistic, owing to the simplifying as-
sumptions, there are two considerations that could
compensate for this. First, the larger role played by
the subsurface state in a multilayer model enhances
the importance of internal data relative to the exter-
nal forcing. Second, nonlinear models are likely to
be less sensitive to wind stress than linear ones (Pér-
igaud and Delecluse 1989).

Given the most favorable conditions, that is, per-
fect model and perfect observations with complete
coverage, the limited success of Ol in counteracting
stochastic wind stress error persuades us to search
for more powerful methods.'Changing the wind
stress so as to agree better with the estimated state
of the ocean is one promising avenue of giving in-
ternal data greater weight in regions of forcing. Pa-
rameter estimation and stochastic control theory,
combining features of stochastic estimation and de-
terministic control (Gelb 1974; Wunsch 1988;
Tziperman and Thacker 1989; Daley 1991; Ghil and
Malanotte-Rizzoli 1991), should provide the basic
ideas for modifying the wind stress. The computa-
tional problems posed by such an approach may be
overcome with local approximations in space and
time, by dividing a large system into many small
subsystems.
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APPENDIX

Analytic Results for an Idealized Tropical
Ocean Model

Throughout this paper, we have studied numeri-
cally the relative importance of current and thermo-
cline-depth data for various wind stress errors. Since
the wind stress error can vary in both zonal and me-
ridional directions, the issue is not tractable analyti-
cally in the full model. To gain further insight, we
study in this appendix an even simpler tropical ocean
model. It results from considering the ocean only
within a narrow equatorial band and neglecting the
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contribution of meridional velocity, as well as using
periodic boundaries instead of reflecting walls in the
zonal direction.

This spatially one-dimensional model takes the
nondimensional form

u+ hy=F—
h,+ u, = —rh.

ru, (A.1a)
(A.1b)
It can be solved by expanding u, 4, and F in Fourier
series in x,

u(x, 1) = 2x)'” % a(E, 1)e™

1
g t) = (21r)‘/2f e 2 X y(x, t)dx,
0

where £ is the zonal wavenumber, The solution can be
written as

l;(g’ t) = 1 ~rt+i2ngt
(iz<.s, t)) "A(—l)e -

1\ e o (D)
+B(1)e +(hF(£)), (A2)

where 4 and B are to be determined by the initial con-
dition, and

dr(£)\ _ __Fg)__ o
(i‘F(E)) T P2 4 A2l <——i21r£) .. (A3)

The equilibrium velocity #ir and depth A are func-
tions of the Rayleigh friction coefficient r, the wave
number £, and the strength F(§) of the wind stress
forcing.

This model contains only one type of wave, having
the same speed of propagation both eastward and
westward. Hence it does not capture the distinct con-
tributions of Kelvin and Rossby waves, and of their
reflections at the boundaries, to tropical data assimi-
lation.

Since OI uses intermittent updating (Bengtsson et
al. 1981), one type of observation is updated at all
gridpoints for each case considered here. Let T be the
updating interval; we have observations of u(x, t) or
h(x,t)fort=jT,j=0,1,2, -+ - ;e,(x,t)and e(x,
t) denote the errors in the computed « and / at position
x and time ¢. Notice that given complete observations
of u (or h) at the updating times, ¢, (or ¢,) is reduced
to zero, but not ¢, (or ¢,). After the updating time step,
¢, (or ¢,) will decrease, and ¢, (¢,) may increase as a
result of error redistribution due to the coupling in the
system between u and 2 (Bube and Ghil 1981), and
to wind stress errors. We also expand the errors in a
Fourier series in x.

With perfect observations 4 (or u) at every gridpoint,
the / (or u) field is corrected at each updating time,
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but the u (or 4) field is not changed in univariate OL
After updating, the model starts from an initial state
that has no error in the observed field, and does have
errors in the other field. We study the error evolution
in both fields between the first update and the next.
(i) First, we consider a cas¢ with errors in the initial
state only and perfect wind stress. The true state is the

-model state in equilibrium with the wind stress, and

the initial state is zero for both fields. This treatment
follows closely that of Bube and Ghil (1981), who only
dealt with initial-state error.

e Given A observations, one can show that

€& T) = p(§, T)eu(§, 0) (A.da)

and
o(&, T) = e " cos(2nET). (A.4b)

Therefore, updating the 4 field reduces each Fourier
coeflicient of ¢, by a factor of p(¢, T') < 1. The total
error variance for each Fourier component before the
next updating time step is given by

& D= T a+ G T = dkE)e™T.
(A.5)

The assimilation error is thus proportional to the
initial error in the u field, and decays exponentially
at the Rayleigh damping rate if there is no further
updating.

o Given u observations, the total error variance for
each Fourier component is, likewise,

(& Tl = hi(g)e ™. (A.6)

The relative usefulness of 4 and u data depends
on the ratio of initial errors in the other prognostic
variable. Their usefulness is further related to the
three parameters that determine the equilibrium state
[cf. discussion of (A.3)]. With the Rayleigh friction
coefficient value used here, 4 should be more useful,
if the wind stress has zonal scale on the size of the
Pacific or smaller; that is, 27¢ > r. The relationship
between the zonal velocity # and the damping rate
r can be seen from an extreme case: when r = 0, the
equilibrium state is just an ocean at rest, with the
depth variation along the equator governed by the
wind stress.

(i) Now, for the case of a systematic wind stress
error, the true state is just zero for both /# and u. The
initial state is such that one field is completely cor-
rected, and the other field is still in equilibrium with
the wind stress. This case expands the results of Bube
and Ghil (1981) from free to forced systems.

e When /4 data are available, the total error for each
Fourier coefficient can be expressed as

F
(E)z&_z pi(E,T),

€E TH,= T aniil (A.7a)
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where
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1/2
pi(§ T) = [r2 + 41252[1 + e 2T — 2 cos(2x£(T)e T — ;:—E sin(27r£T)e"’T“ /(r2 + 472£%).  (A.7b)

o With u data, we have

€E D=

where

£
r—2+—f72—2—£—2p2(£, T,

(A.82a)

1/2
pa(E, T) = {47#52 + rz[l + e 2T — 2 cos(2x£T) e T — 4—? sin(27r£T)e"T“ /(r2 +47%?). (A.8b)

Note that for T — 0, ¢|, = |Ag|, and &|, = |dp|;
that is, as updating becomes more and more frequent,
there is a strong similarity between the systematic wind
stress error case and the switch-on case.

For the values used here, r < 27 and p((¢, T) is
smaller than p, (¢, T'), provided updating is relatively
frequent, that is, roughly less than 40 days for wind
stress errors with a zonal scale not exceeding the size
of the Pacific basin. In this case, /4 data are more useful

2.0 ——r—

T T T
H
)

8 1Sk 7< -
A
=
S 10k < U —
Q
=t
& 0.5 =

0 1 ] L 1 1
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:g 1.5+
(=4
=
S 10F
2 . N
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FIG. Al. Reduction rate (nondimensional ) vs length of updating
interval (in days) for the idealized model in the case of a constant
wind stress error. (a) For the parameter values used in the numerical
model: £ = & = 0.0165 and r = 0.01—i.e., wind stress error of basin
size scale and damping time of 200 days. (b) For £ = 3&, and same
r. The reduction rate for updating with current or depth data only
is denoted by the curve (-U-) or (-H-), respectively.

than u data for a systematic wind stress error (Fig.
Ala). For a longer updating interval, u data are pref-
erable. The point where the impact of u data exceeds
that of / data depends on the wavenumber £: the higher
the wavenumber of the erroneous wind stress, the
shorter the updating intervals that make good use of u
data (Fig. Alb). As the partitioning of initial errors
between the £ field and u field is proportional to 27§/
r, the usefulness of the data depends on the error mag-
nitude associated with the other data field, the same
result that was obtained for the switch-on case.

The reduction rate p in Egs. (A.7) and (A.8) can be
larger, however, rather than less than 1 for updating
intervals that are too long (or too short). This possibly
poor performance of the assimilation method is a major
difference between the case of systematic wind stress
error and of initial state error.

The exact values of the crossover point(s) between
greater usefulness of the thermocline-depth and current
data depends on the details of the model. It stands to
reason that it should differ for the full numerical model,
for which only 7" = 30 days was used, and the present,
analytical model. The main point of this analysis is
that the length of the updating interval in the data as-
similation is an important ingredient in determining
the ultimate usefulness of observing systems.

In numerical weather prediction, as data became
more plentiful, operational centers changed from a 12-
hour assimilation cycle to .a 6-hour cycle. In seasonal-
to-interannual prediction for the tropical ocean-at-
mosphere system, one can expect a similar shift from
a one-month to a two-week cycle. It appears worthwhile
to carry out an analysis similar to the one here, or
corresponding numerical experiments, for a more
complete model than the one in this appendix, having
both Kelvin and Rossby waves and realistic boundary
conditions. Such a study should help determine the
effect of halving the update time on the relative use-
fulness of data from different sources.
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