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Exponential Stability of Linear Systems with Multiple

Time-varying Delays
XU Bu-Gong1

Abstract Based on the established new-type exponential stability theorem for general retarded dynamical systems and two
preliminary lemmas, less conservative stability conditions for linear systems with multiple time-varying delays are established by
using the new stability analysis approach of Lyapunov function. Unlike some results in the literature, none of the established results
depends on the derivatives of the time-varying delays. Therefore, the results are suitable to the cases with very fast time-varying
delays. An example is provided to show that the stability conditions obtained are better than the ones obtained directly based on
the standard Razumikhin-type condition in the literature.
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1 Introduction

For linear time-delay systems with time-varying delays,
the main time-domain stability analysis approaches are the
approach of Lyapunov functionals[1∼25] and the approach
of Lyapunov functions[1, 4, 12, 17, 21, 26∼36]. For linear time-
delay systems with time-varying delays, the approach of
Lyapunov functionals needs generally to limit the bounds
of the derivatives of time-varying delays (See, for example,
[2, 3, 5∼11, 13, 14, 16, 18∼25]), so that it is not suitable for

the systems with very fast time-varying delays[29∼32]. On
the other hand, the approach of Lyapunov functions with
Razumikhin technique[27] can be used to deal easily with
the case of time-varying delays without the limitations on
the derivatives of delays. Unfortunately, the existing Razu-
mikhin technique[1, 4, 12, 17, 21, 26, 27] also results in conserva-
tive stability conditions. Recently, new-type stability theo-
rems together with new stability analysis techniques based
on a Lyapunov function approach have been developed in
[28∼36]. This paper is a continuation to these previous re-
searches and focuses on the application of the new method
for linear systems with multiple time-varying delays.

The organization of this paper is as follows. In Section
2, the new-type exponential stability theorem for general
retarded dynamical systems and two lemmas is established
as preliminary results. Then, in Section 3, as the appli-
cation of the established preliminary results, less conser-
vative stability conditions for linear systems with multiple
time-varying delays are established by using the new sta-
bility analysis approach of Lyapunov function. Unlike the
existing results in the literature, where the derivatives of
all time-varying delays are limited to be less than one, the
established results do not depend on the derivative of time-
varying delays. In addition, some remarks and figures are
given in Sections 2 and 3 to explain the obtained results.
Finally, the paper is concluded in Section 4.

2 Preliminary results

The notations used in this paper are as follows. Rn is the
real vector space of dimension n; Rn×n is the real matrix
space of dimension n×n; R+ denotes the set of nonnegative
real numbers; J = [r,∞) with r ∈ R; Cn is the complex
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vector space of dimension n; Cn×n is the complex matrix
space of dimension n × n; Cn denotes the Banach space
of continuous functions mapping [−τ, 0] into Rn, where
τ > 0 is a constant; yyyt(θ) ∈ Rn denotes yyy(t + θ) ∈ Rn

for t ∈ R and θ ∈ R so that yyy(t) = yyyt(0); ‖ · ‖ denotes
the Euclidean norm in Rn; | · | denotes the absolute value;
‖φφφ‖τ = sup−τ≤θ≤0‖φφφ(θ)‖ with φφφ(θ) ∈ Rn for given φφφ ∈ Cn;

AT is the transpose of A ∈ Rn×n; A∗ is the conjugate
transpose of A ∈ Cn×n, i.e., ĀT; λmin(·) and λmax(·) de-
note the minimum and maximum eigenvalue, respectively;

‖A‖ = maxi{λ1/2
i (A∗A)} for A ∈ Cn×n; A > 0 (or < 0)

denotes a positive definite (or negative definite) matrix;
A ≤ B means that A−B ≤ 0 is negative semi-definite; and
finally, j2 = −1.

Consider a retarded dynamical system described by a
general retarded functional differential equation

ẋxx(t) = fff(t,xxxt) (1)

where “·” denotes the right-hand derivative, fff : J×Cn −→
Rn takes J×(bounded sets of Cn) into bounded sets of
Rn, and fff(t,φφφ) is continuous and Lipschitzian in φφφ ∈ Cn,
so that for an initial function φφφ = xt0 ∈ Cn at t = t0 ∈ J ,
system (1) has a unique solution, xxx(t0, xt0)(t), on [t0 −
τ,∞). Suppose that fff(t, 0) = 0 for all t ∈ R, so that xe = 0
is an equilibrium of system (1). As far as local results are
concerned, we always suppose that fff : J × Cρ

n −→ Rn,
where Cρ

n = {φφφ ∈ Cn|‖φφφ‖τ < ρ, ρ > 0}. For simplicity, we
also denote the value of the solution x(t0, xt0)(t) ∈ Rn by
x(t) and the solution segment xxx(t+ θ) = xxxt(θ) ∈ Rn for all
θ ∈ [−τ, 0] by xxxt ∈ Cn at t ≥ t0.

Definition 1. Let α ∈ R+ be a nonnegative constant
number. The equilibrium xxxe = 000 of system (1) is called
exponentially stable with respect to the constant decay
degree α ∈ R+ if there exists a constant Γ ≥ 1 such
that for any ε > 0, there exists a 0 < δ < ε/Γ satis-
fying δ < ρ such that along the solution of system (1)
through any (t0,xxxt0) ∈ J × Cρ

n satisfying ‖xxxt0‖τ ≤ δ, we
have ‖xxx(t)‖ ≤ Γ‖xxxt0‖τexp{−α(t − t0)} for all t ≥ t0 ∈ J .
The equilibrium xxxe = 000 of system (1) is said to be globally
exponentially stable with respect to the constant decay de-
gree α ∈ R+ if there exists a constant Γ ≥ 1 such that
for any δ > 0, along the solution of system (1) through
any (t0,xxxt0) ∈ J × Cn satisfying ‖xxxt0‖τ ≤ δ, we have
‖xxx(t)‖ ≤ Γ‖xxxt0‖τexp{−α(t− t0)} for all t ≥ t0 ∈ J .

Remark 1. It is obvious that the exponential stability
of the equilibrium xxxe = 000 of system (1) defined by Defi-
nition 1 for a known or unknown constant τ > 0 implies
that the uniform asymptotical stability (case α > 0) of the
equilibrium xxxe = 000 of system (1) and at least the uniform
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stability (e.g. α = 0) of the equilibrium xxxe = 000 of system
(1) for the same fixed τ > 0.

Theorem 1. Let α ∈ R+ be a nonnegative constant
number, P > 0 ∈ Rn×n is a positive definite constant ma-
trix, and V (xxx) = xxxTPxxx with xxx ∈ Rn. Assume that there
exits a positive constant scalar Π ≥ 1 such that

sups∈R{2φφφT(0)Pf(s,φφφ)} ≤
Πsupθ∈[−τ,0]{φφφT(θ)Pφφφ(θ)}, ∀φφφ ∈ Cn (2)

where fff : J×Cn → Rn is defined as in (1). The equilibrium
xxxe = 000 of system (1) is exponentially stable with respect to
the constant decay degree α ∈ R+ if there exists a constant
Γ ≥ 1 such that for any ε > 0, there exists a 0 < δ ≤ ε/Γ
satisfying δ < ρ such that along the solution of system (1)
through any (t0,xxxt0) ∈ J × Cρ

n satisfying ‖xxxt0‖τ ≤ δ, we
have

V̇ (xxxt(0)) ≤ −2αV (xxxt(0)) (3)

whenever xxxt ∈ S(Lt(θ)), where

S(Lt(θ)) =




yyyt ∈ Cn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Lt(θ) = L(t + θ) = ΠV (ỹyyt0
(0))e−2α(t+θ−t0)

V (ỹyyt0
(0)) = λmax(P )‖xxxt0‖2τ

Lt(0) = L(t) = V (yyyt(0))

V (yyyt(θ)) = V (yyyt(0)) cos2(ωθ)e−2αθ

θ ∈ [−τ, 0], ω ∈ R, t ≥ t0 ∈ J




(4)

Where ỹyyt0
(0) ∈ Rn is a real vector satisfying V (ỹyyt0

(0)) =

λmax(P )‖xxxt0‖2τ at t0 ∈ J .
Proof. Noting that along the solution of system (1)

through any (t0,xxxt0) ∈ J × Cρ
n, we have V̇ (xxxt(0)) =

2xxxT
t (0)Pf(t,xxxt) for t ≥ t0 ∈ J . By λmin(P )‖xxx‖2 ≤

V (xxx) ≤ λmax(P )‖xxx‖2, Π ≥ 1 in (2), and V (ỹyyt0
(0)) =

λmax(P )‖xxxt0‖2τ in (4), we have

λmin(P )‖xxxt0(0)‖2 ≤ V (xxxt0(0)) ≤ λmax(P )‖xxxt0‖2τ
≤ ΠV (ỹyyt0

(0)) = Πλmax(P )‖xxxt0‖2τ (5)

so that

‖xxxt0(0)‖ ≤
√

Πλmax(P )/λmin(P )‖xxxt0‖τ

≤
√

Πλmax(P )/λmin(P )δ (6)

for any ‖xxxt0‖τ ≤ δ. According to Definition 1, (5), and (6),

let Γ =
√

Πλmax(P )/λmin(P ). Then for any ε > 0, there
is a 0 < δ ≤ ε/Γ satisfying δ < ρ such that along the solu-
tion of system (1) through any (t0,xxxt0) ∈ J×Cρ

n satisfying
‖xxxt0‖τ ≤ δ, whenever xxxs ∈ S(Ls(θ)) at s ≥ t0 ∈ J , we
have V (xxxs(0)) = ΠV (ỹyyt0

(0))exp{−2α(s − t0)}. As shown
in Fig. 1, condition (3) implies that at this moment

V̇ (xxxs(0)) ≤ −2αV (xxxs(0)),xxxs ∈ S(Ls(θ)) (7)

Now, let us prove the sufficiency of condition (3) by contra-
diction. Assume that the condition (7) holds, but there is a

sufficiently small δs > 0 such that V̇ (xxxt(0)) > −2αV (xxxt(0))

for all t ∈ (s, s + δs] so that V̇ (xxxt(0)) ≥ −2αV (xxxt(0)) for

all t ∈ (s − δs, s], V̇ (xxxt(0)) = −2αV (xxxt(0)) at t = s,

and V̇ (xxxt(0)) > −2αV (xxxt(0)) for all t ∈ (s, s + δs]. Ac-
cording to the continuous dependence property of the so-
lution of system (1) on its initials, the above assumption
implies that there must be a new initial x̃xxt0 ∈ Cn sat-
isfying ‖x̃xxt0‖τ = ‖xxxt0‖τ with the corresponding solution
x̃xxt(0) ∈ Rn of system (1) through (t0, x̃xxt0) ∈ J × Cρ

n such
that V (x̃xxs̃(0)) = ΠV (ỹyyt0

(0))exp{−2α(s̃ − t0)} when x̃xxs̃ ∈
S(Ls̃(θ)) at some moment s̃ ∈ [s−δs, s+δs] but V̇ (x̃xxs̃(0)) >
−2αV (x̃xxs̃(0)) (See one case shown in Fig. 2). This contra-

dicts condition (3), i.e., V̇ (x̃xxt(0)) ≤ −2αV (x̃xxt(0)) whenever
x̃xxt ∈ S(Lt(θ)) on t ≥ t0 ∈ J . Therefore, condition (3) guar-
antees that along the solution of system (1) through any
(t0,xxxt0) ∈ J × Cρ

n satisfying ‖xxxt0‖τ ≤ δ, we have

V (xxxt(0)) ≤ ΠV (ỹyyt0
(0))e−2α(t−t0), ∀t ≥ t0 ∈ J (8)

that is,

‖xxxt(0)‖ ≤ Γ‖xxxt0‖τe−α(t−t0) ≤ Γδe−α(t−t0), ∀t ≥ t0 ∈ J
(9)

where Γ =
√

Πλmax(P )/λmin(P ) ≥ 1. By Definition 1 and
(9), the proof is completed. ¤

Fig. 1 The case of the sign-definite-to-sign-indefinite mode

Fig. 2 A contradiction case to condition (3)

Remark 2. As we know, the classical Lyapunov stabil-
ity theorems provided us the stability analysis methods in
the so-called sign-definite-to-sign-definite mode, i.e. from
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a sign positive definite function V > 0 to a sign negative
definite derivative V̇ < 0 of the function along the solution
of system. For the case of V̇ ≤ 0, the concept of Lyapunov
function is extended by the invariant set theorems, which
work in a sign-definite-to-sign-semidefinite mode, i.e., from
V > 0 to V̇ ≤ 0. In fact, it is the sign-definite-to-sign-
definite mode that causes the difficulty of choosing Lya-
punov functions for complex systems. As we have seen from
the proof of Theorem 1, Theorem 1 works in a sign-definite-
to-sign-indefinite mode, for example, from V (xxxt(0)) > 0

to V̇ (xxxt(0)) ≤ −2αV (xxxt(0)) ≤ 0 (‖xxxt(0)‖ = ‖xxx(t)‖ 6= 0)

whenever xxxt ∈ S(Lt(θ)), and V̇ (xxxt(0)) > 0 is allowable if
xxxt /∈ S(Lt(θ)) (See Fig. 1). Obviously, the concept of Lya-
punov function is further extended here.

In the next section, we need the following lemmas, whose
proofs are given in Appendix.

Lemma 1. Let P > 0 ∈ Rn×n be a positive definite
matrix, Dk ∈ Cn×n for k = 0, 1, · · · , m be complex matri-
ces, and U(K) = {uuu ∈ Cn|uuu∗Puuu = K > 0} with a constant
K > 0 . Then for any given 1 + m vectors: uuu ∈ U(K)
and vvvk ∈ U(K) for k = 1, 2, · · · , m, and there are m real
scalars ψk ∈ [0, 2π] for k = 1, 2, · · · , m, and m nonnegative
numbers βk ≥ 0 for k = 1, 2, · · · , m such that

uuu∗(PD0 + D∗
0P )uuu +

m∑

k=1

uuu∗PDkvvvk +

m∑

k=1

vvv∗kD∗
kPuuu =

uuu∗[P (D0 +

m∑

k=1

eβk+jψkDk) + (D0 +

m∑

k=1

eβk+jψkDk)∗P ]uuu

(10)

Lemma 2. Let P > 0 ∈ Rn×n be a positive definite
matrix, Tk ∈ Cn×n for k = 0, 1, · · · , m be Hermitian ma-
trices, γ ∈ R, and βkM > 0 for k = 1, 2, · · · , m be real
numbers. Then,

T0 +

m∑

k=1

βkTk ≤ −2γP, ∀βk ∈ [−βkM , βkM ] (11)

if and only if

T0 +

[
m∑

k=1

±βkMTk

]

l

≤ −2γP, ∀l = 1, 2, · · · , 2m (12)

where [
∑m

k=1±βkMTk]l for l = 1, 2, · · · , 2m denotes all 2m

cases of alternating sign.

3 Application results

Consider the following linear system with multiple time-
varying delays





ẋxx(t) = A0xxx(t) +
m∑

k=1

Akxxx(t− τk(t)), t ≥ t0 ∈ J

xxxt0(θ) = xxx(t0 + θ) = φφφ(θ), θ ∈ [−τ, 0]
(13)

where φφφ ∈ Cn, xxx ∈ Rn, and Ak ∈ Rn×n(k = 0, 1, · · · , m)
are constant matrices, τk(t) ≤ τkM ≤ τ < ∞(k =
1, 2, · · · , m) for t ∈ R are time-varying and bounded de-
lays, and τkM > 0 and τ > 0 are known or unknown.

Proposition 1. Let α ∈ R+ be a nonnegative con-
stant number, X(K) = {xxx ∈ Rn|xxxTPxxx = K > 0} with
a positive definite matrix P > 0 ∈ Rn×n, and a constant
K > 0. Assume that τkM > 0 such that τk(t) ≤ τkM for
all k = 1, 2, · · · , m are known and there is a nonnegative

γ ∈ R+ such that

2xxxTPA0xxx +

m∑

k=1

2xxxTPAkyyyk ≤

2xxxTPA0xxx +

m∑

k=1

eγτkM |xxxT(PAk + AT
k P )xxx|

∀xxx,yyyk ∈ X(K) (14)

Then, the equilibrium xxxe = 000 of system (13) is expo-
nentially stable with respect to the constant decay degree
α ∈ R+ if

PA0 + AT
0 P +

[
m∑

k=1

±e(α+γ)τkM (PAk + AT
k P )

]

l

≤ −2αP

∀l = 1, 2, · · · , 2m (15)

where [
∑m

k=1±e(α+γ)τkM (PAk + AT
k P )]l for l =

1, 2, · · · , 2m denotes all 2m cases of alternating sign.
Proof. Let V (xxx) = xxxTPxxx, where P > 0 ∈ Rn×n sat-

isfying (14). According to Theorem 1, along the solution
of system (13), whenever xxxs ∈ S(Ls(θ)) on s ≥ t0 ∈ J , we
have V (xxxs(0)) = ΠV (ỹyyt0

(0))exp{−2α(s−t0)} with α ∈ R+

and by the method developed in [30 ∼ 34], we obtain

V̇ (xxxs(0)) =2xxxT
s (0)PA0xxxs(0) +

m∑

k=1

2xxxT
s (0)PAkxxxs(−τk(s)) =

2xxxT
s (0)PA0xxxs(0)+

m∑

k=1

2eατk(s)| cos(ξkτk(s))|xxxT
s (0)PAkxxxs(0k) =

2xxxT
s (0)PA0xxxs(0)+

m∑

k=1

2eατkM | cos(ψkτkM )|xxxT
s (0)PAkxxxs(0k) (16)

where ξk, ψk ∈ R and τk(s) ∈ [−τkM , 0] for k = 1, 2, · · · , m
are the instant values at the moment s ≥ t0 ∈ J , and





V (xxxs(0k)) = V (xxxs(0))

xxxs(−τk(s)) = xxxs(0k)| cos(ξkτk(s))|eατk(s) =

xxxs(0k)| cos(ψkτkM )|eατkM

V (xxxs(−τk(s))) = V (xxxs(0)) cos2(ξkτk(s))e2ατk(s) =

V (xxxs(0)) cos2(ψkτkM )e2ατkM

(17)
(See Fig. 3). Whenever xxxt ∈ S(Lt(θ)) at t ≥ t0 ∈ J , by
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Lemmas 1, 2, and (16), condition (15) implies that

V̇ (xxxt(0)) =2xxxT
t (0)PA0xxxt(0)+

m∑

k=1

2eατkM | cos(ψkτk(t))|xxxT
t (0)PAkxxxt(0k) ≤

xxxT
t (0)(PA0 + AT

0 P )xxxt(0) +

m∑

k=1

e(α+γ)τkM×

|xxxT
t (0)(PAkejωkτkM + e−jωkτkM AT

k P )xxxt(0)| =

xxxT
t (0)(PA0 + AT

0 P )xxxt(0) +

m∑

k=1

e(α+γ)τkM×

| cos(ωkτkM )xxxT
t (0)(PAk + AT

k P )xxxt(0)| ≤
max

l=1,2,··· ,2m
{xxxT

t (0)(PA0 + AT
0 P+

[
m∑

k=1

±e(α+γ)τkM (PAk + AT
k P )

]

l

)xxxt(0)} ≤

− 2αV (xxxt(0)) (18)

where ωk ∈ R for k = 1, 2, · · · , m , that is, V̇ (xxxt(0)) ≤
−2αV (xxxt(0)) whenever xxxt ∈ S(Lt(θ)) on t ≥ t0 ∈ J . By
Theorem 1, the proof is completed. ¤

Fig. 3 A relationship between xxxt(θk) and xxxt(0k) for
θk ∈ [−τ, 0]

Proposition 2. Let α ∈ R+ be a nonnegative con-
stant number and τkM > 0 such that τk(t) ≤ τkM for all
k = 1, 2, · · · , m are known. Then, the equilibrium xxxe = 000
of system (13) is exponentially stable with respect to the
constant decay degree α ∈ R+ if there is a positive number
ρ > 0, a positive definite matrix P > 0 ∈ Rn×n, and m
positive definite matrices Sk > 0 for k = 1, 2, · · · , m such
that




M PA1 · · · PAm

AT
1 P S1 0
...

. . .

AT
mP 0 Sm


 ≥ 0

ρP − Sk ≥ 0, ∀k = 1, 2, · · · , m (19)

where M = −PA0 −AT
0 P − ρP

∑m
k=1 e2ατkM − 2αP .

Proof. By the standard Schur complement, condition
(19) is equivalent to

PA0 + AT
0 P + ρP

m∑

k=1

e2ατkM +

m∑

k=1

PAkS−1
k AkP ≤ −2αP

(20)
Let V (xxx) = xxxTPxxx, where P > 0 ∈ Rn×n satisfying (19).
Let us start with the derivation from (16) in the proof
of Proposition 1. Note that for any given Sk > 0 for
k = 1, 2, · · · , m, there exits a positive number ρ > 0
such that ρP − Sk ≥ 0 for all k = 1, 2, · · · , m and
2xxxTyyy ≤ xxxTS−1xxx + yyyTSyyy holds for any vectors xxx,yyy ∈ Rn

and any positive definite matrix S > 0. By this remark
and condition (19) with (20), we further obtain, whenever
xxxs ∈ S(Ls(θ)) on s ≥ t0 ∈ J ,

V̇ (xxxs(0)) = 2xxxT
s (0)PA0xxxs(0)+

m∑

k=1

2xxxT
s (0)PAkxxxs(−τk(s))=

2xxxT
s (0)PA0xxxs(0)+

m∑

k=1

2eατkM | cos(ψkτk(s))|xxxT
s (0)PAkxxxs(0k)| ≤

2xxxT
s (0)PA0xxxs(0)+

m∑

k=1

xxxT
s (0)PAkS−1

k AT
k Pxxxs(0)+

m∑

k=1

eατkMxxxT
s (0k)Skxxxs(0k)+

m∑

k=1

e2ατkM(ρxxxT
s (0k)Pxxxs(0k)−xxxT

s (0k)Skxxxs(0k)) =

xxxT
s (0)(PA0 + AT

0 P+

ρP

m∑

k=1

e2ατkM +

m∑

k=1

PAkS−1
k AT

k P )xxxs(0) ≤

− 2αV (xxxs(0)) (21)

By Theorem 1, the proof is completed. ¤
Proposition 3. The equilibrium xxxe = 000 of system

(13) is asymptotical stable independent of delays if there
is a positive number ρ > 0, a positive definite matrix
P > 0 ∈ Rn×n and m positive definite matrices Sk > 0
for k = 1, 2, · · · , m such that




−PA0 −AT
0 P − ρmP PA1 · · · PAm

AT
1 P S1 0
...

. . .

AT
mP 0 Sm


 > 0,

ρP − Sk ≥ 0, ∀k = 1, 2, · · · , m (22)

Proof. Note that τk(t) ≤ τ < ∞ (k = 1, 2, · · · , m) for
a known or unknown τ > 0. Condition (22) implies that
there is a sufficiently small positive number α = α(τ) > 0
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such that




M PA1 · · · PAm

AT
1 P S1 0
...

. . .

AT
mP 0 Sm


 ≥ 0,

ρP − Sk ≥ 0, ∀k = 1, 2, · · · , m (23)

where M = −PA0−AT
0 P −ρmP e2ατ −2αP . By the proof

of Proposition 2 and Definition 1, we prove this proposition
immediately. ¤

Remark 3. It is easy to see that the relationship be-
tween (15) and (19) is

PA0 + AT
0 +

[
m∑

k=1

±e(α+γ)τkM (PAk + AT
k P )

]

l

≤

PA0 + AT
0 P + ρP

m∑

k=1

e2ατkM +

m∑

k=1

PAkS−1
k AT

k P

∀l = 1, 2, · · · , 2m (24)

Therefore, condition (15) is less conservative than (19).
Remark 4. Condition (22) is said to be independent

of delays since there is no any delay information included
within itself.

Remark 5. Unlike the results in [2, 3, 5∼11, 13, 14, 16,
18∼25], where the derivatives of all time-varying delays are
limited to be less than one, none of the results depends on
the derivative of time-varying delays. Therefore, the estab-
lished results here are suitable for the cases with very fast
time-varying and bounded delays.

Example 1. Consider system (13). By directly using
the standard Razumikhin-type condition: xxxT

t (θ)Pxxxt(θ) ≤
qxxxT

t (0)Pxxxt(0) for all θ ∈ [−τ, 0] with a constant number
q = e2ατ > 1, (21) can be derived as

V̇ (xxxt(0)) =2xxxT
t (0)PA0xxxt(0) +

m∑

k=1

2xxxT
t (0)PAkxxxt(−τk(t)) ≤

xxxT
t (0)(PA0 + AT

0 P )xxxt(0) +

m∑

k=1

xxxT
t (0)PAk×

P−1AT
k Pxxxt(0) +

m∑

k=1

xxxT
t (−τk(t))Pxxxt(−τk(t)) ≤

xxxT
t (0)(PA0 + AT

0 P )xxxt(0) +

m∑

k=1

xxxT
t (0)PAk×

P−1AT
k Pxxxt(0) + qmxxxT

t (0)Pxxxt(0) =

xxxT
t (0)(PA0 + AT

0 P + qmP+
m∑

k=1

PAkP−1AT
k P )xxxt(0) ≤

− 2αV (xxxt(0)) (25)

where PA0+AT
0 P +mP +

∑m
k=1 PAkP−1AT

k P < 0 is equiv-

alent to



−PA0 −AT
0 P −mP PA1 · · · PAm

AT
1 P P 0
...

. . .

AT
mP 0 P


 > 0

(26)

By comparing (22) with (26), it is easy to see that m free
positive definite matrices, Sk > 0, satisfying ρP−Sk ≥ 0 for
all k = 1, 2, · · · , m can be introduced into condition (22).
This shows that the proposed technique, here, can result
in less conservative stability conditions than the standard
Razumikhin-type technique.

4 Conclusion

Based on some preliminary results, less conservative sta-
bility conditions for linear systems with multiple time-
varying delays are established by using a new stability anal-
ysis approach of Lyapunov function. Unlike some results
in the literature, none of the established results depends
on the derivatives of the time-varying delays. Therefore,
the results are suitable to the cases with very fast time-
varying delays. An example has been provided to show
that the obtained stability conditions are better than the
ones obtained directly based on the standard Razumikhin-
type condition. Obviously, the proposed method and tech-
niques can be used for stabilization and control synthesis
of various systems with time-varying delays.
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Appendix

Proof of Lemma 1. Let maxwww∈U(K){www∗D∗
1PD1www} = γ2

1K
with a constant γ1 > 0. According to Cauchy-Schwarz in-
equality, for any given uuu ∈ U(K) and vvv1 ∈ U(K), we have
|uuu∗PD1vvv1| ≤ (uuu∗Puuuvvv∗1D∗

1PD1vvv1)1/2 ≤ γ1K so that there are
two scalars ξ1, ψ1 ∈ [0, 2π] and one nonnegative number β1 ≥ 0
such that

uuu∗PD1vvv1 + vvv∗1D∗
1Puuu = uuu∗Puuuγ1e

jξ1 + e−jξ1γ1uuu
∗Puuu =

uuu∗PD1uuueβ1+jψ1 + eβ1−jψ1uuu∗D∗
1Puuu (A1)

Therefore, it is easy to derive that for any given 1 + m vec-
tors: uuu ∈ U(K) and vvvk ∈ U(K) for k = 1, 2, · · · , m, there are
m scalars ψk ∈ [0, 2π] for k = 1, 2, · · · , m and m nonnegative
numbers βk ≥ 0 for k = 1, 2, · · · , m such that

uuu∗(PD0 + D∗
0P )uuu +

m∑

k=1

uuu∗PDkvvvk +
m∑

k=1

vvv∗kD∗
kPuuu

=uuu∗
[
P (D0 + D1e

β1+jψ1 ) + (D0 + D1e
β1+jψ1 )∗P

]
uuu+

m∑

k=2

uuu∗PDkvvvk +
m∑

k=2

vvv∗kD∗
kPuuu =

uuu∗
[
P (D0 +

2∑

k=1

Dkeβk+jψk ) + (D0+

2∑

k=1

Dkeβk+jψk )∗P

]
uuu +

m∑

k=3

uuu∗PDkvvvk +
m∑

k=3

vvv∗kD∗
kPuuu =

...

uuu∗
[
P (D0 +

m−1∑

k=1

Dkeβk+jψk ) + (D0+

m−1∑

k=1

Dkeβk+jψk )∗P

]
uuu + uuu∗PDmvvvm + vvv∗mD∗

mPuuu =

uuu∗
[
P (D0 +

m∑

k=1

Dkeβk+jψk ) + (D0+

m∑

k=1

Dkeβk+jψk )∗P

]
uuu (A2)

¤
Proof of Lemma 2. The necessity is obvious. Let us prove

the sufficiency. Since Tk ∈ Cn×n for k = 0, 1, · · · , m are all Her-
mitian matrices, it is easy to see that for any uuu ∈ Cn, uuu∗T0uuu ∈ R
and βkuuu∗Tkuuu ∈ R for k = 1, 2, · · · , m are all real numbers.
Therefore, for any uuu ∈ Cn, (11) guarantees that

uuu∗T0uuu +
m∑

k=1

βkuuu∗Tkuuu ≤ uuu∗T0uuu +
m∑

k=1

βkM |uuu∗Tkuuu| =

max
l=1,2,··· ,2m

{
uuu∗(T0 +

[
m∑

k=1

±βkMTk

]

l

)uuu

}
≤ −2γuuu∗Puuu (A3)

for all βk ∈ [−βkM , βkM ], k = 1, 2, · · · , m so that (12) implies
(11). The sufficiency is proved. ¤


