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ABSTRACT

Using the methodology of contour dynamics on a quasigeostrophic model, the nonlinear evolution of a
coastal potential vorticity front over a Gaussian topographic feature in the presence of an overlying linearly
stable basic flow is investigated. The simulations show that increasing the amplitude of the forcing leads to four
different qualitative regimes: 1) small amplitude wavelike disturbances are formed, 2) a primary (trapped)
disturbance breaks and forms filaments, 3) a secondary (moving) disturbance breaks and forms filaments, and
4) the primary filament winds around the topographic feature until an eddy with considerable internal mixing
finally detaches. Other parameters such as the topographic width, the position of the undisturbed front relative
to the topography, and the potential vorticity in the ocean region are also shown to be important in controlling
(either enhancing or inhibiting) the process of filamentation and vortex formation. The main conclusion is that
nonlinear dynamics alone may be responsible for the formation of meanders and eddies without the necessary

presence of instabilities in the basic flow.

1. Introduction

New advances in remote sensing techniques and the
ability to obtain high quality datasets have revealed the
presence of oceanic mesoscale phenomena of spatial
scales of the order of 100 km in coastal waters in many
parts of the world. Observations of meanders and me-
soscale eddies by Griffiths and Pearce (1985), Huyer
and Kosro (1987), and Kosro (1987) have emphasized
the importance of both topographic forcing and insta-
bilities in the formation and evolution of such phe-
nomena. Observation of filaments off the west coast of
the United States is well documented by Brink and
Cowles (1991). Haidvogel et al. (1991) have carried
out numerical simulations of the formation and evo-
lution of filaments for a baroclinic ocean in the coastal
transition zone, and Narimousa and Maxworthy
(1989) conducted numerous laboratory studies of
coastal ocean jet flows over topography. It is clear from
these studies that steady flows over large amplitude
topography will produce a rich variety of transient be-
havior such as meandering, filamenting jets, and iso-
lated eddies.
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On the theoretical side, the study of the fully non-
linear evolution of waves on a vorticity front using the
method of contour dynamics has provided some insight
into the processes leading to eddy formation and de-
tachment (e.g., Pratt and Stern 1986). In particular,
the effects of barotropic instabilities of waves on oceanic
fronts have been studied in some detail by Send (1989)
and Pratt and Pedlosky (1991). Little is known, how-
ever, of the effects of topographic forcing on the non-
linear evolution of a vorticity front with a linearly stable
basic flow. Grimshaw and Yi (1991, 1992) studied the
evolution of initial disturbances on a potential vorticity
front over a topographic slope with a stable basic flow
and found that even small amplitude disturbances may
evolve as long filaments. They also found that very
steep topographic slopes have a tendency to enhance
eddy formation at the tip of a vorticity filament. They
concluded that it is not always necessary to have an
underlying linear instability to obtain the filamentation
required for subsequent eddy formation and detach-
ment.

Motivated by the results of the aforementioned
studies, in this paper we investigate the evolution of a
potential vorticity front over an isolated topographic
feature and identify conditions for which filamentation
and eddy formation are possible on a linearly stable
basic flow. Using a quasigeostrophic model, we follow
Pratt and Stern (1986) and formulate a contour dy-
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namics algorithm for the evolution of waves that form
at a vorticity interface separating two regions of con-
stant potential vorticities Qp and Q;. A Gaussian to-
pographic feature is switched on at # = 0 and acts as a
source of potential vorticity. Since- the basic flow is
stable, the initial transients generated by the turning
on of the topography instantaneously at ¢ = 0 are small
and propagate away quickly. v

The principal aim is to determine the parameter val-
ues of the topographic forcing and the basic flow that
lead to filamentation and vortex formation. In section
2 we formulate the problem. In section 3 we develop
the contour dynamical equations and the numerical
algorithm. In section 4 we present the results of the
simulations and a summary is given in section 5.

2. Problem forinulation

We consider a quasigeostrophic model consisting of
a single density layer of mean depth D below a deep
inactive layer. The motion of the lower layer is then
equivalent to the motion of a single layer under reduced
gravity g'. Let d be a typical depth variation of the
undisturbed surface so that the Rossby number Ro
=d/D < 1 and choose the Rossby radius of defor-
mation (g'D)'/?/ fas the horizontal length scale, where
fis the Coriolis parameter. If time is nondimension-
alized by (fd/D) ™! and potential vorticity by fd/D?,
then the conservation of quasigeostrophic potential
vorticity Q following fluid particles with velocity (u,
v)is

Q, + uQy + vQ, = 0, (2.1a)
where

Q =V — ¢+ h(x, y).

Here y(x, y, t) is the streamfunction of (u, v), such
that

(2.1b)

u=—y,, v=1i, (2.1¢)

and

Roh(x, y) < 1

is the nondimensional bottom topography measured
upward. For example, typical Rossby numbers for me-
soscale phenomena are O( 10 ~3). Note that even if the
maximum height of 4(x, y) in this nondimensional
coordinate system is allowed to be as large as 10, the
actual height of the topography is quite small and
quasigeostrophic dynamics still applies. Since we are
interested in the effects of an isolated topographic fea-
ture, we assume that A(x, y) — 0 as x° + y — 0.
The boundary conditions are that

wy = Oa

at x=0 (2.2a)

and
Y,—>0, as

X => 0, (2.2b)
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which are the conditions for zero flow in the on-off-
shore direction at the coast, and in the distant ocean;
respectively.

Nowlet x = L(y, t) denote the position of a potentlal
vorticity interface with undisturbed position x = /, and
assume that

[0,
Q_{Qh

where ( and Q) are the constant values of the potential
vorticity on either side of the interface (Fig. 1). It is
convenient to separate the flow into a basic state with
streamfunction ¥, (x) plus a perturbation streamfunc-
tion ¢(x, y, t), so that

for x> L
(2.3)

for, 0<x<L,

W(x, ¥, 1) = Yo(x) + ¢(x v, t), (2.4)
with corresponding velocity field

u(x, ¥, 1) = —dy(x, y, 1), (2.52)

0(x, 1 1) = 00(x) + be(x, 3, 1), (2.5b)

The equation for ¥,(x) is obtained by taking the
limit y = —oo in (2.1b) and assuming that L — /and
¢ — 0 in this limit so that

v Jo = Qo, for x>1 (26)
Oxx 0 0,, for 0<x</. '
y b | y 4 |
Q, i Q Q | Q
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FIG. 1. (a) The coordinate system, the undisturbed position of the
vorticity interface x = /, and the basic flow for @y = 0, AQ = 1, and
ho > 0. (b) The negative relative vorticity induced by the topographic
feature. (¢) The relative vorticity anomalies induced by the vorticity
jump AQ. (d) Advection of the disturbance by the basic flow.
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The solution of (2.6) that is finite as x = oo gives the
linearly stable basic flow

— Be~ &, x>1
vo(x) = { =Be D+ (Qy ~ Qp) sinh(x — 1),
O<x<l,
(2.72)

where B is an arbitrary constant. In what follows we
set B = Qy, giving Yy = 0 at x = /. However, we note
that y, is also the height of the free surface and in
general if Yo = Dy at x = [/ then B = Qy + Dy. This
gives

—Qpe~ N, x>/
vo(x) = { Qo™ + (Q) — Qo) sinh(x — 1),
O0<x<l,

(2.7b)

where Oy = Qp + Dy, O; = O, + Dy. That is, changing
D, is equivalent to changing @y and Q, by the same
amount, and leaving the difference unchanged.
Substituting (2.4) into (2.1b) and using (2.3) we
find an equation for the perturbation streamfunction,

Vi — ¢ =¥x,y,1) —h(x,»), (2.8a)
where
AQ, I<x<L
®(x,y,1)={—AQ, L<x<l (2.8b)
0, otherwise,

and AQ = @, — Q- The boundary conditions are that

=0 at x=0, (2.9a)

¢—>0 as x*+y?—> o0, (2.9b)

and ¢, ¢, and ¢, are continuous across the front x
=L(y, t).

A formal solution of (2.8) that satisfies the boundary

conditions (2.9) can be constructed using the Green’s
function of the Helmholtz operator V2 — 1,

Gx, X, V) = — — Ko(R),  (2.10a)

27
where

R=[(x=x)+(y=y)I'? (2.10b)

and K;(R) is the modified Bessel function of the second
kind. Using Green’s integral identities, we find the so-
lution

o(x,y,t)
oo L(y’t)
80| fl [G(R) — G(R)dx'dy’

B f-m f h(x', )[G(R) ~ G(R)]dx'dy',

(2.11a)
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where

Ri=[(x+x)+(y-y)1"% (2.11b)
and G(R;) is an image term that has been introduced
to satisfy the coastal boundary condition (2.9a). The
first term in (2.11) is the contribution from the poten-
tial vorticity jump (the vorticity anomaly), while the
second integral is the term corresponding to the to-
pographic forcing.

3. Contour dynamics algorithm

To develop the contour dynamics formulation we
follow each point (L, y) on the vorticity interface ac-
cording to the Lagrangian equations

dL
~ =u(L, 1),

dy
- = L’ ’t b
T v(L,y,t)

a (3.1)

where the velocity field (u, v) obtained from (2.5) is

u(-xsy’ t)= Jl +A13 (3'23)
v(x, ¥, 1) — vo(x) = J» + A4, (3.2b)
where
Jilx,y, 1) = —AQa—aJ;f_w ay'
L{y',t)
X f[ [G(R) — G(R)1dx' (3.3a)
Jo(x,p,t) = AQ%f_ ay'
L(y’t)
X fl [G(R) — G(R)]dx' (3.3b)
Ay(x,y) = f_ f_ h(x', y")
X 56; [G(R) — G(R;)]dx'dy’ (3.4a)
Ay(x,y) = —f_ f_ h(x', y")
X % [G(R) — G(R))]dx'dy’. (3.4b)

The integrals over the area of the displaced contour,
J, and J,, are transformed into integrals along the
contour by integrating by parts to obtain
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Koy 0=-80 [ (66, Ly, y)

- G(x,—L',y,y))dL' (3.52)

JZ(x’ Y, t) = —AQ j‘_w[G(x’ L,’ Y, y,)

+ G(x,—L,y,y)]dy' + AQf_ [(G(x,1,y,)")

+ G(x, =1, y,y)1dy’, (3.5b)

where

oL
L'=L({y,t), dL' = 5}7 dy'. (3.5¢)

Next we calculate the forcing terms given by the
area integrals (3.4) assuming the bottom topography
h(x, y) is given by a Gaussian function of the form
h(x, y) = ho exp{—&[(x — X0)*> + (¥ — J0)*1}.

' (3.6)
This represents an isolated topographic feature centered
at the point (X, ), of amplitude A, and half-width
£7172, We show in appendix A that the double integrals

(3.4) may be reduced to single integrals with the result
that

Ai(x,y) = —ho J; e K (M= Bi(x, y, \)

+ Bi(—x, y, N)]NdN (3.7a)

Ji(Lis 91 = =5 AQ{(Li — Lo)[G(R%0) =
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AZ(xa J") = _hOJ; e—E)\zKl(k)[Bz(x, ¥, A)

+ By(—x, 7, VAN, (3.7b)

where
Bi(x, y, \) = Qi@ e (264N)  (3.7c)
Ba(x, y, \) = Ex °)) Bi(x,y,\) (3.7d)

= (x = Xo)* + (¥ — 70)*,

and I;(A) and K, (M) are the modified Bessel functions
of order one. We note that the integrands in (3.7) decay
exponentially and therefore the integrals can be cal-
culated using Simpson’s rule and truncating the upper
limit to a suitable value. Finally, substituting (3.2) into
(3.1)with (3.5) and (3.7) gives the integro-differential
equations for the contour dynamics calculation of the
evolution of the interface L(y, ¢).

Next, we dlscretlze the contour with N points [L; (t),
yi(t)],fori=1, , N, and consequently we obtain
the discretized version of (3.1); namely,

dL;
dt u(Llsyl,t)’
‘2; v(L;, i, t), for i=1,---,N. (3.8)

We introduce the fixed points (3o, Lo) and (yn+1, Ly+1)
where Ly = Ly,; = [l and assume that the contour is
not displaced for y < y, and y = yn+1. The integrals
Jy and J, in (3.5) are approximated by the trapezoidal
rule as follows: .

G(Rin+1)1}

Liv1

N
- % AQ 20 (Lisi — Li-)[G(RYy) — G(Ry)] — AQ . G(R})dL', (3.9)
‘ e it
where L'= L + XLy — Lie
Ry = [(Li = L)* + (= »)’1"*  (3.10a) S
Riy=[(Li + L)* + (5 — 3’1" (3.10b) +3(Liss + Liy = 2L)€* (3.11a)
R;=[(Li = L)+ —¥)1"% (3.10c) 1
In the above, Z denotes the sum where for i = j, the 7 ~ Vi + 2 (isr = Yicr)e
term (Ly; — Lj-1)G(R}) has been omitted. 1 :
The last term in (3. 9) is a singular integral and we + E(y”l + yio1 — 2y)e?, (3.11b)

treat it in a similar way to Jacobs and Pullin (1989)
and Grimshaw and Yi (1991). Essennally, the curve
is approximated by the parabola

where —1 < e < 1. The logarithmic singularity is ex-
tracted from G(R) using the asymptotic formula
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Ko(R)y~—InR~~, as R—0, (3.12)

where v is Euler’s constant. The integration is then
done analytically with the result that

Liyy
G(R})dL'
L
1 '
= f [d—L G(R}) — a; In|e| |de — 2a;, (3.13a)
-1] de

N
(L) = =180 3 (s = y)IGRY) + G(Rig)] - AQ
j=1

where there is a cancellation between the end terms of
the trapezoidal approximation and the corresponding
terms of the tail integrals. Here,

Rij=[(Li = D>+ (y: = ¥)*1'*  (3.14b)
Ry = [(Li + )* + (3 — ¥)*1"%. (3.14c)

The singular integral in (3.14a) is treated as in (3.9)
with the result that

Yi+1
G(R})dy'
Yi—-1
1 ’
=f [E’Z G(R}) = B; 1n|e|]de—25,., (3.152)
-1| de
where
_la _1 _
B = on de E=O‘4,,(J’:+1 Yi-1). (3.15b)

Although in this problem we do not use the more
sophisticated algorithms of contour surgery (e.g., Drit-
schel 1989), the points at the interface are rearranged
after each time step using the insertion/deletion al-
gorithm of Pullin and Jacobs (1986). This is necessary
in order to maintain adequate resolution throughout
the integration because the density of points along the
contour tends to increase in regions of high curvature
and decrease in sections of low curvature. The time
stepping is performed using a standard fourth-order
Runge-Kutta method.

4. Numerical results

Before proceeding to describe our numerical results,
we perform a qualitative potential vorticity analysis in
order to predict the initial evolution of the front. Sup-
pose the topography is centered at the point (X, ¥o)
= (1, 0) (indicated by a small circle in Fig. 1), and let
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1 dL’ 1
o = ZE = E(Liﬂ —L;—y). (3.13b)

e=0
The integral in (3.13a) is finally evaluated by Simpson’s

rule.
Similarly, the two integrals in (3.5b) be-
come

i+1
G(R})ay'

Vi
Yi-1

N
+380 T (1 — »-DIG(RY) + G(Rup],  (3.142)
Jj=1

[ = 1. We then take the initial position of the front to
be the straight line L(y, 0) = 1. This means that the
center of the topographic feature coincides with the
undisturbed position of the front. Suppose also that
Qs = 0, AQ = 1, and Ay > 0. The basic flow then
advects fluid in the negative y direction for x < [ as
shown in Fig. la. Since # > 0, Eq. (2.8a) shows that
the induced perturbation potential vorticity V¢ — ¢
< 0, while (2.11a) shows that ¢ > 0 (since G < 0 and
|G(R;)| is much smaller than |G(R)]|). Thus, the in-
duced relative vorticity V2¢ is negative over the to-
pography, and hence the front will tend to be displaced
in the manner indicated in Fig. 1c, that is, a positive
vorticity anomaly for / < x < L and a negative vorticity
anomaly for L < x < /. The displacements induced by
these latter relative vorticity anomalies correspond to.
a phase propagation in the negative y direction. Finally,
when the basic flow is included, the section of the front
in x < [ will be advected in the negative y direction as
shown in Fig. 1d. Similar analyses can be carried out
for other sign combinations of 4y, AQ, and for basic
flows with Gy # 0.

The available parameters are /g, £ for the height and
width of the bottom topography, (X, 7 ) for the lo-
cation of the bottom topography, O, and AQ = O,
— @, for the potential vorticity distribution, and / for
the upstream location.of the potential vorticity front.
Of these |AQ]| can be absorbed into the time scale,
and sign AQ can be linked to sign y. Hence there is
no loss of generality in setting AQ = 1. For the topo-
graphic parameters we can set j; = 0 without loss of
generality, leaving the height 4, the width £71/2, and
the distance from the coast xj as the parameters to be
varied. With AQ = 1, we can vary Qy, the basic state
potential vorticity in x > L, and /, the upstream lo-
cation of the potential vorticity front. Further param-
eters could be introduced by the initial conditions, but
here we set L = [ at ¢t = 0. In effect the topography is
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FIG. 2a. The evolution of the front for Oy = 0, AQ = 1, £ = 3,/ =1, and h, = 0.1.

turned on at ¢ = 0. The end points of the.contour are
always taken sufficiently far from the topography so
that they remain fixed over the period of integration.
In a typical run we start with 200 nodal points and let
the number increase to about 800 points at the end of
the integration interval. The area of the displaced con-

tour,
<<} L(y,t)
A= f f dx'dy’, (4.1)
~o0 VI

is a constant and is used to provide a check on the
numerical calculations.

a. Varying hy

We now take £ = 3 for numerical convenience and,
fixing all other parameters as in Fig. 1, we vary the to-
pographic amplitude 4. Figure 2a shows the evolution
of the front for A, = 0.1. The box corresponding to ¢
= 2.9 shows that the initial stage of evolution is consis-
tent with the previous potential vorticity analysis. The

2.0 r

FIG. 2b. As in (a) but 4, = 0.2.



JuLy 1994

section of the front near the topography rotates in a
clockwise direction and a disturbance is formed. The
lower part of this disturbance is advected by the basic
flow, giving rise to a wave moving downstream in the
. negative y direction. This is clearly seen by noting how
the lower end of the contour, initially at (x, y) = (1,
—2), moves through the integration interval, as opposed
to the upper point (x, y) = (1, 2), which remains fixed
for all time. The primary disturbance, which is trapped
by the topographic feature, reaches an amplitude of
about 0.1 at 7 = 8.6 and then decreases to about 0.05
at ¢t = 17.1. The integration is stopped at ¢ = 20 when
the amplitude has begun to increase again, but the waves
have shown no sign of steepening within this time in-
terval. The formation of another traveling disturbance
is clearly seen downstream of the topographic center.
Figure 2b shows the evolution for /iy = 0.2. The ini-
tial evolution up to 1 = 8.6 is qualitatively similar to
Fig. 2a, but now the amplitudes of the waves formed,
both the trapped and the moving disturbance, increase
to almost twice the values of the previous case. For ¢
= 14.3, however, a qualitative change occurs. The
trapped wave steepens and at ¢ = 17.1 it “‘breaks,”
reaching an amplitude of about 0.1. Here breaking is
defined to be the onset of filamentation. At ¢ = 20 the
two sections of the contour touch one another. Grim-
shaw and Yi (1991, 1992) showed that the presence
of a critical level is responsible for the filamentation
process. A critical level is here defined as a value of x
= X, such that the phase speed c of a linear wave is
equal to the speed of the basic flow vy(x.); that is,

(4.2)

A linearized wave analysis is performed in appendix B
and shows that in our case a critical level is present for

X, =~ 0.86, (4.3)

for the parameter values of Fig. 2. This is in good
agreement with the observed filament at ¢ = 17.1. For
hy = 0.1 the wave amplitude is not large enough to
reach the critical level and hence filamentation does
not occur. As the topographic amplitude increases, the
primary wave amplitude also increases until we reach
a “critical” value of Ay (between 0.1 and 0.2 in our
case), where the wave reaches the critical level and
filamentation occurs from there on.

Figures 3a,b and 4a,b show the evolution for A,
= 0.6, 1.0, 1.5, and 2.5, respectively. The x-axis range
has been changed to 0 < x < 2 to allow for an increased
wave amplitude and the y-axis range has been increased
10 —9 < x < 3 to observe the evolution of the secondary
traveling disturbance with more clarity. When 4, = 0.6
the trapped wave amplitude reaches a value of about
0.5 at ¢t = 8.6 and the length of the filament has in-
creased considerably at ¢ = 20 compared to 4y = 0.2.
The behavior for sy = 1.0 (Fig. 3b) is qualitatively
similar to A, = 0.6. The wave amplitudes, however,
have increased by about 50%, the trapped wave am-

vo(x.) —c=0.
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plitude now reaching a maximum of about 0.8 at ¢
= 8.6 and the moving disturbance a maximum of about
0.4. Although the amplitude of the secondary distur-
bance is large and it now reaches the critical level, its
large “wavelength” does not allow it to steepen and
hence breaking and filamentation do not occur.

Next, by increasing 4 to 1.5 and 2.5 (Figs. 4a and
4b, respectively), the moving disturbance begins to
show signs of steepening and reaches a maximum am-
plitude of about 0.6. When A, = 2.5 this wave breaks
at ¢ = 8.6 and a long filament near the coastline x = 0
is clearly visible. Its amplitude is not only large enough
to reach the critical level, but also it has steepened suf-
ficiently to allow breaking and filamentation to occur.
This secondary filament is advected by the basic flow
as opposed to the primary filament, which remains vir-
tually trapped by the topographic feature. The structure
of the trapped wave is also qualitatively different from
the previous cases with its filament now forming
downstream of the topographic center.

Increasing A, even further (4 = 3.5, 4.0 in Figs. 5a
and Sb, respectively) yields yet another qualitative
change. For A, = 3.5 there is now a clear tendency
observed at ¢ = 5.7 for the disturbance to wind around
the topographic feature. The basic flow, however,
overcomes this tendency and the disturbance is finally
advected downstream. The amplitude of the stationary
wave near the topography is now approximately 1.2.
When /o = 4.0 (Fig. 5b), we again observe the tendency
of the wave to rotate around the center. This time,
however, although a section of the front is advected by
the basic flow, a blob of oceanic fluid with potential
vorticity Qp = 0 remains stationary between the coast
and the topographic center. A balance has been reached
between the tendency to rotate about the center and
the tendency of advection by the basic flow. At¢ = 12.1
there is only a long filament joining the vortex with
the rest of the front and by ¢ = 17, the vortex clearly
remains stationary well inside the coastal fluid of vor-
ticity Q; = 1

For Ay = 5 (Fig. 6a) the contour winds around the
center forming a trapped eddy with substantial internal
mixing. By time ¢ = 8 the eddy has clearly detached,
remaining linked to the main contour by a long thin
filament that now touches the coastline. Increasing to
hy = 6 (Fig. 6b) has the effect of increasing the size of
the eddy as well as the amount of internal mixing. At
t = 8 the eddy becomes distorted by the presence of
the coastline and the basic flow. The number of points
on the contour reached 1200 in this case and the in-
tegration had to be stopped. It is quite evident that to
continue the integration for longer periods of time a
contour surgery algorithm needs to be used to remove
the long filaments and other small-scale structure pres-
ent in the system.

b. Varying &

Here we fix hyp = 1 (leaving @y = 0 and AQ = 1)
and vary the topographic parameter £. According to
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the linearized analysis in appendix B, the site of fila-
mentation is a function of £ in the manner given by
Eq. (B.10). For £ = 0.5 (Fig. 7a), the critical level is
X, == 0.76 and is therefore moved further away from
the topographic center. However, since £~!/2 is the half-
width of the topography, smaller values of £ increase
the width of the bump, which has the effect of increas-
ing the amplitude and wavelength of the wave at the
initial stages of evolution of the front (e.g., t = 4.3).
Hence, although the critical level is now farther away,
the larger amplitudes produced mean that the critical
level is reached by the disturbance and filamentation
still occurs.

For £ = 4 (Fig. 7b) we have a narrow bump and the
amplitude generated at ¢ = 4.3 is much smaller. How-
ever, now the critical level x, =~ 0.88 has moved closer
to the center and hence filamentation also occurs. This
explains the similar qualitative behavior obtained for
different values of { (cf. Fig. 3b, where £ = 3).

c. Varying Qo

We now fix the parameters AQ = 1, hy = 1, £ = 3,
and study the effect of varying the ocean potential vor-
ticity Q. Figures 8a,b show the evolution to ¢ = 15
when Qy = 0.1, 0.2, respectively. A positive value of
potential vorticity Qp has the effect of inhibiting wave
breaking and the formation of a filament. Note that a
positive value of Q, implies that vo(/) < 0 [see (2.7a)],
and hence the advective effect of the basic flow in the
negative y direction is enhanced as Q, increases.

Figure 9a shows the case Qp = —0.1 so that now
vo(/) > 0. The presence of negative potential vorticity
for x > [ produces a result qualitatively similar to Fig.
3b (where all other parameters are the same, except
Oy = 0). The main difference is that the filament pro-
duced now is wider near the topographic center.
Changing Q, to —0.2 (Fig. 9b) gives an evolution sim-
ilar to Fig. 9aup to ¢ = 17.1. At t = 21.4, however, a
large vortex begins to form and at ¢t = 30 it detaches,
giving rise to the formation of an eddy of potential
vorticity Q, to the right of the topographic center. The
thick filament of vorticity @, now has a more compli-
cated wavy structure compared to the corresponding
filament in Fig. 9a.

Figure 9c¢ shows the case Qy = —0.3. Here again a
large vortex is formed at ¢ = 30. The filament, however,
does not continue increasing in length downstream but
points away from the coastline and remains upstream
of the topography. Finally, changing Q, to —0.4 (Fig.
9d) produces another qualitative change in the evo-
lution after about ¢ = 14.3. The initial stages remain
similar to the three previous figures; however, now there
is no sign of filamentation and no vortex is formed up
to ¢ = 25. In fact the disturbance does not steepen or
break and shows little signs of change for 1 = 17.9,
21.4, and 25.0. The reason for this is the strong effect
of the basic flow in the positive y direction. It is clear
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from (2.7a) that when Qy < 0 then vy > 0 both inshore
and offshore of the potential vorticity front.

Our results indicate that filamentation is sensitive
to the sign and strength of the basic flow. However,
they have been obtained for a particular value of the
topographic amplitude of /4, = 1. Based on the previous
simulations, it is conceivable that larger 4, will increase
steepening of the front even for large values of Q, lead-
ing to filamentation, but clearly more simulations are
needed to confirm this point.

d. Varying |

We now fix the parameters AQ =1, 0, =0, hp = 1,
and £ = 3 and vary the position / of the undisturbed
front. Figure 10a shows the evolution for the case /
= 1.2. Increasing / has decreased the tendency of wave
breaking and although the evolution is qualitatively
similar to Fig. 3b, the length of the filament has now
decreased considerably at 1 = 20. Increasing to / = 1.3
(Fig. 10b) has the effect of totally inhibiting wave
breaking and filament formation. Increasing / even
further (not shown here) has the effect of decreasing
the amplitude of the disturbance and consequently de-
creasing the possibility of wave breaking altogether.

Decreasing /, however, produces a different quali-
tative behavior. Figures 11a,b show the evolution for
[ = 0.8, 0.6, respectively. Comparing these two cases,
it is apparent that there is now a clear tendency for the
front to evolve into a disturbance of small width and
large amplitude. These are the conditions found by
Pratt and Stern (1986) that lead to vortex formation
and eddy detachment. It is conceivable that extending
the integrations further will indeed show that kind of
behavior. However, decreasing / even further to 0.5
(Fig. 11c) shows that at t = 20 the two sections of the
front over the topographic center are now very close
together and that a vortex of potential vorticity Q; is
about to form. Decreasing / to 0.4 in Fig. 11d clearly
shows that at ¢ = 20 the eddy is about to detach to the
right of the topographic feature. The combined effects
of trapping by the topography and advection by the
basic flow produce a small width, large amplitude dis-
turbance, which leads to the formation of a lobe of
potential vorticity @, and subsequent eddy detachment.

5. Summary

A simple quasigeostrophic model has been used to
study the topographic forcing of fully nonlinear waves
on an interface separating two regions of constant po-
tential vorticity. Different qualitative behaviors were
found by varying the amplitude %, of the topographic
forcing and keeping all other parameters fixed. In par-
ticular, the disturbances increased in amplitude and
complexity as /1, was increased. The three main features
of the nonlinear behavior are 1) the filamentation pro-
cess, whose initiation is caused by the presence of a
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FIG. 10a. Evolution for Oy = 0, AQ = 1, by = 1, £ = 3,and [ = 1.2.

critical level, 2) the formation of a trapped eddy with
considerable internal mixing of the two fluids of po-
tential vorticities @y and Q, (Figs. 6a—c), and 3) the
formation of eddies of potential vorticity Q; on the
ocean side of the topographic feature (Figs. 9b,c and
12¢,d). In general, the combination of a potential vor-
ticity front and a topographic feature of sufficient am-
plitude can produce large eddies in the coastal ocean.
Our results show that filamentation is sensitive to the
sign and strength of the basic flow for a fixed value of
the topographic amplitude.

It must be emphasized that the basic flow (2.7b) is
linearly stable for all parameter values and that the
structures present in the system are formed entirely
due to nonlinear dynamical processes. It is interesting
to compare this behavior with, for example, the results
of Pratt and Pedlosky (1991). They use an unstable
basic flow to allow wave growth to occur up to a certain
amplitude and then they stabilize the linear basic state
and show that the subsequent evolution and growth of
the waves are also entirely due to nonlinear behavior.
Grimshaw and Yi (1991, 1992) reached a similar con-

3.0 —TTT T T
o o]
-8.5 - —~ - -
i t+ 0.0 [ ti 2.8 i
-4.9 1 | 'l 1 11 1 I
g.e 1.8 2.2

t14.37
1 1

FIG. 10b. / = 1.3.



VOLUME 24

1446

JOURNAL OF PHYSICAL OCEANOGRAPHY

V0 =1"Pll Ol

€0 =1711"04d

ez 20
L 0°0 J
"01 "S1 se siajowered I9Y10 [y "§°Q = / JOJ UOIIN[OAT B[ [ *OI
N4 20
- gac -

G -



JuLy 1994

clusion on their study of evolution over a topographic
slope with a stable basic flow. In summary, it is clear
that filamentation, vortex formation, and subsequent
eddy detachment are robust features of the nonlinear
systems describing the formation and evolution of
coastal mesoscale phenomena.

The simple model used here does not include the
full effects of stratification and the introduction of an
active upper layer is a logical extension of the system.
This would also allow the study of the combined effects
of both topographic forcing and instability of the basic
state. These problems are currently under investigation.
Finally, we emphasize that the quasigeostrophic model
is only valid for topographic amplitudes of the order
of the small Rossby number Ro. The introduction of
larger topographic amplitudes than this model allows
will be the subject of future studies.

APPENDIX A
Simplification of the Integrals 4, and 4,
Defining

10 == 7 e emaray, (e

where

R=[(x—x)+(y—)y)1", (Alb)

we have

i)
Al(-x’ J’) = 5 [](xa y) - I(-xa y)]
i) i)
=" I(x, y) + 5;1(—;:, y) (Ala)

Ay(x,y) = 5% [I(x,y) —I(—x, )]

I(—x,y). (AZ2b)

] J
“a VTS
Let

X'=x'—x=MAcosh, Y' =y —y=\sind,
X=x—-Xx9=Acos¢, Y =y—y,=Asing,
N=R=(x-x)+ -y,

A% = (x = X0)> + (¥ — Jo)*.

Then using (2.10) and (3.6) we can write
hO 27 -4} »

I=— exp[—&(A° + 224
2n Jo Jo

X cos(8 — @) + A Ko(AN)AdAdS. (A.3)
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Hence
I = hpe 4’ fo Ky(N)e
1 27 2
X {— f e 2Meosl gg i Nd N = hye
2w Jo

X fo ” Ko(N)e * I(2EAA)NdN, (A.4)

where Iy( - ) is the modified Bessel function of the first
kind. Then

o ol Y oI
a_ o _ro A5
3y oY A4 (A.5a)
ol ol X oI
gL _29 A.5b
ox oX Aod (A.5b)
Now
oI

i 2thge™ ¢ fo e~ KoM (2ENA)N2d A

— 2£Ahge ™t fo Y e KoM Io(2ENA) NN

= 2thye™ ¢4’ f e KoM (2ENA)N2dN
0

h P 2
+2_;/ie-mf0 e~ (2EAN), (264N) { Kb(N)

— 2ENKo(N) } dA
= —hye 4’ fo - L (2N K (MAIN.  (A6)

Substituting (A.6) into (A.5) and using (A.2) we
finally obtain (3.7a) and (3.7b). We note that AK, ()
is finite as A — 0 and therefore the integrand is finite
as A = 0.

APPENDIX B
Linearized Wave Analysis

The linearized wave equation in the absence of to-
pographic forcing [i.e., 2(x, y) = 0] is

V2% —¢=0, x#I, (B.1)

with boundary conditions given by the kinematic con-
dition

Li+vLl,=~¢, at x=I, (B.2)

where vp(/) = —Qp [see (2.7a)] and
[9]f = (B.3a)
[¢:12 = AQ(L — D), (B.3b)

across x = /.
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Assuming a y, ¢ dependence of the form
(¢, L) = ($(x), L)e*O=,

substitution into (B.1) and satisfying (B.3a) gives

d)oe—lfk_“ﬁ(x—/)’

: sinhVk? + 1x
0 sinhVk2 + 1/’

Slmllarly, substituting 1nto (B.2) and using (B.4)
gives

(B.4)

for x>1
(B.5)

for O0<x<l.

(L — Dlvo(D) — c] = — ¢o.
Applying the boundary condition (B.3b) then yields

_ A0

el -

Cc— 'Uo(l) = (B6)

This shows in particular that the basic flow is linearly
stable.
Now critical levels occur where vy(X.) = ¢ or

_ e—sz2+11} .

vo(x;) — vo(l) = — (B.7)

AQ
Wer
But from (2.7a) W¢ have ;ha{t
vo(x:) = —Qpe~ %D + AQ sinh(x. — DH(I — x.)

(B.8a)
and
. , for x.>1
vy = | 2 (B.8b)
Q,, for x.<l.
Hence, using a Taylor expansibn we may approximate
Qo(x. = 1), for x.>1
vo(Xe) = vo(l) =~ (B.9)
Oi(x. = 1), for x <l
Finally, using (B.9) and (B.7) we obtain
_AQ ~2Vk 1/
Xc— D~ ————={1—¢ R
for x.>1, (B.10a)
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which requires QoAQ < 0. Similarly

AQ ey
xc —_ l —~ — ——— 1 —e R
0uxe= )~ = e )
for x. <! (B.10b)

and this requires that Q;AQ > 0. To use these formulas
we must choose an appropriate value for the wave-
number k. Assuming that this is provided by the to-
pographic forcing, we take the Fourier transform of
h(x, y) in (3.6) with respect to y and deduce that an
approximate value for k is 2\/2. For the parameter val-
uesof Fig. 2(Qy = 0, AQ = 1, £ = 3, [ = 1) the critical
level is given by (B10.b) with k ~ 3.5, Hence / — x,
~ 0.14 or x, =~ 0.86.
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