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ABSTRACT

A large-eddy simulation (LES) model is developed and employed to study the interactions among turbulent
and internal gravity wave motions in a uniformly stratified fluid at oceanic space and time scales. The decay of
a random initial energy spectrum is simulated in a triply periodic domain (L = 10 m) by solving the full
nonlinear, three-dimensional Navier-Stokes equations using pseudospectral techniques and a numerical resolution
of 643 modes. The subgrid scale (SGS) fluxes are parameterized using the Smagorinsky SGS flux parameterization.
Three experiments were performed with mean buoyancy frequencies (N) of 1, 3, and 10 cph for a period of 10
buoyancy times ( Nt).

The temporal evolution of the domain-averaged statistics is used to examine the nature of decaying stratified
turbulence. Initially (0 < Nt < 2), energy levels rapidly decay as the spectral energy distributions evolve toward
more isotropic forms. During this time, the buoyancy flux (BF) remains negative indicating a conversion of
kinetic to potential energy and downgradient scalar mixing. After an initial period of decay (Nt = 2), rapid
oscillatory exchanges of vertical kinetic energy (VKE) and potential energy (PE) are observed. These energy
exchanges are driven by a nearly reversible BF that is supporting internal gravity wave motions. Synchronous
oscillations in horizontal kinetic energy are also found although their amplitudes are significantly smaller.
Irreversible aspects of the BF can still be observed during this latter stage of decay, especially for the N = | and
3 cph experiments. Estimates of the irreversible portion of BF are used to determine values of vertical eddy
diffusivity, K,,, for this period. Resulting values for K, are 2.4 X 107> and 7.2 X 10> m®* 57", for the N = 1 and
3 cph experiments, respectively, consistent with oceanographic estimates for the main thermocline.

The domain-averaged energetics indicate that, aithough an equipartition is not observed between PE and the
total kinetic energy, a robust equipartition is observed between the “wave” kinetic energy and PE. However,
this equipartition does not appear to hold spectrally. Spectral analyses also indicate that the larger spatial scales
are dominated by “vortical” energy. Evaluation of SGS energetics, fluxes, and dissipation rates indicates that
SGS motions control energy dissipation rates but make small contributions to the energetics and fluxes, consistent
with the LES assumptions. Spectral analyses of the SGS eddy viscosity and energy transfer rates are used to
suggest improvements for future LES experiments of stably stratified turbulence.

One of the most exciting observations made here is the rapid transition in the character of the buoyancy flux
evolution as part of the “turbulent collapse.” The BF changes suddenly from a state of irreversible mixing to
an oscillatory, nearly reversible BF when the Ozmidov length scale is the same order as the vertical energy-
containing length scale [i.e., the Froude number becomes O( 1)]. Vertical temperature cross sections also exhibit
some evidence of the collapse (i.e., chaotic structures evolving into wavelike variations). However, these changes
occur gradually compared with the rapid transition observed in BF. Unlike most previous laboratory observations,
energy decay rates and characteristic length scales appear to be unaffected by this dynamic transition, It is
speculated that differences between the present LES results and previous laboratory and numerical results may
be attributed to extreme differences in the Reynolds numbers for these flows.
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1. Introduction and motivations

The kinematics and dynamics of small-scale (1 cm
to 100 m) thermocline motions have been intensively
observed and modeled for more than 20 years (e.g.,
Garrett and Munk 1972, 1975; Osborn and Cox 1972;
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Gregg 1977, 1989, 1991; Miiller et al. 1978, 1986; Os-
born 1980; Gibson 1980, 1987; Munk 1981; Gargett
étal. 1981, 1984; Dillon 1982, 1984; Pinkel 1984; Gar-
gett 1984; Gregg et al. 1986, 1993; Crawford 1986;
Gregg and Stanford 1988; Kunze et al. 1990; Moum
1990; Pinkel et al. 1991). However, much remains un-
clear concerning the role of these motions in the vertical
transports of heat and momentum in the oceanic in-
terior (e.g., Munk 1981; Holloway 1983, 1988; Gregg
1987, 1989). Knowing the role of these small-scale dy-
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namical processes is important for a variety of purposes,
including: the parameterization of mixing processes
for large-scale oceanographic general circulation mod-
els, the interpretation of 1D microstructure observa-
tions, and the evaluation of the effects of turbulence
and small-scale advection on oceanic biogeochemical
processes. Unfortunately, it appears unlikely that in
situ, 3D observations of small-scale thermocline mo-
tions will be obtained in the near future. Hence, the
3D numerical simulation of small-scale oceanic mo-
tions, made at the proper time and space scales, may
be the only expedient means of investigating these mo-
tions. :

Previous numerical investigations of ocean turbu-
lence have generally been made using either a two-
dimensional (vertical-horizontal ) geometry (e.g., Or-
lanski and Cerasoli 1981; Weissman et al. 1981; Shen
and Holloway 1986; Henyey et al. 1986; Holloway and
Ramsden 1988; Winters and D’Asaro 1989; Ramsden
and Holloway 1991) or in 3D at low Reynolds numbers
(e.g., Riley et al. 1981; Holloway and Ramsden 1988;
Meétais and Herring 1989; Ramsden and Holloway
1991; Winters and Riley 1992). Both of these as-
sumptions place severe restrictions on the resulting
numerically simulated flows. For example, the 2D as-
sumption restricts the characteristic types of motions
that can be simulated as well as the number and types
of possible nonlinear interactions (e.g., Miiller et al.
1986; Lesiceur 1987; Miiller 1988; Lelong and Riley
1992). Further, direct 3D numerical simulations must
be made at low Reynolds number due to finite com-
putational resources. This means that molecular vis-
cous and diffusive processes will play an inordinately
important role in the evolution of the energy-contain-
ing scales. For ocean thermocline motions, typical
Reynolds numbers are quite large (Re = UL/v ~ 5
X10°forL=10m, U=005ms™},and » = 10°¢
m?s~!). Thus, molecular processes occur at scales
many orders of magnitude smaller than the energy-
containing scales (e.g., Tennekes and Lumley 1972;
Gregg 1987; Moum 1990). These facts indicate that
direct numerical methods cannot realistically simulate
the 3D motions of oceanic turbulence and numerical
simulations must be made at the appropriate temporal
and spatial scales.

Here, we numerically simulate the decay of stably
stratified turbulence at oceanographically relevant
time- and space scales using the large-eddy simulation
(LES) method. Although it is unlikely that a decaying
simulation will realistically depict the small-scale,
quasi-steady ocean, these results still provide many in-
sights into the dynamics and kinematics of ocean tur-
bulence under the influence of stable stratification.
Moreover, there are many oceanic flows, such as in a
stratified tidal channel (e.g., Gargett et al. 1984) or in
the evolution of a single overturning event (e.g., Hebert
et al. 1992), where detailed knowledge of the decay

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 24

processes of an initially turbulent region are of direct
relevance.

Our study is one of the first applications of LES
techniques to oceanographic flows and, in some sense,
provides the building blocks upon which more complex
LES oceanic models may be based. Large-eddy simu-
lations have been used extensively in the atmospheric
sciences to study the evolution of the planetary bound-
ary layer (e.g., Deardorff 1973, 1980; Moeng 1984;
Moeng and Wyngaard 1988; Schmidt and Schumann
1989; Mason 1989; Ebert et al. 1989; Mason and Der-
byshire 1990). However, these techniques have only
recently been applied to oceanographic problems (¢.g.,
Siegel 1988, 1991; Gallacher 1990; McWilliams et al.
1993).

In the present paper, the construction and imple-
mentation of a large-eddy simulation model of the de-
cay of stably stratified turbulence at oceanic time and
space scales is described. In the next section, the initial
value problem for decaying turbulence under the in-
fluence of stable stratification is formulated. The third
section introduces the large-eddy simulation method
and illustrates how subgrid-scale (SGS) processes are
differentiated mathematically from grid-scale (GS)
motions. Next, the details of the derivation of the Sma-
gorinsky SGS flux model are presented along with its
modification due to the influence of buoyancy forces.
The fifth section describes the initialization procedure
followed by a brief description of the pseudospectral
numerical procedure that is employed. The results sec-
tion depicts the time evolution of flow energetics as
the dynamical role of buoyancy processes become
dominant. In particular, the role of the buoyancy flux
is examined in detail as is the partitioning of the kinetic
energy into “wave” and “vortical” components. Sec-
tion 8 illustrates several of the visual aspects of the flow
field, and in section 9 the spectral structure of the flow
field and energy transfer rates is explored. The discus-
sion sections assess the performance of the SGS pa-
rameterization as well as addressing several aspects of
the transition from a fully turbulent flow to one where
buoyancy processes become dominant, the so-called
turbulent collapse. The reader familiar with the large-
eddy simulation method may wish to skip directly from
the description of the initial-value problem (section 2)
to the formulation of initial conditions (section 5).

2. Problem statement

The decay of a specified initial energy distribution
in a linearly stratified fluid is numerically simulated
by solving the 3D, nonrotating Navier-Stokes equa-
tions under the assumptions that the fluid is incom-
pressible, the Boussinesq approximation is satisfied,
and that temperature is the single stratifying agent.
Under these assumptions, the equations of motion may
be written as
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where { is time, x; is the spatial vector (x; x;; x|, X2,
X33 X, ¥, z), u; is the velocity vector (u; u;; 4y, u,, us;
u, v, w), p is the pressure perturbation from the hy-
drostatic balance (normalized by the mean density),
T is the perturbation temperature from the horizontal
mean temperature ( 7,(x3), which describes the stable
background profile), g is the magnitude of gravitational
acceleration (9.8 m s™2); « is the coefficient of thermal
expansion (0.025 K™'), » is the kinematic viscosity
(107 m?s7'); « is the thermal diffusivity (107¢
m? s~'); §;3 is the Kronecker-delta function; and the
summation convention is employed. The degree of
stable stratification may be characterized by the buoy-
ancy frequency, N, which is given by

Ts 1/2
N= (Olg5i3 d—‘) s

dxl‘ (2)

where N provides an upper bound to the frequency
range of linear internal waves. The buoyancy frequency
is constant, corresponding to 1, 3, and 10 cph, and the
equations of motion are integrated for 10 buoyancy
times ( Nt). The details of the initial conditions for u;
and T are presented in section 5.

The modeling domain is a triply periodic cube with
sides of length, L. The boundary conditions may
therefore be represented as

u;(x)) = u;(x; + nL), (3a)
T(x;) = T(x; + nL), (3b)

where n may be any integer. This allows spectral nu-
merical techniques to be applied for efficiently evalu-
ating the spatial derivatives using Fourier series (Orszag
1971a). Periodic boundary conditions are appropriate
for the numerical simulation of homogeneous flows
(Lesicur 1987).

The equations are nondimensionalized using the box
size, L/2w, as the length scale, the buoyancy period,
N~', as the timescale, and a ™! as the temperature scale.
The factor of 2« in the definition of the length scale
enables spatial wavenumbers to be defined as integer
values. Hereafter, the nondimensionalized form of the
equations of motion are utilized.

It should be noted that planetary vorticity is not
considered in the present model, although Coriolis
forces definitely have an important role in the evolution
of ocean turbulence and its interactions with the in-
ternal wave field (e.g., Munk 1981; Gregg et al. 1986;
Kunze et al. 1990). This allows us to restrict the num-
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ber of independent timescales in the problem to a
buoyancy time (N ') and an overturning time (L/ U),
whose ratio gives rise to a Froude number [Fr = U/
(LN); see section 10b]. The inclusion of planetary
vorticity would add another timescale (!, where f
is the Coriolis parameter) and another nondimensional
group, the Rossby number. Similarly, the inclusion of
a mean vertical shear adds yet another characteristic
timescale [(dU/dz)™']. These additional complicating
processes are ignored here in order to tightly constrain
the problems investigated. We plan to investigate these
effects in the near future.

To directly solve the above initial value problem,
one must resolve not only the energy-containing scales
of the flow, but also those scales where energy is dis-
sipated by molecular processes. With finite computa-
tional resources, the spatial scales that may be numer-
ically simulated directly are limited by the requirement
that both the dissipation and energy-containing scales
must be resolved. For example, typical oceanic values
for the Kolmogorov length scale, the scale at which
molecular viscosity becomes important (26a), range
from 1073 to 102 m. Present day computational stan-
dards restrict the number of wave modes that may be
simulated to be O(100) in each direction. This means
that for the direct simulation of ocean turbulence, the
largest spatial domains that will be numerically resolved
to something less than 1 m. This is far too small to
contain any of the energy characteristic of ocean tur-
bulence and the directly simulated Reynolds numbers
will be much smaller (<100) than typical oceano-
graphic values [O(10%)]. To alleviate these difficulties,
we apply the large-eddy simulation method.

3. The large-eddy simulation method

In a large-eddy simulation (LES), the three-dimen-
sional Navier-Stokes equations are solved directly for
the resolved scales of motion (or grid scale), while the
effects of the unresolved scales (or subgrid scale) are
parameterized in terms of the GS motions. This mod-
eling of SGS processes allows oceanographically rele-
vant Reynolds numbers to be simulated in a numeri-
cally achievable wave space. For example, Reynolds
numbers (based upon Taylor length scales, Re,) for
laboratory experiments or direct numerical simulations
are typically less than 100, whereas oceanographic es-
timates are three orders of magnitude larger [O(10°);
Siegel 1991]. LES techniques enable high Reynolds
number flows, such as ocean turbulence, to be nu-
merically simulated using the correct balance of terms
in the equations of motion.

In an LES, the wavenumber cutoff between GS and
SGS motions is made within the inertial subrange of
turbulence. This is done for two reasons. First, inertial
subrange motions may be assumed to be locally iso-
tropic (e.g., Tennekes and Lumley 1972). Second, the
rate at which KE and PE are transferred across the
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SGS cutoff must be equal to the rate at which they are
dissipated by molecular processes (the KE dissipation
rate, ¢, and the PE dissipation rate, ¢;). These two facts
greatly simplify the parameterization of the SGS mo-
tions. The large-eddy simulation approach is similar
in spirit to the parameterization of small-scale motions
in an eddy-resolving ocean general circulation model
(OGCM; e.g., Holland and Lin 1975). However, it
seems considerably simpler to parameterize SGS pro-
cesses for the inertial subrange of turbulence than for
the submesoscale turbulent motions required by an
eddy-resolving OGCM (e.g., Onken 1992).

As discussed previously, defining the extent of the
physical domain is problematic given a finite numerical
resolution (or finite number of spatial modes). It in-
volves the trade-off between being large enough to sim-
ulate oceanographically relevant motions, while re-
maining small enough for a portion of the inertial sub-
range to be resolved. The validity of the SGS
parameterization is, in part, based upon the GS cutoff
wavenumber (k. = o/ A) lying within the inertial sub-
range of turbulence. The GS cutoff (A) depends upon
the physical dimension of the box (L) and the nu-
merical mesh resolution (M), or A = L/M. For the
present simulations, L (=L, = L, = L,) is set equal to
10 m and M (=M, = M, = M,) is 64. Thus, the sim-
ulated grid scales range from 0.156 to 10 m where the
GS cutoff (A = 0.156 m) corresponds well to observed
ranges for the inertial subrange (e.g., Phillips 1980;
Gargett et al. 1981, 1984).

In developing an LES model, the equations of mo-
tion are volume averaged to formally define the grid
scale (GS) motions distinct from the subgrid scale
(SGS). This scale separation is performed for any fluid
variable [ f(x; )] by partitioning it into a GS [f(x; ¢)]
and an SGS [f'(x; t)] component (Leonard 1974),
or

f(x;0) = f(x;6) + f'(x;5 1). (4)

The GS value of a variable [f(x; t)] is evaluated as
the convolution of f(x; t) with a prescribed spatial fil-
tering function [G(x)] or

fx; 1) =f G(x —x)f(x";0dx’,  (5)
D
where the integration is taken over the entire domain,
D. In this work, a boxcar average in physical space is
used as the filtering function,

I, Ix]<A
0, Ix|>a,

where A is the physical space grid scale. This averaging
procedure is implicit in the pioneering large-eddy sim-
ulations of Deardorff (1970) and Schumann (1975).
Other filtering functions such as a spectral sharp-cut
filter or a Gaussian weighted filter may be used. How-
ever, the advantages of these procedures do not appear

G(x) = [ (6)
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to outweigh the cost, complexity and possible ambi-
guities in the interpretation of the resulting simulations,
particularly for homogeneous flows (e.g., Kwak 1975;
Clark et al. 1979; Mansour et al. 1979; Ferziger 1983;
Eidson 1985; Lesieur 1987; Moeng and Wyngaard
1988). Application of the spatial averaging procedure
(5) to the nondimensionalized equations of motion
gives

o _ _ ouwu; _ 9p ., 0%
= g8, T4 v — 7
ot ax;  Ox; gl v 0x;0x; (7a)
aT  owT _ dT, 9*T -
—=—-=- b
ot ox; “ dx; § 9x;0x; (70)
ou;
—=0. 7
o, (7c)

The nonlinear flux terms are also partitioned into GS
and SGS components:

W; = ﬁiﬂj + u{ﬁj + ﬁ,-uj + u{u} = ﬁiﬁj + AU — Ty
(8a)
+1;l_i ,+u,{ ’=ﬁ,‘T+ Aﬂi_76i’
(8b)

u,-T= 12,'

+ uj

~
~

where A is the Leonard momentum flux (&;4; — #;u;),
Ay, is the Leonard heat flux (i, T — %, T), 7;;is the SGS
momentum flux (u;u; + uiu; + u;u;), and 7y, is the
SGS heat flux ([T’ + u,T + #;T’). The Leonard
fluxes, a consequence of the nested averaging procedure
(Leonard 1974), are negligible when boxcar averaging
in physical space is applied (Clark et al. 1979; Yoshi-
zawa 1982; Ferziger 1983; Eidson 1985; Siegel 1988).
Applying the above definitions of the SGS fluxes and
writing the GS nonlinear terms in the momentum
equations in vorticity form, the GS equations of motion
are equal to

%fji = et/ — g)% - Méi—j)ﬁ
+ g6i3f+ v a‘j;g;j N %,- )
g= - "gf— s gﬁ § azj; _ %:f o)
z_f: -0 (9¢c)

where the resolved scale vorticity vector, €;, is defined
using
_ ol

Qf = € 7—

ox (10)

and ¢ is the alternating tensor.
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4. Parameterization of the SGS fluxes

To solve the resolved scale equations of motion (9),
the SGS fluxes must be parameterized in terms of GS
flow quantities. This is done usually by representing
the SGS fluxes in flux-gradient form, or

& Tk
T~ —Ksc;sS,'j + — 6'/

3 (il1a)

(11b)

where S;; is the GS rate of strain tensor (=9, /dx;
+ 81,/ 3x;), Kscs is the SGS eddy viscosity (still a func-
tion of x and ¢), and Pr, is the SGS turbulent Prandtl
number, which is defined as the ratio of the SGS eddy
viscosity to the SGS eddy diffusivity. Subsequently, Pr,
will be assumed to be independent of both time and
space, following previous LES investigations (e.g., Fer-
ziger 1983; Eidson 1985; Lesieur 1987; Siegel 1991;
Batchelor et al. 1992). The equations of motion with
the modeled SGS fluxes are

ou; - = o _

= ei,kuij - 5}: + g5i3T

o
(9212,' aKSngy
"axjax, + o, (12a)
T _ T dT,
ot ax; *dxs
a’T 1 d aT
— — | Ksgs — 12b
ox;dx;  Pr, ox; ( SG8 8xj) (12b)
ou;
— = 12
o (12c)

where 7 is the pressure head fluctuation, which includes
the GS and SGS normal stresses, or

- _ Tk, Wil
T=p+ 3 + 5
i/ 2 is the GS KE and 7/ 3 is the SGS KE.
Smagorinsky’s (1963) eddy viscosity formulation is
used with a modification that takes into account the
buoyant production of SGS energy (e.g., Eidson 1985;
Siegel 1988; Lilly 1989; Mason and Derbyshire 1990).
The SGS eddy viscosity, Ksgs, is derived assuming that
it depends only upon the smallest resolvable scale (A)
and the rate at which KE is transferred from scales
larger than A to those scales smaller than A. Within
the inertial subrange of turbulence, spectral transfers
of kinetic energy past any given scale are equal to the
KE dissipation rate, e. Applying only dimensional ar-
guments, Ksgs is given by

_ 3
Ksgs = (¢,0)%%€'/3,

(13)

(14)
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where the constant of proportionality (¢,) is denoted
as the Smagorinsky constant. To evaluate the value of
Ksgs at any point in space, the energy transfer rate (e)
must be known. In general, ¢ depends on all scales of
motion. However, the SGS parameterization must be
determined by the resolved scales alone. For a steady,
statistically homogeneous flow, the dissipation of KE
is equal to its production by shear and buoyancy pro-
cesses. In nondimensional form, this “production
equals dissipation” budget may be expressed as

GZ—%SUT,'J"f‘g&,':;Tgi. (15)
Here the dissipation of KE is balanced by the turbulent
production by the GS shear (— 4 7;,5;;) and by the SGS
buoyancy fluxes (g8;374;). Applying the flux gradient
forms of the SGS stresses ( 11) results in

(16)

where S? is the mean square rate of strain (=S;S;).
The value of Kggs is found by substituting the scaling
relation (14) for € in terms of Kggs into the kinetic
energy budget (16). Solving for Ksgs, one can derive

_(eA) (o, 28 0T\
Ksas = V2 S Pr, dx;
_, 2gdT v
2> 2= 17
57> Pr, 0x;° an

where the SGS eddy viscosity is set to zero if $? is less
than 2g/Pr,8T/dx;. The ratio of these two quantities
defines a GS Richardson number (Siegel 1991). It
should be noted that the inclusion of buoyancy forces
did not significantly affect values of the SGS eddy vis-
cosity (Siegel 1988). Thus, the SGS eddy viscosity may
be determined knowing values for ¢; and Pr,.

Values of ¢, used in previous large-eddy simulations
of homogeneous turbulence, channel flow, Rayleigh—
Bénard convection, and planetary boundary-layer tur-
bulence vary from 0.13 to 0.24 (e.g., Deardorft 1974;
Eidson 1982, 1985; Siegel 1988; Piomelli et al. 1989;
Schumann 1991). Values of Pr, used in LES experi-
ments vary from 0.4 to 0.5 (Grétzbach and Schumann
1979; Grotzbach 1980; Eidson 1982). For the present
experiments, a value of 0.15 is used for the ¢, and a
value of 1.0 is used for Pr,. The choices for ¢, and Pr,
were made primarily by comparing simulated spectral
energy distributions with theoretical Kolmogorov-
Obukhov (5/3) spectra. A series of experiments was
done to examine the degree of correspondence between
the simulated and theoretical radial wavenumber spec-
tra and its relationship with variations in the values of
¢, and Pr, (Siegel 1988). The final values of ¢, = 0.15
and Pr, = 1.0 matched the theoretical spectra fairly
well (Siegel 1988, 1991).
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Implicit in the separation of GS and SGS motions
is the assumption that the GS motions contain the en-
ergy of the flow, while the parameterized SGS processes
dissipate this energy. Thus, a comparison of the GS
and SGS energies, fluxes, and dissipation rates enables
the performance of the SGS parameterization to be
evaluated. A derivation of the SGS energy, dissipation,
and fluxes is given in appendix A, while the perfor-
mance of the SGS parameterization is assessed in sec-
tion 10a.

5. Specification of initial conditions

A modification of the Garrett-Munk (GM ) internal
wave spectrum is used to initiate the present LES ex-
periments (see appendix B). Spectral energy distri-
butions are chosen to be consistent with GM energy
levels, while the phases of each velocity and pertur-
bation temperature component are selected randomly
and not using linear internal wave theory (see below).
This results in a highly chaotic initial condition from
which the energetic decay may be observed. The
thought is that the resulting initial flow fields have rea-
sonably “oceanographic” energy levels without biasing
the characteristic types of motion that would occur if
a specific phase relationship were assumed (cf. linear
internal waves, vortical motions, etc.).

It must be stressed that we are not attempting to
initialize the present experiments with a “true” GM
internal wave spectrum. There are many reasons why
a “true”” GM internal wave spectrum is inappropriate
for the present experiments. For instance, planetary
vorticity is not considered presently. Hence, inertial
wave motions, an important component of the oceanic
internal wave field, are excluded. In addition, the “true”
GM spectrum does not correctly predict oceanic vari-
ance levels for vertical scales less than 5 m (e.g., Munk
1981); however, there is no other obvious choice. For
example, the application of a Kolmogorov k'3 energy
spectrum will overspecify energy levels for scales larger
than ~ 1 m. Several other oceanographic wavenumber
spectra, such as presented by Gargett et al. (1981) and
Kunze et al. (1990), are inappropriate as they describe
energy distributions only in a single direction. The
choice of the GM spectrum for the shape of the initial
energy distribution was made because it is, presently,
the only unified, 3D wavenumber spectrum available.

The phases of the Fourier coefficients for each
velocity component, @i(k), and the perturbation tem-
perature, 7(k), are chosen randomly for each vector
wavenumber, k. This is done instead of following linear
internal gravity wave theory because it is unlikely that
linear phase relations will hold for scales less than 10
m (e.g., Holloway 1983; Miiller et al. 1986; Shen and
Holloway 1986). The only phase constraint imposed
is that the initial velocity field must be divergence-free
(k- 0(k) = 0; see appendix B). If one were to initialize
the flow field following linear internal wave theory,
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two additional phase constraints are imposed. Specif-
ically, the initialized vorticity vector must lic in the
horizontal plane (k X @(k) - g = 0, where g is the grav-
itational acceleration vector) and the phase of the tem-
perature perturbation must be in quadrature with the
vertical velocity component. This means that a single
random deviate is required to initialize the four com-
ponents following linear wave phase relations. Here,
the phase of the Fourier coefficients for each i(k) and
T(k) are chosen at random after which continuity is
imposed. This choice of initial phases will not presup-
pose a particular wave-vortical character for the initial
flow field (see section 7e). The analysis of the present
results should provide directions for future LES ex-
perimentation.

A derivation of the random-GM initial conditions
is presented in appendix B. Briefly, the GM spectrum
assumes that the flow is characterized by horizontal
isotropy, separable wavenumber and frequency de-
pendence, random phase relations between linear in-
ternal wave modes, and a linear internal gravity wave
dispersion relation (Munk 1981). The random-GM
initialization also assumes that the nonhydrostatic ap-
proximation applies and that the velocity and temper-
ature perturbation component phases are selected ran-
domly.

The structure and temporal evolution of horizontal
kinetic energy (HKE), vertical kinetic energy (VKE),

and potential energy (PE) spectra are discussed in more

detail in section 9 and hence, are only briefly addressed
here. The initial energy in HKE and PE is primarily
contained in low horizontal wavenumbers, while the
distributions of these energetic components are nearly
uniform in the vertical direction (Fig. 9a). Thus, the
initial HKE- and PE-containing structures will be
elongated in the horizontal and compressed in the ver-
tical. The spectral energy distribution for VKE is more
isotropic; however, its magnitude is considerably less.
After a very short period of time (NVf < 0.25), the highly -
anisotropic initial wavenumber spectrum evolves into
a more isotropic form (Fig. 9b). This rapid evolution
is caused by both the attenuation of high wavenumber
energy by the SGS dissipation parameterization as well
as spectral transfers by nonlinear interactions. As the
initial phases are randomized, nonlinear transfer pro-
cesses are not initially active. After a short period of
time ( <0.1Nt), the nonlinear transfer processes become
significant as measured by the magnitude of the velocity
derivative skewness (e.g., Orszag and Patterson 1972).
As expected, initial Reynolds numbers, based on the
Taylor microscale (Re,), are large (3000-11 600) sim-
ilar to values inferred from oceanographic observations.
These initial Re, values are considerably larger than
those simulated by direct numerical simulation meth-
ods (Re, < 100).

6. Numerical methods

The complete description of the numerical proce-
dure may be found in Siegel (1988), the following is
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a brief synopsis of the methodology. The nondimen-

sional domain size is 27 on a side, and resulting grid

scale, A, is equal to 27 /M where M is the numerical

resolution (M = 64). A discrete representation of the

spatial coordinates (x;) and the integer wavenumbers

(k; ki; ki, ka, ka; kx, ky, k;) may be represented as
2wi

X = >,

M
ki=i, i=-M/2,M[2— 1. (18b)

The periodic boundary conditions simplify the nu-
merics enabling pseudospectral techniques, based upon
Fourier series expansions, to be applied (Orszag
1971a). Pseudospectral techniques perform compu-
tations in either physical or spectral space depending
on where a given term may be most efficiently evalu-
ated. This allows a high degree of computational con-
venience while retaining the inherent accuracy of a
spectral computation (Orszag 1971b). Functions may
be written in physical (f( x;)) or spectral (f(k;)) space
using discrete Fourier transforms:

i=1, M (18a)

fxi)= X flk) exp(ik;x;) (19a)
| kjl <K
flki) = > f(x)exp(—ikix;)), (19b)

(2m)°? x| <2
where K is the maximum allowable wavenumber (K
= M]/2).

The evaluation of the nonlinear terms in the equa-
tions of motion by the pseudospectral method causes
the resulting convolution sums to be contaminated by
aliasing errors (Orszag 1971a). These aliased terms oc-
cur primarily in the corners of the wave vector box
and are eliminated by a spectral truncation on the re-
sulting velocity and temperature fields (Orszag 1971b;
Canuto et al. 1988).

Time integration is performed using a leapfrog time
stepping where the second-order viscous and diffusive
terms are solved implicitly. The convective terms in
the temperature equation are split into two parts using
continuity to cancel aliasing terms that may arise in
the scalar fields (J. J. Riley 1987, personal communi-
cation). The pressure head (13) is calculated diagnos-
tically by solving the Poisson equation that arises after
taking the divergence of the momentum equations and
constraining the divergence of the velocity field of the
n + 1 time step to be zero. This procedure insures that
the flow field remains divergence-free.

The numerical experiments were performed on the
Cray-XMP/48 at the San Diego Supercomputer Cen-
ter. Each numerical experiment required 6.8 hours of
CPU time to simulate 10 buoyancy periods (Nt). Each
time step required about 10.2 seconds of CPU time at
full resolution (64 3), with nearly 70% of the CPU time
spent performing the calculations required by the SGS
flux parameterization.
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7. Time evolution of the domain-averaged statistics
a. Total energy decay

The temporal decay of the domain-averaged total
energy nondimensionalized by its initial value (TE,)
is shown in Fig. la versus linear MV¢, in Fig. 1b versus -
log;0(Nt), and in Fig. 1c in log-transformed dimen-
sional time (minutes) for the three different stratifi-
cations (N = 1, 3, and 10 cph). In general, the value
of TE/ TE, decreases monotonically in time and faster
for the N = 1 cph case than the others when viewed as
a function of buoyancy time (Nt). When the variations
of TE / TE, are compared as a function of dimensional
time (Fig. l¢), the TE/TE, for the highly stratified
case (N = 10 cph) decreases most rapidly. Thus, nor-
malized total energy decay rates do not scale well either
in buoyancy (Nt) or in dimensional time.

The observation that N = 10 cph TE/TE, decays
the fastest in dimensional time and the slowest in
buoyancy time can be explained by making a simple
scaling argument. The total energy in the GM spectrum
scales as N, requiring the initial velocity fluctuations
(u')to go as N'/?2 (Munk 1981). An eddy viscosity for
the entire initial flow field, K., can be formulated using
Prandtl’s mixing length hypothesis as u’/, where /is a
characteristic length scale (Tennekes and Lumley
1972). The present LES observations indicate that / is
not a strong function of N (Fig. 6) suggesting that K,
scales as N'/2/. Assuming that TE decreases in time by
eddy viscous processes (dTE/dt = K,V*TE), the time
rate of change for TE will scale as N3/%/~!. Thus, the
decay rate for the normalized TE scales as N'/2 in di-
mensional time and as N~'/2 in buoyancy time. Thus,
the normalized total energy for the N = 10 cph case
decreases the fastest when viewed in dimensional time
(Fig. 1c) and the slowest in buoyancy time (Fig. 1b).

The TE decay rate is often discussed by evaluating
the exponent (7 in a power law decay relation,

TE oc (Nt)™". (20)
Numerical experiments of isotropic, decaying turbu-
lence give values of n varying from 1.0 to 1.5 where
the exact value is highly dependent upon the low wave-
number structure of the initial energy spectrum (e.g.,
Schumann and Patterson 1978a; Domaradzki and
Mellor 1984; Lesieur 1987). Here, the decay exponent,
n, appears to increase smoothly as a function of time
(Fig. 1b). Values of n increase to about 1.4 for all three
runs. Similar temporal variations in energy decay rates
have been observed in direct numerical simulations of
anisotropic turbulence (Schumann and Patterson
1978a). In particular, sharp reductions in TE decay
rates are not observed, in contrast to what has been
reported for previous laboratory and direct numerical
experiments of decaying stratified turbulence (e.g.,
Dickey and Mellor 1980; Stillinger et al. 1983; Métais
and Herring 1989).
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b. Temporal evolution of flow energetics

For decaying, homogeneous, uniformly stratified
turbulence, evolution expressions for the domain-
averaged energy components (HKE, VKE, and PE)
may be written symbolically as

HKE
d - = ®y — ey, HKE = (u?+0v2)/2 (2la)
d‘;‘t‘E =@, — e +BE, VKE=(w’)/2 (21b)
% = —¢p— BF, PE=g?(T*)/2, (2lc)

where ¢, €y, and ep are the respective energy dissipation
rates, ®; and ®, are the pressure-strain correlation
terms, and BF is the buoyancy flux (=g{wT)). The
angle brackets are used to denote a domain average.
Note that the triple product terms disappear when do-
main-averaged energy budgets are evaluated for a ho-
mogeneous flow (e.g., Tennekes and Lumley 1972).
The pressure—strain correlation terms, ®5 and ®,, are

defined as
u v
={pl—+— 22
B <p(6x 6y)> (222)
d
<1>V=< —W>, (22b)
0z

where &5 + ®, = 0 as a result of continuity. A sche-
matic diagram illustrating the interchanging of com-
ponent energetics is shown in Fig. 2. The BF and the
pressure-strain correlation terms (®y and ®,) ex-
change energy among the three components (HKE,
VKE, and PE). However, these terms play no role in
the evolution of the total energy (TE) as

dTE _
d

€y — €y — €p= —¢€ — €p. (23)
Thus, the TE of a decaying, stratified flow will mono-
tonically decrease in time due to molecular dissipation
processes (Fig. 1).

Temporal variations of domain-averaged HKE ((L?Z
+92%/2 + 2KEg,;/3), VKE ({(w?)/2 + KE;/3), and
PE (g2{T?)/2 + PE,) are shown in the upper panel
of Figure 3 for the three different mean stratifications.
Derivation of the SGS energy levels (KEg; and PEq)
is given in appendix A. It should be noted that the SGS
energy levels are always much less than the GS ener-
getics (see section 10a). In general, HKE is greater
than either PE or VKE and PE is greater than VKE
with this difference increasing with increasing stratifi-
cation. Note also that an equipartition does not exist-
between PE and the total amount of KE as would be
expected for a superposition of linear internal gravity
waves (e.g., Phillips 1980).
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The time evolution of the three component energies
display significant oscillations while decaying. In par-
ticular, VKE and PE exhibit strong oscillations, which
are out-of-phase with each other. These oscillations
start after an Nt of ~ 3 with a characteristic oscillation
period of roughly 3 N, as expected for linear internal
gravity waves. The VKE and PE oscillations are created
by the temporal variations in the buoyancy flux, BF.
Weak oscillations are also observed in the evolution of
HKE, particularly for the higher stratification case (N
= 10 cph; Fig. 3c), suggesting that the pressure strain
correlation terms (which transfer energy between VKE
to HKE; Fig. 2) are dynamically significant when the
ambient stratification is intense.

¢. Internal waves, mixing, and the buoyancy flux

Energy exchanges between VKE and PE are per-
formed by the buoyancy flux, which when negative
acts to convert VKE to PE. The temporal evolution of
the domain-averaged BF (g{WT ) + BF,, where BF,
is the SGS BF) is shown in the second panel of Fig. 3.
Large BF oscillations start after an Nt of about 2 and
follow the variations in VKE and PE such that when
BF is positive, decay rates for VKE decrease while those
for PE increase. After an Nt of ~2, the BF exchanges
PE and VKE in a nearly reversible, sinusoidal pattern
with an oscillation period of roughly 3 Nt.

The evolution of BF is strongly modulated by VKE
and PE levels as can be shown by examining a sche-
matic BF budget

dBF op

P 2(PE — VKE) g<Taz> + f(v, k), (24)
where f(», «) represents various viscous and diffusive
terms, which are not directly important for high Reyn-
olds number turbulence. An excess of PE over VKE
should cause an increase in BF, which in turn will act
to reduce PE (21c). This coupling of PE and VKE via
the BF gives rise to nearly reversible, wavelike oscil-
lations in the domain-averaged energetics by driving
internal gravity waves, especially after an Nt of ~2
(Fig. 3). However, these internal waves cannot be sim-
ply linear internal gravity waves (Stewart 1969), as a
superposition of linear waves will produce a
zero BF.

Evidence of an irreversible character for BF may
also be observed. That is, when the irreversible portion
of the buoyancy flux is negative, VKE is being per-
manently converted to PE, effectively raising the center
of mass of the fluid while mixing temperature fluctu-
ations down the mean temperature gradient. Irrevers-
ible aspects of the domain-averaged BF are best illus-
trated by examining the time-integrated buoyancy flux
(IBF), or

Nt

IBF = | BF(:')dt'. (25)
0
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FIG. 2. Schematic diagram of the component energy exchanges in
a statistically homogeneous, stably stratified fluid. Symbols are defined
in the text.

Temporal variations of the temporally integrated
buoyancy flux are shown in the bottom panel of Fig.
3. Early in the simulations (Nt < 3), the IBF rapidly
accumulates negative values. After this initial period
(~2Nt), the rate at which IBF values decrease dra-
matically slows as it begins to oscillate. The transition
between the strongly irreversible accumulation of PE
and the reversible BF oscillations occurs suddenly and
indicates that the initial turbulent flow evolves rapidly
into a buoyancy-affected flow field dominated by in-
ternal wave motions. This transition is most striking
for the lower N value experiments (N = 1 and 3 cph;
Figs. 3a,b) than for the 10 cph case (Fig. 3c). However,
for the high stratification experiment, the IBF is neg-
ative indicating that the BF is irreversible to some de-
gree.

An irreversible character for BF can still be observed
even after the BF transition for the Nt = 1 and 3 cph
experiments. For these experiments, the IBF slowly
decreases after an Nt of ~2, indicating the permanent
accumulation of PE and down gradient mixing. The
irreversible portion of BF ({ BF );) can be crudely es-
timated by determining the linear slope of the IBF ver-
sus Nt (after Nt = 2). The resulting regression slopes,
(BF);, may be expressed in terms of a vertical eddy
diffusivity, K,, by recognizing that K, is defined as
—(BF)/N?. The resulting values of K,, in dimen-
sional form, are 2.4 X 107> m?s~' and 7.2 X 1073
m?s~! for the N = 1 and 3 cph experiments, respec-
tively. These values are in the range expected for ver-
tical mixing coefficients for the ocean thermocline
(107 < K, < 107* m?s™!; e.g., Munk 1966, 1981;
Osborn and Cox 1972; Osborn 1980; Gregg 1989;
Moum 1990). _

Even though the present estimates of vertical eddy
diffusivity produce realistic values, there are some ca-
veats that must be addressed. For instance, as the flow
decays, it is likely that the value (BF); should also
decrease in time. Thus, the assumption that the value
of ( BF); is constant over the interval of Nt = 2 to 10
will be in error to some unknown degree. Also, the
partitioning of the BF into reversible and irreversible
components is purely heuristic based only upon our
observations of the temporal evolution of IBF. Finally,
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the N = 1 and 3 cphs cases are least-squares fits of IBF = aNt + b, where the constant a is interpreted as the irreversible component of the
BF, (BF ), for the flow after it is controlled by buoyancy processes. Insignificant correlations were found with the N = 10 cph case.

there remain questions in relating the simulated flow
fields during their final period of decay to “true” ocean
turbulence. However, the degree of correspondence of
the K, estimates with typical oceanographic values is
encouraging.

d. Energy dissipation rates

Dissipation rates for KE and PE, ¢ and ¢p (defined

in appendix A), decay monotonically in time and ¢ is
always larger than ep (Fig. 4). Values of € and ¢p de-
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FIG. 3. (Continued)

crease about 2 to 4 orders of magnitude during the 10
Nt simulated, which is considerably more than the 1
to 2 orders of magnitude reduction in the component
energy levels (Fig. 3). Weak temporal oscillations of e
and ep may be observed for the low stratification sim-
ulations (N = 1 and 3 cph), whereas insignificant os-
cillations in € and ep are observed for the high strati-
fication case (N = 10 cph). This indicates that internal
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wave processes are affecting primarily the larger, en-
ergy-containing scales of the flow as € and e, emphasize
the smaller scales of the simulated flow field (e.g., Ten-
nekes and Lumley 1972; Lesieur 1987).

When normalized by »N?, initial values of the non-
dimensionalized dissipation rate, ¢/vN?, are large
[O(10*)], whereas values at Nt = 10 are typically much
smaller (less than 100). Gargett et al. (1984) has sug-
gested that ¢/vN? is a good indicator of the existence
and extent of the turbulent inertial subrange. These
relatively high values of ¢/vN? are consistent with the
assumption that the GS cutoff is made within the in-
ertial subrange of turbulence. The final values of ¢/ ¥N?
less than 100 are similar te observed values (e.g., Gregg
1989; Yamazaki 1990). The ratio of the PE and KE
dissipation rates defines a mixing efficiency (n = €p/¢€)
for stratified turbulence (McEwan 1983). Values of g
are between 0.20 and 0.25, roughly consistent with
oceanic and laboratory observations (e.g., Oakey 1982;
McEwan 1983).

e. Wave-vortex decomposition

The existence of a restoring buoyancy force acts to
distinguish horizontal vortical motions from other
motions. The wave-vortex (or Craya) decomposition
is used to decompose the 3D velocity field into two
scalar components. The distinction between these two
scalar components as “wave’ and “vortical”’ modes of
motion is based upon kinematical considerations and
1s developed as follows (Fig. 5; Riley et al. 1981; Lilly
1983; Lesieur 1987; Miiller 1988). In spectral space,
each velocity vector, u(k), must lie in the plane per-
pendicular to its wave vector, k, because of the con-
tinuity constraint (k-u(k) = 0). Thus, the velocity
field may be completely described by two scalar fields.
The wave-vortex decomposition is made by establishing
one of the components as the projection of the velocity
vector onto the horizontal plane (the vortical mode;
u, and v,), while the residual is denoted as the wave
component (u,, v, and w). An illustration of the re-
lationships between a wavevector (k), its velocity vec-
tor [u(k)], and the results of the wave-vortex decom-
position is shown in Fig. 5.

The interpretation of the wave-vortex decomposition
is based upon several simple considerations. The vortex
velocity vector (u,, v,, 0) is constrained to lie within
a horizontal plane and thus cannot represent the ver-
tical motions of an internal wave. The wave velocity
vector (u,,, Uy, w) is not constrained to lie in any spe-
cific plane and hence, contains motions with compo-
nents in all three directions. The vorticity vectors for
the wave and vortex velocity components must be per-
pendicular to their respective velocity vectors and to
the wavevector, k[ Q(k) = k X u(k)]. All of the vertical
vorticity in the flow is contained in the vortex mode;
however, the vortex component’s vorticity is not purely
vertical. The wave component vorticity is entirely in
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shown in the lower panel of each plot.

the horizontal direction, similar to linear internal grav-
ity waves. Thus, internal gravity waves will be repre-
sented by the wave component, whereas 2D vortices
will contribute to the vortical mode.

It must be stressed that the wave-vortex decompo-
sition is purely kinematical and does not imply a dy-
namical partition of the flow into waves and vortices.
Obviously, this kinematical decomposition is, at best,
only approximate; hence, its interpretation must be
made cautiously. For example, a flow field with random
phase relations between velocity components, such as
fully developed turbulence, will have its kinetic energy
equipartitioned between the wave and vortical forms.
This will confound the interpretation of the wave-vor-
tex decomposition in a flow field composed of vortices,
internal waves, and 3D turbulence. However, for pres-
ent purposes, the Craya decomposition provides a
convenient, albeit approximate, means for evaluating
the relative contributions of wave and vortex
motions.

The temporal evolution of the vortical kinetic energy
[KE, = ({@? + 0}) + KEg,/2)], the wave kinetic en-
ergy [KE,, = ({u3 + % + w?) + KEg,/2)], and the
potential energy (PE) is shown in the bottom panel of
Fig. 4. In general, KE, decreases monotonically with
respect to time while KE,, and PE oscillate out-of-phase
with each other. Temporal oscillations in the level of
KE, are not observed for any of the experiments sup-
porting the ascription of the vortical component to 2D
motions. The nearly identical energy levels and the
tightly coupled evolution of KE,, and PE indicates that
these two components are well equipartitioned in a
global sense (i.e., averaged over all scales). This suggests
that KE,, may be a good measure of the kinetic energy
of the internal wave field. A similar equipartition has
been observedtin a direct numerical simulation (at low
Re,) of stratified, decaying turbulence by Métais and
Herring (1989). However, there is no sense of an equi-
partition between the vortical and wave kinetic energies
(Fig. 4).

y

/
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F1G. 4. (Continued)

[ Evolution of characteristic length scales

Length scales may be used to characterize the size
of the energy-containing motions or the importance of
particular processes in a turbulent flow (e.g., Tennekes
and Lumley 1972). These scales may be defined using
both dynamical and kinematical considerations. The
derivation and interpretation of length scales for stably
stratified flows has been made by many investigators
in recent years (cf. Thorpe 1977; Gibson 1980, 1987;
Dickey and Mellor 1980; Dillon 1982, 1984; Stillinger
et al. 1983; Gargett et al. 1984; Itsweire et al. 1986;
Crawford 1986; Gregg 1987; Métais and Herring 1989;
Lienhard and Van Atta 1990; Yamazaki 1990; Barrett
and Van Atta 1991). Here, many of these length scales
are re-introduced so their notation and interpretation
is clear.

Several length scales based upon dynamical consid-
erations may be defined. For example, the Kolmogorov
length scale (L,) defines the scale at which molecular
viscous and inertial forces are the same magnitude,

3\ 1/4
L= (V_) )
€

(26a)
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The direct effects of molecular viscosity are unimpor-
tant for present purposes as values of L, are several
orders of magnitude smaller than the GS cutoff (A;
Siegel 1988). Another important dynamical length
scale is the Ozmidov scale (L), which is defined using

€ 1/2
Lo - (7\,‘_3) .

The Ozmidov scale represents the vertical length scale
where the buoyancy forces affecting the evolution of
vertical momentum are equal to the inertial (or non-
linear) terms. Vertical scales larger than L, will be af-
fected by the ambient stable stratification, while those
smaller will not. The wavelength scale (L,,) describes
the vertical displacement of a fluid element that would
occur if all of the VKE in the flow is transformed to
PE. Here L,, is defined as

[ W _(2VKE)”?
w N N 2

(26b)

(26c)

where w’is the root mean square of the vertical velocity.

Length scales based upon kinematical considerations
may also be defined, such as the displacement scale
(L,), which quantifies the rms vertical displacement
of a fluid parcel from its equilibrium position, or

2\ 1/2
LoD

AT, dz (26d)

Values of L, have been used as an indicator of the
largest turbulent scale assuming that the temperature
fluctuations can be described using a geometric model
of an overturning eddy (e.g., Stillinger et al. 1983; Gar-
gett et al. 1984; Itsweire et al. 1986). However, internal
wave processes also create vertical displacements of
water parcels, particularly for the energy-containing

horizontal
plane

-—

plane L to the
—-—
wavevector

«—
g l
F1G. 5. Diagram in spectral space illustrating the wave-vortex de-

composition of the velocity field into wave and vortical components
(adapted from Miiller 1984).



10 e L) A v L4 v L v L] v v
- — — - — — = - — — — — ~
——r— ] »
—— h
LO

14

Nt

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 24

10 T v 1 M | . J T v v
—_—
——  h 1
o Lo
1 R

Nt

F1G. 6. The temporal evolution of vertical (#) and horizontal (/) energy-containing length scales and the Ozmidov scale (Lo) is shown
in the upper panel for mean stratifications of (a) N = 1 cph, (b) N = 3 cph, and (c¢) N = 10 cph. The lower panel shows the evolution of
the wave (L,,) and the displacement (L) scales, as well as the energy-containing scales (/ and #). The horizontal dashed line in each panel
represents the nondimensionalized size of the computational domain (L = 2x).

scales and variations in L, should be interpreted with
caution (e.g., Caldwell 1983; Yamazaki 1990).

Length scales characterizing the size of the energy-
containing eddies (integral length scales) may be cal-
culated directly using the 3D data. Integral length scales
are calculated by evaluating the most probable length
scale of the observed energy spectra (e.g., Monin and
Yaglom 1981), or

T N/2
rap

N2
X (X (k)i (—k))~",

kj=l

(26e)

where #; (k;) here represents Fourier amplitudes of the
ith component of the velocity field in the jth wave-

number direction. Of particular interest are the hori-
zontal (/) and vertical (%) energy-containing scales,
which are defined here using

I=(Ly+ Ly + Ly + L+ Ly+ Ly)/6
h=(Lys+ Ly + L33)/3.

(26f)
(26g)

The definitions of / and 4 are somewhat arbitrary as
several other reasonable choices can be made (Métais
and Herring 1989). The presently defined length scales
relate to the horizontal and vertical extent of the KE-
containing structures. It should be stressed that the def-
inition of the integral scales (/ and /#) makes no dis-
tinction whether these structures are turbulent, internal
wave, or vortical motions.

Comparisons among the various length scales are
probably best made using a length scale evolution dia-
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gram (Stillinger et al. 1983). Examples of evolution
diagrams for the Ozmidov and energy-containing scales
(Lo, /, and h) are shown in the upper panel of Fig. 6
and for the wave, displacement, and energy-containing
scales (L,,, Ly, [, and k) in the lower panel for the three
different stratifications. The derived length scales may
also be compared to the size of the computational do-
main (L = 2m; the dashed horizontal line) and the
grid-scale cutoff (A = 27 /64 ~ 0.0982; not shown ).

In general, the horizontal and vertical energy-con-
taining scales (/ and /) remain uniform throughout the
flow’s evolution. Initially, /is larger than 4 as prescribed
by the initial conditions. However, the integral scales
quickly become roughly isotropic. There does not ap-
pear to be a significant trend in the size of either of the
integral scales with stratification intensity. Nor does
there appear to be a trend in the degree to which these
scales are isotropically distributed.
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The Ozmidov length scale (Ly) decreases rapidly
with time (Fig. 6). Initially, L, is larger than either of
the integral scales indicating that the vertical energy-
containing scales are affected more by inertial forces
than by buoyancy forces. Early in the flow’s evolution,
a transition occurs where the buoyancy forces begin to
become important. This dynamical transition (when
h ~ Ly) occurs at a buoyancy time (Nt) just less than
one for the N = 10 cph case and at an Nt of 2 for the
N =1 cph case. This dynamical transition does not
manifest itself in the evolution of integral scales, in-
dicating that the size and vertical-horizontal structure
of the kinetic energy-containing scales remain invariant
through this transition. The timing of the length scale
transition is similar to changes observed in the IBF
evolution (Fig. 3). Further discussion of the conse-
quences and role of this dynamic transition will be
presented in section 10b.

The evolution of the vertical displacement scales,
the wave scale (L,,) and the displacement scale (L,),
are compared to the magnitudes of the energy-con-
taining scales (/4 and /) in the lower panels of Fig. 6.
Values of L, and L,, decrease in time while they oscil-
late similar to VKE and PE, as is expected (26¢ and
d). Values of the ratio of L, to L, range from about
1.2 to 1.5 and increase in time. This indicates that the
rms vertical displacement of isothermal surfaces is
greater than could be produced by the instantaneous
amount of VKE. Other energy sources besides VKE,
such as HKE, must contribute energy to support the
observed isotherm displacements where HKE is trans-
ferred to VKE via the pressure-strain correlation, This
interaction of energy components is expected for in-
ternal gravity wave motions. In addition, the wave and
displacement scales are both larger than the Ozmidov
scale ( Ly) for each experiment. This indicates that mo-
tions on these scales must have their vertical motions
affected by buoyancy forces. Further, the evolution of
L,, and L, do not reflect the variations in # providing
more evidence that these length scales are inappropriate
for characterizing the size of the energetic structures
in stably stratified turbulence.

8. Visualizations of the energetic structures

The visualization of the simulated three-dimensional
velocity and temperature fields gives a visual depiction
of the extent and orientation of the energetic structures.
Vertical-horizontal cross sections of the horizontal ki-
netic energy [ HKE(x, 7, z)], the vertical kinetic energy
[VKE(x, m, z)], the potential energy [PE(x, , z)],
and the absolute temperature profile [7T(x, w, z)
+ T,(z)] for the N = 1 cph stratification experiment
are shown in Fig. 7a at Nt = 1 and in Fig. 7b at Nt
= 5. The N = 1 cph case is chosen as its BF evolution
responds most acutely to the transition from an inertial
to a buoyancy-dominated flow (Fig. 3a). Vertical-
horizontal cross sections using data from the other
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FIG. 8. Horizontal-vertical slices of T(x, 7, z) + T,(z) for Nt = 1, 2, 3, and 4 for a mean
stratification of N = 1 cph. The temperature contour interval is equal to 2 mK.

stratification cases are qualitatively similar (Siegel
1988).

In general, the HKE, VKE, and PE spatial structures
are characterized by nearly equal vertical and horizon-
tal dimensions. These structures are found intermit-
tently in space, without any preferred orientation.
There also appears to be little difference in the character
of the HKE, VKE, and PE distributions between the
two times, consistent with the evolution of the energy-
containing length scales (/4 and /; Fig. 6a). This con-
sistency in the energy containing structures is similar
to the results of recent laboratory-based visualizations
of active scalar distributions in decaying stratified tur-
bulence (Barrett and Van Atta 1991). In particular,
the KE or PE structures for the Nt = 5 maintain an
aspect ratio of nearly one illustrating that there is little
“pancaking” of the energetic structures after the vertical
momentum balance becomes dominated by buoyancy
processes.

In contrast to the energy distributions, vertical-hor-
izontal cross sections of the absolute temperature pro-
file show significant differences between Nt = 1 and Nt
= 5 (Fig. 7). At Nt = 1, the temperature field is highly

chaotic with many complicated, small-scale structures.
However, at Nt = 5, the temperature structure shows
considerably less variability and vertically coherent
wavelike features are observed. Thus, a transition has
occurred in the character of the vertical temperature
profile. In addition, several temperature inversions are
observed in the Nt = 5 temperature distribution with
structures that are reminiscent of overturning Kelvin—
Helmholtz instabilities. However, there appears to be
little correspondence between these overturning struc-
tures and intense patches of VKE or HKE (Fig. 7b).

The transition between a fully turbulent flow and
one dominated by buoyancy forces may be better vi-
sualized by examining the temporal evolution of ver-
tical slices of the absolute temperature. An example of
this temporal evolution is given for the N = 1 cph case
for buoyancy times (Nt) of 1, 2, 3, and 4 in Fig. 8.
These temperature distributions illustrate a highly tur-
bulent flow gradually evolving into an internal wave—
dominated flow, with the general features described
above. This transition does not appear to occur at a
specific time, unlike the evolution of the integrated
buoyancy flux (Fig. 3a).
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FiG. 9. Horizontal-vertical wavenumber distributions of horizontal kinetic energy [ HKE(k;, k)], vertical kinetic energy [ VKE (k4, &,)1,
potential energy [PE(k;, k)], and the total energy [ TE(k;, k)] for the N = 1 cph experiment. Buoyancy time (Nt) of (a) 0, (b) 0.25, (¢) 1,
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FIG. 9. (Continued) and (d) 5 are shown. Here, the distribution of the energy per mode (for each individual wavevector) is shown where
the lines correspond to constant energy levels evenly spaced in units of log,c(energy) and are scaled separately for each of the spectral
distributions.
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9. Spectral energy evolution

The development of anisotropy in the flow may be
better examined using horizontal-vertical wavenumber
distributions of spectral energy levels. Definitions and
procedures used in making the spectral energy calcu-
lations are presented in appendix C. The two-dimen-
sional representations for the horizontal kinetic energy
[HKE(ky, k,)], vertical kinetic energy [ VKE(k, k)],
potential energy [PE(k;, k,)], and total energy [ TE(k;,
k,)] distributions are shown in Fig. 9 for Nt = 0, 0.25,
1, and 5. Again, only the N = 1 cph experiment is
shown in an effort to assess the influence of the inertial-
buoyancy transition on spectral energy distributions
and transfer rates. Here, spectral distributions of energy
per individual wave mode are shown where the isolines
correspond to constant energy density and are scaled
separately for each component (see appendix C). Using
this representation, an isotropic energy distribution will
have isolines of constant density at a fixed radial dis-
tance from the spectral origin.

Obviously, the initial spectra are highly anisotropic
(Fig. 9a). Generally, HKE and PE are contained pri-
marily in low horizontal wavenumbers, while energy
is almost uniformly distributed over the vertical wave-
numbers. Thus, the energy contained in the initial HKE
and PE spectra have relatively large horizontal and
small vertical scales. This characteristic was observed
in the initial values of the energy-containing length
scales (4 and /; Fig. 6). As time proceeds, the spectral
energy distributions evolve toward isotropic energy
distributions. This redistribution occurs rapidly during
the first 0.25 Nt (Fig. 9b), but some subsequent tem-
poral evolution in the horizontal-vertical wavenumber
distributions may still be observed (Figs. 9¢ and 9d).
This evolution toward isotropy is particularly evident
for the total energy distribution, which appears nearly

isotropic by an Nt of 5. However, the component spec-

tral energy distributions [cf. HKE (., k,) and VKE (&,
k,)] are not isotropically distributed. This result was
also observed for the other two stratifications investi-
gated (N = 3 and 10 cph).

The results of the wave-vortex decomposition may
be evaluated spectrally in order to assess the global
equipartition between the wave kinetic and potential
energies (Fig. 4a) as well as investigating the scale de-
pendency of “waves” and “vortices” from the Craya
decomposition. Examples of KE,, KE,,, and PE spectra
for the vertical (k,) and the horizontal (k,) wavenum-
ber shells (for N = 1 cph, Nt = 0, 1 and 5) are shown
in Fig. 10. Initially, the KE, and KE,, spectra are
roughly the same as the total amount of kinetic energy
is equipartitioned between these two forms. Spectral
slopes are steeper in the horizontal direction (~k~?)
than in the vertical direction (~k~!). After the initial
reorganization (Nt = 1), the spectral slopes for both
directions become more steep (just less than k=) where
the slope of the PE spectra is less than the spectral
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slopes for either of the kinetic energy spectra. Generally,
the energy spectra exhibit k~>/3 regions in at least part

-of their resolved wavenumber ranges, although of

course, the existence of a k>’ is not necessarily in-
dicative of the existence of an inertial subrange of tur-
bulence (e.g., Lesieur 1987; Kerr 1990). Subsequent
spectral energy evolution (Nt = 5) is much less than

.the initial reorganization (Fig. 10). Interestingly, a

spectral equipartition between KE,, and PE does not
appear to hold, although one is observed in the evo-
lution of the domain-averaged KE,, and PE values (Fig.
4a). In some sense, a better equipartition is found be-
tween the KE, and KE,, spectral distributions as ex-
pected for a purely random velocity field.

The relative contributions that vortical motions
make to total energy (TE) spectrum may be evaluated
by examining the spectral ratios of 3KE, (k,) to TE(k,)
and 3KE, (k) to TE(k;). These ratios will be equal to
one if the flow is fully equipartitioned among
the three components [i.e., PE(k,) ~ KE,(k,)
=~ KE,(k,)]. Therefore, this provides a reasonable

‘method for assessing the relative contributions of vor-

tical motions to the total energy spectrum. If the ratio
of 3KE, (k) to TE(Kk) is greater than one, the total en-
ergy is composed of relatively more vortical energy than
a fully equipartitioned field. Whereas, if the ratio of
3KE,(k) to TE(k) is less than one, there should be
more wave energy [PE(k) + KE, (k)]. This simple
interpretation is confounded by the coexistence of ran-
dom 3D turbulent motions, as a random velocity field
will be equipartitioned with equal vortical and wave
kinetic energies. Thus, the presence of 3D turbulence
will act to reduce spectral ratios of 3KE, (k) to TE(k).

Examples of these vortical-to-total energy ratios are
shown in Fig. 11 for Nt = 1, 5, and 10 for the N = 1
cph experiment. Initially (Nt = 0), the ratios are spec-
trally uniform with values of about 1 (not shown). As
time proceeds (cf. Nt = 1), values of this ratio reach
about 1.1 for the wavenumbers ranging from 2 to 8
indicating relatively large contributions by vortical
structures to the total energy of the flow for the larger
scales simulated (Fig. 11). However, for the small
simulated scales (k > 7), the ratios decrease to ~0.7
indicating a dominance of internal wave and/or
quasi-random, 3D turbulent motions. At Nt = 5, the
difference in these ratios between these two spectral
regions becomes significantly greater. Near the end
of the simulation (Nt = 10), vortical energy struc-
tures contribute substantially to vertical and hori-
zontal wavenumbers less than about 4, while the
higher wavenumber region (k > 7) is deficient in
vortical energy. In addition, the spectral extent over
which vortical motions dominate the flow energetics
decreases with increasing time indicating that vortical
energy is being concentrated at larger scales as time
proceeds (Fig. 10). This is particularly apparent in
the horizontal direction. This concentration of vort-
ical energy at larger spatial scales is reminiscent of
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FIG. 10. Vertical (k,; left side) and horizontal (k; right side) wavenumber spectra of vortical kinetic energy (KE,;
solid), wave kinetic energy (KE,; dashed), and potential energy ( PE; dotted) for N = 1 cph. Buoyancy times (Nt) of 0,
1, and 5 are shown. The lines in each panel represent k=2 (upper), k™' (lower) spectral slopes.

the results of numerical simulations of decaying 2D
turbulence where coherent vortices become larger
and more isolated in time (e.g., Herring et al. 1974;
Herring and McWilliams 1985). However, this is
obviously not the case as the vortical modes ad-
dressed here are not true 2D vortices.

Details of the dynamic nature of the simulated mo-
tions and their temporal variations can be made by
examining the spectral rates of nonlinear energy trans-
fer. Rates of spectral horizontal kinetic energy transfer
due to the nonlinear GS (I'g( k;)) and the parameter-
ized SGS processes (€s( k,)) are shown in Fig. 12 eval-
uated in the horizontal wavenumber direction. Again,
only data from the N = 1 cph experiment are shown.
Dertvation of rates of spectral energy transfer are pre-

sented in appendix D. Spectral energy transfer rates
are nearly identical in the vertical direction (Siegel
1988).

_In general, the GS nonlinear transfer terms,
Iys( k), remove energy from the lowest wavenumbers
(generally less than 5) and add energy to higher wave-
numbers (Fig. 12). These terms transfer energy spec-
trally from large to small scales as part of the turbulent
cascade as energy must be conserved by nonlinear in-
teraction processes. That is, the net effect of I'y(ky)
when integrated over all scales of motion is identically
zero (e.g., Lesieur 1987). In addition, there is no evi-
dence of any back transfers of reverse energy cascades
in I'gs(k), which are indicative of the enstrophy cascade
in 2D turbulence. The SGS processes, €(k,), act as
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FIG. 11. Vertical (k,; dashed) and horizontal (k,; dotted) wave-
number spectra of the ratio of 3KE, to TE for Nt = 1, 5, and 10 for
the N = | cph experiment. Values greater than one indicate relatively
more vortical than wave energy compared with a complete equipar-
tition of energy among KE,,, KE,, and PE (see the text).

a spectrally uniform drain of energy (Fig. 12). Varia-
tions of I'y(k) and €.,.(k) in the vertical direction and
for other energy components (VKE and PE) are similar
(Siegel 1988).

For the smaller simulated spatial scales (k > 10),
there exists a balance between the GS transfer and SGS
drain terms (Fig. 12). For these scales, kinetic energy
is transferred to small scales by resolved scale nonlinear
interactions and this transferred energy in turn is then
removed by the parameterized SGS processes. This
coupled GS transfer-SGS dissipation process can be
addressed conceptually in terms of the energy transfer
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_FIG. 12. Spectral energy transfer of HKE by nonlinear interactions
[Te(kr)] and by parameterized SGS processes [&g(k;)] for the N
= | cph experiment. Procedures for calculating energy transfer spectra
are given in appendix D. Buoyancy times (Nt) of 0.25, 1, and 5 Mt
are shown. Spectra are shown only for the horizontal direction (k)
although variations in the vertical wavenumber (k,) direction are
similar (Siegel 1988).

processes for an inertial subrange. Within the inertial
subrange, energy is transferred spectrally at a constant
rate only by nonlinear interactions. Here, the param-
eterized SGS terms model the inertial cascade by re-
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moving the amount of small-scale energy, which has
been transferred to it by the GS nonlinear processes.
If all of the scales of motion were resolved, these non-
linear cascades of energy would, of course, continue to
molecular scales where viscous and diffusive processes
would dissipate this energy. In effect, the SGS param-
eterization models the nonlinear cascading processes
of the inertial subrange by removing the energy that
GS processes have fed into it, modeling the expected
nonlinear energy transfers of an inertial cascade.

10. Discussion

a. Performance of the Smagorinsky SGS
paramelerization

The evaluation of the performance of the SGS pa-
rameterization method is important for several reasons,
First, verifying that the SGS parameterization has
achieved its intended goal of modeling the effects of
the unresolved motions will give greater confidence in
the realism of the resolved scale flow fields. Second,
improvements to the SGS model, both in modeling
accuracy and in computational efficiency, may be
found. These appraisals may be made in a number of
different ways.

One such appraisal is testing the self-consistency of
the SGS parameterization with respect to its underlying
assumptions. The large-eddy approximation assumes
that the energy-containing scales of the flow are re-
solved by GS motions, while rates of energy dissipation
are controlled by SGS processes. Thus, by estimating
the relative contribution that SGS processes make to
the energy, energy dissipation rates, and fluxes of the
simulated flow, the consistency of the SGS models with
the large-eddy assumptions may be evaluated. Deri-
vations of the SGS energy and flux levels are given in
appendix A.

Initial SGS energy levels range from 7 to 20% of the
total KE and PE and dramatically decrease in time to
typically less than 5%. The relative contribution GS
processes make to the dissipation of KE and PE in-
creases as a function of time although it is generally
small (always less than 20% of the total). For the high
stratification case (10 cph), less than 4% of the KE
dissipation can be attributed to GS processes. In ad-
dition, SGS processes make negligible contributions to
the domain-averaged buoyancy flux (always less than
1%). Thus, the present LES results are consistent with
the assumptions suggested by the large-eddy approxi-
mation.

The detailed examination of energy wavenumber
spectra provides another means for evaluating the SGS
parameterization performance. Horizontal and vertical
wavenumber spectra for KE,. and KE, show noticeable
increases in KE levels with wavenumber as the cutoff
wavenumber (k. = 31) is approached (Fig. 10). These
spectral “‘roll ups” suggest that transferred KE is not
effectively being removed by the Smagorinsky SGS
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eddy viscosity (Siggia and Patterson 1978). These “roll-
ups” are not seen to the same degree in the PE spectra
suggesting that PE is being efficiently removed by the
SGS parameterization.

Additional information concerning the SGS param-
eterization may be obtained by examining the spectral
variations in the SGS eddy viscosity, Ksgs. The spectral
distribution of Kggs for the N = 1 c¢ph simulation is
shown in Fig. 13 at buoyancy times of 1 and 5. Here,
the Ksgs spectra are given in terms of the spectral vari-
ance of the SGS eddy viscosity per individual wave
mode. The spectral distributions of Ksgg are nearly
uniform and isotropic. However, the absolute magni-
tude of the Ksgs spectra are very different for the two
times (Fig. 13). Rates of spectral energy transfer due
to terms in the equations of motion, which include the
SGS eddy viscosity, €,(k;), are also spectrally uniform
(Fig. 12). It should be noted that spectral variations
in €(k,) are nearly identical (Siegel 1988) indicating
that energy losses due to the SGS parameterization oc-
cur isotropically. As was observed in the spectral struc-
ture of Kggs, the absolute rates of SGS energy drain
decrease with decreasing time, while their spectral
shapes remain uniform (Fig. 12).

It has been suggested that a uniform spectral distri-
bution should be found when the Smagorinsky SGS

..... ky Nt=1
...... kh
10° |
Nt=5
10-6 :.___ ;;;;; n___\\.‘ ................. . ] )
1 10
Wavenumber

F1G. 13. Horizontal (dotted) and vertical (dashed) wavenumber
spectra ( per individual wavevector) for the distribution of the Sma-
gorinsky eddy viscosity (Ksgs) for the N = 1 cph experiment. Buoy-
ancy times (Nt) of 1 and 5 are shown.
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eddy viscosity is applied to the large-eddy simulation
of isotropic turbulence (e.g., Yoshizawa 1982; Chollet
1984). The fact that holds for the present stably strat-
ified application is somewhat surprising. The uniform
and isotropic nature of the spectral distribution of the
SGS eddy viscosity suggests that a spatially constant,
temporally varying, SGS eddy viscosity may be an ap-
propriate model for the large-eddy simulation of buoy-
ancy-affected flows. .

A reasonable candidate SGS parameterization for
these purposes is the Chollet and Lesieur (1981, here-
after CL81) spectral SGS eddy viscosity. The CL81
eddy viscosity is constructed by examining spectral en-
ergy and scalar variance transfers across a cutoff wave-
number using the Eddy Damped Quasi-Normal Mar-
kovian (EDQNM) turbulence model (Chollet and
Lesieur 1981; Chollet 1984; Lesieur 1987; Lesieur and
Rogallo 1989). The CL81 eddy viscosity accounts for
nonlinear energy transfers due to both local and non-
local triad interactions (e.g., Lesieur 1987). A similar
spectral eddy viscosity was derived using the test field
model (Kraichnan 1976). The CL81 SGS eddy vis-
cosity has been applied by several investigators to the
large-eddy simulation of buoyancy-affected flows (Mé-
tais 1985; Lesieur et al. 1988; Siegel 1991; Batchelor
et al. 1992; Métais and Lesieur 1992).

The CL81 SGS parameterization is defined by a
normalized spectral shape (K,om (K, k.); Fig. 14) whose
amplitude is scaled using the kinetic energy at the cutoff
wavenumber (E(k.)), or
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The algorithm for normalized spectra shape, K, om(k,
k.), is taken from Lesieur and Rogallo (1989). For low
wavenumbers (|k|{/k. < 1), the value of K,om (XK, k;)
is ~0.27 while it increases rapidly as it approaches the
cutoff wavenumber (Fig. 13). The high wavenumber
spectral cusp indicates the importance of local inter-
actions to the transfer of KE across the GS cutoff,
whereas the plateau region (|k|/k. < 1) parameterizes
the effects of nonlocal interactions (e.g., Lesieur 1987),
It should also be noted that spectral eddy viscosities
calculated from direct numerical simulations of low
Reynolds number isotropic turbulence confirm the ex-
istence of a low wavenumber plateau region followed
by a high wavenumber cusp (e.g., Domaradzki et al.
1987). Recently, Métais and Lesieur (1992) found a
similar result in simulations of stably stratified turbu-
lence.

It is of interest to note that the CL81 amplitude scal-
ing, (E(k.)/k.)"/?, is reminiscent of Prandtl’s mixing
length theory where the SGS eddy viscosity scales as
the product of a relevant velocity scale and a length
scale (e.g., Tennekes and Lumley 1972). For this case,
the velocity scale is related to the velocity variance at.
the cutoff wavenumber Vi E(k,) while the length scale
is equal to the cutoff scale (1/k.), which is related to
the size of an SGS eddy. .

A test of the applicability of the CL81 SGS eddy
viscosity to the present application would be to examine
the degree to which the CL81 amplitude scaling holds
for the spectral structure of the Smagorinsky SGS eddy
viscosity, Ksgs. These wavenumber distributions (Fig.

_ [ E(k)\'? 14) indicate that the Smagorinsky SGS eddy viscosity
Kevs (k, k) = ( k. ) Knorm (K, k) scales well with (E(k.)/k.)'/? with a constant of pro-
- portionality of 0.35 (£0.05). This scaling factor does
_ [ E(k) [0.267 + 9.21 not appear to differ in either the vertical or horizontal
k, ) ’ wavenumber directions aithough the scaling appears
to collapse the Kgsgs variations better in the vertical
X exp(—3.03k./|k|)]. (27) wavenumber direction than the horizontal. The dif-
0.5
0.4
— /
7/
0.3 7
1 10 10
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F1G. 14. Spectral variations (per individual wavevector) of the scaled Smagorinsky SGS eddy viscosity
[Ksos( E(k.)/k:)~'/?] for the vertical (left panel) and the horizontal (right panel) wavenumbers for the N
= 1 cph experiment. The cutoff wavenumber, k., is equal to 31. Scaled SGS eddy viscosity spectra are shown

for buoyancy times (Nt) 0f 0.25, 1, 2, 5, 7, and 10.
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ference between plateau value of ~0.27 suggested by
the CL81 model and the present observation of 0.35
may be attributed to the fact that a high wavenumber
cusp is not found in the spectral analysis of the Sma-
gorinsky SGS parameterization. This suggests that the
Smagorinsky SGS eddy viscosity compensates for the
lack of a high wavenumber cusp by increasing its mean
level (Fig. 14). In addition, the high wavenumber “roll
ups” observed in the KE spectra (Fig. 10) should be
eliminated by introducing an ad hoc high wavenumber
augmentation (or cusp) to a constant spectral eddy
viscosity (Siggia and Patterson 1978; Siegel 1991).

The present results suggest that the Smagorinsky SGS
eddy viscosity may be parameterized as a simple spec-
tral (i.e., uniform and isotropic) function with an am-
plitude scaling of (E(k.)/k.)!/?. The CL81 SGS eddy
viscosity appears to be a perfect candidate for these
purposes. Recently, we have performed several nu-
merical experiments aimed at the evaluation of the
CLS81 spectral eddy viscosity for stably stratified flows
(Siegel 1991). These results indicate that significantly
better correspondence is found between observed KE
and PE spectra and theoretical Kolmogorov—Obukhov
spectra using the CL81 SGS eddy viscosity than were
for the Smagorinsky eddy viscosity. In addition, spec-
tral roll ups in KE or PE spectra were not observed.
In addition, the CL81 simulations require about one-
half the computational time as the Smagorinsky SGS
eddy viscosity simulations (Siegel 1991). This work is
still in progress.

b. Observations of the turbulent collapse

The “turbulent collapse” refers to the dynamical
transition of decaying, 3D, fully developed, stably
stratified turbulence to a state where the vertical tur-
bulent scales are suppressed by the ambient stable
stratification (e.g., Dickey and Mellor 1980; Stillinger
et al. 1983; Gregg 1987; Lesieur 1987; Hopfinger 1987;
Barrett and Van Atta 1991). This vertical scale
suppression is thought to cause the initially three-di-
mensional eddies to “collapse” into nearly horizontal
“pancakelike” eddies where their vertical scale is lim-
ited by the Ozmidov scale (L;). Observations of these
pancake eddies have been made primarily from labo-
ratory flow visualizations of the dispersal of passive
dye patches (e.g., Lin and Pao 1979; Browand et al.
1987), while observations of a rapid decrease in energy
decay rates or a vanishing buoyancy flux are often used
as evidence of the onset of the turbulent collapse (e.g.,
Dickey and Mellor 1980; Stillinger et al. 1983; Itsweire
etal. 1986). Recent laboratory observations have sug-
gested that rates of spectral energy transfer reverse their
sign coincident with the onset of the collapse (Itsweire
and Helland 1989). Reverse energy transfer cascades
are found for the enstrophy cascade in 2D turbulence
(Pedlosky 1979). It has been speculated that these
“collapsed™ eddies are purely 2D vortical motions,
creating these reverse energy cascades (e.g., Lilly 1983).

SIEGEL AND DOMARADZKI

2377

The onset of the turbulent collapse may be best il-
lustrated by making a dimensional argument. We as-
sume that the buoyancy frequency (), a turbulent
vertical velocity scale (w"), and the vertical length scale
(h) are the only relevant parameters describing the na-
ture of a decaying, stably stratified, high Reynolds
number flow. Using these parameters, a nondimen-
sional group, the Froude number (Fr), may be defined,

W’ e1/3 LO 2/3
= Nh T VR (7) ’

where the turbulent velocity (w’) is related to the KE
dissipation rate by ¢ = w'3/h (Tennekes and Lumley
1972) and the definition of the Ozmidov scale (Ly;
26b) is used. The Froude number quantifies the relative
importance of inertial forces (w’?/h) in the vertical
momentum equation to the buoyancy forces (Nw’).
For large Fr, the inertial terms (turbulence) should
dominate the buoyancy terms (internal waves) in the
evolution of vertical momentum. Whereas when Fr is
less than one, the buoyancy terms will regulate the
evolution of the vertical momentum. As the energy of
the flow decays, the relative importance of the inertial
forces should diminish, reducing values of Fr. When
the Froude number is O( 1), the effects of the inertial
and buoyancy forces are equal, providing the impetus
for the collapse.

The temporal evolution of the Froude number is
shown for the three different stratifications in Fig. 15.
Initially, values of Fr are much greater than one and
decrease monotonically to final values between 0.2 and

(28)

10 v T T T T T T T

——-@— N=1cph
————— N=3cph
—-8—  N=10cph

Froude Number

0.1 1 M Il 2 1 s 1

Nt

FiG. 15. Temporal evolution of the Froude number [Fr = (Lo/
h)?/*] for the three mean stratifications. The dashed line corresponds
to a Fr of 1. Values of the Froude number greater than one imply
that the vertical momentum balance is affected more by inertial forces
than by buoyancy forces. For values of Fr less than one, the energy
containing scales will be strongly modified by buoyancy forces.
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0.3. In general, values of Fr decrease with increasing
stratification indicating that buoyancy forces are more
important for the higher stratification cases, as is ex-
pected. The transition time (Nt,, = Nt (Fr = 1)) is later
for the N = 1 cph case (Nt,, =~ 2) than for the N = 10
cph case (N1, =~ 0.8). These transition times corre-
spond well with the timing of changes observed in the
evolution of the buoyancy flux (Fig. 3) where active
downgradient turbulent mixing is suppressed after an
Nt of ~2. For the N = 10 cph case, there does not
appear to be a clear transition from an irreversible BF
to a reversible one, as oscillations in the IBF appear
almost immediately (Fig. 3¢). This is consistent with
the low initial Fr values and the relatively early occur-
rence of Fr = 1 for the N = 10 cph case. Another ex-
ample of the onset of this turbulent to wavelike tran-
sition may be found in the temporal evolution of the
vertical-horizontal temperature profile distributions
(Fig. 8). However, it is difficult to determine a specific
transition time using only these visual data.

The temporal evolution of several domain-averaged
quantities appear to give conflicting information about
the occurrence of a turbulent collapse. For example,
energy decay rates do not decrease coincident with the
onset of the collapse (Fig. 1). Further, the size of the
vertical integral scale (/) remains unaffected by the
onset of the turbulent collapse and roughly the same
size of the horizontal energy-containing scale (/; Fig.
6). This result is unexpected as the classical phenom-
enology predicts that after a turbulent collapse the ver-
tical scale of turbulent eddies should decrease in a
manner similar to the Ozmidov scale. Thus, we are
not seeing a “‘pancaking” of the energy-containing
motions coincident with the collapse. This is especially
apparent in the invariance of the energetic structures
illustrated in vertical-horizontal cross section view (Fig.
9). However, a dynamic transition does occur in the
nature of the BF evolution.

The invariance in the integral length scales indicates
that the dynamics of these eddies must have evolved
from a fully turbulent state to one in which buoyancy
forces are important, although they have retained their
size and remain isotropic. In some sense, the constancy
of the energy-containing eddies should be expected as
it is unlikely that much of the initial low vertical wave-
number VKE would be transferred to higher vertical
wavenumbers during a period when the nonlinear
transfer mechanisms are inefficient relative to buoy-
ancy processes (when Fr < 1). The low wavenumber
VKE would be exchanged with PE, but absolute values
of BF are becoming small at this time (Fig. 3). This
suggests that the size of the VKE structures should be
preserved during the Froude number transition and
that the initially turbulent VKE would transform itself
into motions where buoyancy processes dominate the
dynamics.

The observed lack of “pancaking” may be examined
by addressing the evolution of the total vertical energy
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(TVE), the sum of VKE and PE. A schematic repre-
sentation of the TVE budget for high Reynolds number
stratified turbulence may be expressed as

dTVE
dt

(29)

=@y — ey — €p,

where ®; is the vertical component of the pressure-
strain correlation vector, which represents the ex-
changes of VKE with HKE and ¢, and ¢, are the dis-
sipation rates for VKE and PE, respectively. As the
buoyancy flux acts only to exchange VKE and PE (21),
it does not have any influence upon the evolution of
TVE. This suggests that the vertical length scales char-
acteristic of TVE will remain constant during the col-
lapse. Similarly, the nonlinear energy cascades of TVE
and, hence, its energy decay rate will remain unaffected
by the collapse. Thus, the onset of the collapse only
indicates that the evolution of PE and VKE will be
intertwined by a reversible BF while energy decay rates,
as well as integral length scales, should remain unaf-
fected. These statements will remain true as long as
molecular dissipation processes are not important for
the evolution of the energy-containing motions (Re,
> 1). ,

It should also be noted that reverse KE transfers by
nonlinear processes are not observed in any of our LES
experiments as is found for the enstrophy cascade of
2D turbulence. Grid-turbulence observations made in
a laboratory-based stably stratified water channel sug-
gest that a reversal in the spectral transfer of the down-
stream energy component in the downstream direction
occurs coincidentally with the onset of the turbulent
collapse (Itsweire and Helland 1989). The present LES
experiments give absolutely no indication of this type
of dynamic transition in the KE transfer spectra, not
even for I'y (k) (Fig. 12). It should be noted that only
weak evidence for reverse KE cascades have been ob-
served in 3D stably stratified numerical simulations,
and that for an experiment that was specifically de-
signed to observe these effects (Herring and Métais
1989).

The present LES observations show clear evidence
of a change in dynamics coincident with the onset of
the turbulent collapse. This is primarily observed in
the changes of the character of BF as the Froude num-
ber becomes less than one (Figs. 3 and 15). However,
there exist many differences when compared with most
previous laboratory or direct numerical observations
of the turbulent collapse. We suggest that this lack of
correspondence may be caused by extreme differences
in the Reynolds numbers for the flows. For example,
Reynolds numbers based upon Taylor length scales
(Re,) for the present LES results are O(10°) consistent
with typical thermocline values (Siegel 1991). How-
ever, Re, values observed from laboratory or direct
numerical experiments are rarely as large as 70. It
should not be expected that these low Re, experiments
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can realistically simulate the nonlinear interactions
found within ocean turbulence as molecular viscous
and diffusive processes will have far too important roles
in the evolution of the energy-containing motions.
Thus, a large-eddy simulation of these flows will pro-
vide a very different accounting for these dissipation
processes.

Some supporting evidence for our speculation of the
role of Reynolds number in the turbulent collapse may
be found in Gargett’s (1988) scaling analysis. The
Gargett scaling applies only at a Froude number of one
and hence, only during the onset of the turbulent col-
lapse. Gargett’s results state that for high Reynolds
number stratified turbulence, the energy-containing
length scales and velocity components will remain iso-
tropic (i.e., # ~ [ and u’ ~ w’). Thus, the energetic
scales of high Reynolds number stratified turbulence
should remain unaffected by the transition to buoy-
ancy-dominated dynamics. However, for low Reynolds
number turbulence, the Gargett scaling states that the
horizontal length and velocity scales should be greater
than respective vertical scales, or / = A and u’ > w’.
Thus for a low Reynolds number flow, the effects of
the collapse should be apparent in both the length scale
and energy level evolution. These predictions are con-
sistent with the present results, although interpretations
based upon the Gargett scaling should be made cau-
tiously as several aspects of this analysis have been
questioned ( Van Atta 1990; Yamazaki 1990).

Recent numerical experiments also provide sup-
porting evidence for a Reynolds number dependency.
A low-resolution LES of decaying stably stratified tur-
bulence performed gives results that are consistent with
the present observations (Métais 1985). That is, Métais
(1985) does not see any evidence of large-scale flow
anisotropy forming as a result of the Froude number
transition. However, the Métais and Herring (1989)
direct numerical simulation does show evidence of a
collapse in the evolution of the energy-containing
scales. Interestingly, the collapse occurs at nearly the
same time as when the Kolmogorov scale grows to
roughly the same size at the integral and Ozmidov
scales (see Fig. 6 of Métais and Herring 1989). Thus,
the energy-containing scales of this direct numerical
simulation are affected by molecular processes coin-
cident with the onset of the turbulent collapse and will
not satisfy the above arguments concerning the cas-
cading of TVE under high Reynolds number condi-
tions.

There does remain uncertainty concerning the ob-
served lack of “pancaking” of the energetic structures
and our ascription of this to the high Reynolds numbers
simulated. In particular, there are questions concerning
the roles of the SGS parameterization and the initial
conditions upon the simulated flow fields. One should
note that the evolution of BF (a second-order moment)
is predicted consistent with the length scale prediction
of the collapse’s onset (when Fr ~ 1), whereas the
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spatial energy distributions (i.e., first-order statistics)
are inconsistent with previous low-Re observations of
pancaking. It seems odd that the choice of the SGS
parameterization, even an isotropic one like the Sma-
gorinsky SGS eddy viscosity, would predict the BF
evolution consistent with turbulence phenomenology,
but not the flow energetics. Also, the fact that ocean-
ographically relevant vertical eddy diffusivity values
are calculated for the latter stages of flow decay suggests
that the SGS processes are adequately accounted for.
We believe that the reason for this is that the simulated
high wavenumber motions perform spectral energy
transfers similar to those expected for the inertial sub-
range of turbulence. Thus, the application of an iso-
tropic SGS eddy viscosity to an evolving stratified flow
should be appropriate (see also Métais and Lesieur
1992).

Similarly, it seems unlikely that the initial conditions
will have much influence upon the flow’s evolution
during the collapse. The LES experiments were ini-
tialized using a highly anisotropic energy distribution
and random phase relations between components. This
initial energy distribution evolves rapidly becoming
nearly isotropic (in less than 0.25N¢; Fig. 9). This rapid
flow isotropization is caused by the rapid attenuation
of high vertical wavenumber energy by SGS dissipation
processes as well as GS spectral energy transfers. In a
sense, it is this nearly isotropic energy distribution that
is really the flow’s “initial” condition. We have recently
performed LES experiments with isotropic initial en-
ergy distributions which confirms many of the present
results. In particular, the BF evolution is qualitatively
similar. Thus, it is unlikely that the character of the
turbulent collapse observed is regulated by the initial
conditions.

Therefore, we suggest that the absence of pancaking
of the energetic structures is due to the large simulated
Reynolds numbers. This suggests that the fundamental
nature of decaying stably stratified turbulence is dif-
ferent for oceanographically relevant space and time-
scales compared with what can be observed using lab-
oratory-based or direct numerical techniques. Detailed
experiments must be conducted before we can consider
the nature of the collapse of stratified turbulence a well
understood problem. Some of these questions may be
addressed by making additional numerical experiments
at differing Reynolds numbers. However, this question
might be better addressed by making detailed field
measurements of a decaying turbulent feature, such as
found in the lee of a tidal channel. It is hoped that the
combination of field and numerical methodologies
would provide complimentary datasets from which the
role of Reynolds number on the decay of turbulence
in stably stratified waters might be evaluated.
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APPENDIX A
Derivation of the SGS Contribution

SGS energy levels are estimated by assuming that
an inertial subrange extends from the GS cutoff wave-
number (k. = w/A) to infinity. The assumption of an
infinite inertial subrange should lead to a slight over-
estimate of SGS energy levels. The SGS energy levels
are found by integrating the theoretical inertial sub-
range spectra for KE (E(k) = axe?’*k™3/3) and for
temperature variance (E(k) = Bxxe '3k ™5/3) from
k. to infinity. Note, k refers to radial wavenumber,

o) eA 2/3
KE. =f E(k)dk = 301,((—7(-) (Ala)
ke

PEg =

2,2 po 38, xale? [ A2\/3
O‘N_gj; Er(k)dk=M(—) i

2N? em?

(Alb)

where ak is the Kolmogorov constant (~1.4) and B¢
is the Batchelor constant ( ~1.3; Tennekes and Lumley
1972). These relations enable the SGS energetics to be
evaluated as functions of the KE dissipation rate (¢)
and the temperature variance dissipation rate (X ). The
SGS energy relations derived here hold locally as well
as in a domain averaged form. The dissipation rates
have both GS and SGS components and may be eval-
uated using the scaling relation ( 14) or from simplified
versions (i.e., excluding buoyancy production) of the
KE and temperature variance budgets (e.g., Eidson
1985; Siegel 1988):

Vg 2 + ';- KéGsS_ 2

(A2a)

1
e=egs+esgs=5

1 BT aT 4 5Gs Ksgs 8T 3T

= Xgs + Xogs = :
X = X ¥ X = o K o 0% | 2P, 0%, 9%

(A2b)
The potential energy dissipation rate (ep) is related to
the temperature variance dissipation rate (X) using ¢p
= (ag/N)?x. Again, these functions hold over all re-
solved scales. The GS and SGS contributions to the
local buoyancy flux may also be evaluated at any point
in space by using the defmmon of SGS eddy diffusivity
(11b), or
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BF = BF,, + BF,, = gwT + (A3)

APPENDIX B
Derivation of the Initial Conditions

The initial conditions used in the model are devel-
oped based upon a modification of the Garrett—-Munk
(GM) internal wave spectrum (Munk 1981). The
modifications assume that the motions are super in-
ertial (cf. w? > f2) and that the phases of each velocity
and buoyancy component are randomly selected (i.€.,
linear internal wave phase relations are not used).
Please note that parameters discussed in this section
are in dimensional units. The GM spectrum is built
around a nondimensional energy density spectrum of-
ten given in terms of a frequency-vertical mode number
spectrum ( Egm(w, j)). The conversion of the Egm(w,
J) spectrum (in units of reciprocal frequency and mode
number) to Egm(ks; k) (in units of reciprocal wave-
number squared) is made using the established chain
rules of transformation (Garrett and Munk 1972)

Egm(w, j)dwdj = Egm(kn, ky)dkpdk, (Bla)
or
dw o
Ecm(kn, ko) = Egm(w, j) —— dk, ok, (Blb)

The relationship between the frequency and wave-
number is established using the dispersion relation for
nonrotating linear internal gravity waves, while the re-
lationship between vertical mode number and wave-
number is made using WKB scaling, or

2
w?= N? 3 likz = N2 cos®0, (B2a)
iN
k, = ZJNO (B2b)

where 8 is the angle the wavenumber vector (k = (k;,
k,)) makes relative to the horizontal, N is the local
buoyancy frequency, N, is the GM buoyancy frequency
scale, and b is the buoyancy frequency scale depth. A
tabulation of GM model parameters is found in Table
B1. Applying these factors, Egm( ks, ky) is equal to

TABLE Bl. GM81 model parameters.

Parameter Definition Value
E energy density 6.3 X 1073
b vertical scale depth 1300 m
Jx vertical decorrelation mode

number 3

>G+j3) 0.47
Ny buoyancy frequency scale 3 cph; 5.2 X 107357}
f Coriolis parameter (at 30°N) 7.3 X 1075 s~}
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The nondimensional energy density for the GM inter-
nal wave model (Egm(w, j)) is given by

EGM(waj)

Egm(kn, ky) = Egm(w, j) (B3)

_ 2Ef 1 1
T2 (i w(w — 22+
where E is the nondimensional energy density, j*
is the vertical decorrelation mode number, 2, (j*
+ j2)7! represents the infinite sum over the vertical
mode number, and fis the Coriolis parameter (at a

latitude of 30°N). The Egm(k;, k,) spectrum, using
the above transformation factors, is equal to

Egm(kn, kv)

(B4)

__2EfNdb ki 1 1
2 (2407 kG Vi + k2 (koNob)? + ()|

(B3)

Spectra for horizontal velocity, vertical velocity, and
temperature may be calculated using the horizontal
(X?(w)) and vertical (Z?(w)) squared displacement
functions (Garrett and Munk 1975), or

X*(w) = Nob

(@2 +1?) (Béa)

N0b2
Zw) = Nw?

(w?~f?). (B6b)
The horizontal and vertical velocity spectra may be
calculated by multiplying the nondimensional energy
density (Egm(kn, k) by @?X%(w) and w?Z?*(w),
respectively. The temperature spectrum [Fr(w)] is
calculated by multiplying Egm(ks, k,) by (dTy/
dz)?Z?*(w). Applying the nonhydrostatic assumption
and using the linear dispersion relation to transform
w in terms of &, and k,, the dimensional squared hor-
izontal velocity spectrum [F,(ks, k)], the squared
vertical velocity spectrum [ F,,(ky, k,)], and the squared
temperature spectrum [ Fr(k;, k,)] are given by

Fu(kfta kv) = NNOszGM(kh’ kv) (B7a)
2
Fulks, ko) = NNob? 52 Eom(ka, k)~ (BTb)
N3N b2
Fr(kn, k) = =55~ Eam(k, ks), (B7c)

where the definition of the buoyancy frequency has
been used (N? = agdT,/dz).

The horizontal-vertical wavenumber spectra are
converted to vector wavenumber spectra by assuming
horizontal isotropy. For the u velocity component, this
may be determined using
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Fu(kf!, k1))
27Tk;, ’

where k; is the 3D wavenumber and F,(k;) is the 3D
wavenumber distribution of the u-velocity variance.

The initial phases of the wave components are se-
lected randomly from a uniform distribution. Hence,
the resulting spectral amplitude and phase of the GS
velocity component, #(k;), is equal to

a(k;) = (Fu.(k;))"*(cos(2xr) + i sin(2xr)),

Fy(ki) = (B8)

(B9)

where r is a random number taken from a uniform
distribution. For the N = 3 cph experiment, the initial
amplitudes were also normally distributed. The effects
of this choice on the subsequent evolution of this par-
ticular experiment appeared to be minimal (Siegel
1988). After the random velocity fields are created,
continuity is imposed by solving a Poisson equation
for the pressure field and performing a single time step
to correct the initial velocity field (Siegel 1988).

APPENDIX C
Spectral Calculations

Stably stratified flows are axisymmetric as buoyancy
forces act to distinguish the vertical component of mo-
mentum from the horizontal. Similarly, spatial varia-
tions may be different in the vertical direction com-
pared with either of the horizontal directions. However,
due to symmetry, stably stratified flows are horizontally
isotropic reducing the number of characteristic dimen-
sions from three to two.

Spectral distributions of the flow energetics may be
evaluated in the radial, vertical, and horizontal direc-
tions. A diagram in spectral space of their relationship
to an arbitrary wavevector is shown in Fig. C1. Spectral
energy distributions are calculated by accumulating the
energy within discrete shells in spectral space. These
shells are spherical for radial wavenumbers (k,), hor-
izontal planes for vertical wavenumbers (), and ver-
tically oriented cylinders for horizontal wavenumbers
(k) (Fig. C1). For an arbitrary function f (k; t) rep-
resented in spectral space, energy spectra may be de-
fined as averages calculated over defined wavenumber
shells

Fdk;t)

DR (( SEILN{( 393
k= Bk<(k| <k+ak ‘

> fCkofk ),
k—~ Ak<|k|<k+Ak
where Ak = 1, k may be defined as k, (=(k3 + k2
+ k2)'?), k, (=k;), or k, (= (k2 +k2)”2)(F1g Cl)
and the physical space reality condition (fk; 1)*
= f(—k; t)) has been applied. Similarly, horizontal-

vertical wavenumber spectral energy distributions may
be calculated following

(C1)



2382

Ak,

kp

ky

FiG. C). Diagram of the differences between the spectral wave-
number components used to characterize the flow’s spatial structures.
The relationship among the radial wavenumber (k,), the vertical
wavenumber (k,), and the horizontal wavenumber (k,) are shown
in this depiction in spectral space (kx, ky, k).

Fky, kn; 1)
= z z

ky— Ak< |k | <ky+ok ky— Ak<|k|<kyt+ak

f(=k; O)f(k; 1),
(C2)

where spectral averages are effectively calculated over
“rings” of spectral space (i.e., the intersection of hor-
izontal planes and vertically oriented cylinders).

It should be noted that the mean energy of a spectral
shell is not necessarily the same as the average energy
present at each individual wavevector (or mode). Ob-
viously, more wavevectors will fall into a higher radial
or horizontal wavenumber shell than in any lower shell.
The spectral truncation used to control the effects of
aliasing also influences the number of allowable modes
per shell. This is particularly important since the higher
wavenumber shells often contain wavenumber modes
that have been eliminated by the dealiasing procedure.
The number of modes per shell for one-dimensional
radial, vertical, and horizontal spectra is shown in Fig,
C2. A similar depiction for the two-dimensional wave-
number spectra is shown in Fig. C3. The number of
modes per wavenumber shell enable the energy for each
wavenumber shell and each wavevector, or mode, to
be calculated interchangeably.

As described in the text, wavenumbers are given in
integer values and the domain size is 10 m. This means
that a wavenumber of one corresponds to a dimen-
sional spatial scale of 10 m and a wavenumber of 10
corresponds to a spatial scale of 1 m. The integer wave-
number of the smallest resolved scale is 31, which cor-
responds to spatial scale of 0.323 m.
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APPENDIX D
Calculating Rates of Spectral Energy Transfer

The contributions of various dynamical processes to
the energetics of the flow may be evaluated as a function
of scale by evaluating the spectral energy transfer
budget. The energy transfer budget may be derived by
first expressing the equations of motion in spectral
space (e.g., Schumann and Patterson 1978b; Lesieur
1987), or

o1 .

a”’ + K2 = Fey + P — ikiD + 83T (Dla)

T darT

—_— 4 = s i _f

o «k*T = Ngs t Tsgs — dx3 (D1b)
kiﬁi = 0, (DIC)

where i; is the velocity field represented in spectral
space (a function of the vector wavenumber, k or k;,
and time); 7 is the temperature fluctuation spectrum;
the terms 745; and 7 (7gs and 7)) represent the grid-
scale nonlinear and parameterized subgrid-scale flux
terms in the momentum (temperature fluctuation)
expressions [Eq. (12)] and i is the imaginary number.
The GS nonlinear and SGS flux terms may be defined
in spectral space as

Tesi = (éijkﬁ) - (ﬂ%%) (D2a)
o = <_ a;‘)fch (D2c)

Number of modes per shell

1 10
Wavenumber

F1G. C2. Spectral distribution of the number of modes in each 1D
shell average. Distributions are shown for the radial wavenumber
(k,: solid), the horizontal wavenumber (k,: dotted ), and the vertical
wavenumber (k,: dotted ).
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Number of modes per 2-D shell
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FiG. C3. Spectral distribution (in k; — k, space) of the number of
modes in each horizontal-vertical wavenumber shell average. The
number of modes per shell increases from left to right. The indicated
levels are 10, 20, 35, 50, 75, 100, 125, and 200.

where the brackets with the caret on top corresponds
to the term inside the bracket represented in spectral
space. Spectral energy expressions are derived by
multiplying the ith component of the momentum
equation by the complex conjugate of the jth velocity
component [#(k)* = 4;,(— k)] and multiplying the
temperature equation by (g2/2) T(k)*. The indices
in the momentum equation are switched (i.e., the
Jjth equation is dotted with ith velocity component)
and the two equations are summed together.
The resulting spectral energy equations may be
written as

OE; . . . .

_at—‘j + € = ngij + P sgsij (I) B,‘j (D3a)
) P
X =W+ Yy, — By, (D3b)

where EU are the component kinetic energy (for i = j;
not summed) and Reynolds stress (for i # j) spectra,
and P is the potential energy spectrum,

Ey(k) = 0, (k)(—k) (D4a)

la
2
- g 2 N -

P(k) = X T(k)T(—k). (D4b)

Here fgs,j and f‘sgs,-j( \ilgs + \i/sgs) represent the nonlinear

kinetic (potential) energy transfer due to the GS and
SGS processes, respectively, or

Pyy(k) = %(?gsi(k)ﬁj(—k) + 7g(K) 4 (—k)) (D4c)

Pugsi(K) = 5 (Fags (K)(—K) + Fog(K) i (—K)) (D4d)
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2

Voo(k) = ngs(k)T( k) (Dde)
g2
Vos(k) = nsgs(k)T( k); (D4f)
<i>,-j is the pressure-strain correlation spectrum,
. —i, . R
(k) = 7p(k)(kiuj(_k) + ki (—k)); (D4g)
Bij is the buoyancy flux spectrum,
2
By(k) = 5 T(R)@isti( k) + oy (—K)); (D)

and ¢; and X represent the energy losses due to mo-
lecular viscous and diffusive processes and are given

&¢i(k) = 20k2E (k) (D4i)
X(k) = 2kk2P(k). (D4j)

In general, rates of energy transfer due to molecular
processes will be negligibly small due the high Reynolds
numbers simulated (Siegel 1988).

These expressions may be used to evaluate the effects
of the different dynamical processes upon the evolution
of the energy spectra using the LES data fields. The
terms comprising the spectral transfer of horizontal ki-
netic energy [ HKE; E,,(k) + Ej (k)] are evaluated
separately from the vertical kinetic energy spectral
transfer terms [ VKE; E33(k)] because of the axisym-
metric nature of stably stratified flows.
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