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ABSTRACT

The turbulent bottom boundary layer for rotating, stratified flow along a slope is explored through theory
and numerical simulation. The model flow begins with a uniform current along constant-depth contours and
with flat isopycnals intersecting the slope. The boundary layer is then allowed to evolve in time and in distance
from the boundary. Ekman transport up or down the slope advects the initial density gradient, eventually giving
rise to substantial buoyancy forces. The rearranged density structure opposes the cross-slope flow, causing the
transport to decay exponentially from its initial value (given by Ekman theory) to near zero, over a time scale
proportional to f/(Na)?2, where fis the Coriolis frequency, N is the buoyancy frequency, and « is the slope
angle. The boundary stress slowing the along-slope flow decreases simultaneously, leading to a very “slippery”
bottom boundary compared with that predicted by Ekman theory.

1. Introduction

When a current flows along constant-depth contours,
as is typical of deep boundary currents, the Ekman
transport in the bottom boundary layer will tend to
move water up or down the slope. If there is a density
gradient across the slope, this displacement gives rise
to a buoyancy force, which eventually becomes com-
parable with the other terms in the Ekman balance.
The shifted density field causes a vertical shear in the
initial current (via the thermal wind) slowing it near
the boundary, and leaving less to be done by viscous
stress. Rhines and MacCready ( 1989), MacCready and
Rhines (1991), Trowbridge and Lentz (1991), and
MacCready (1991) find that both the boundary stress
and the Ekman transport decrease over time as a result,
leading to a boundary-layer solution markedly different
from the standard Ekman layer. This process will be
referred to as the “shutdown” of the boundary layer.

The spindown of ocean circulation (e.g., Holton
1965; Walin 1969), resulting from vortex stretching
driven by Ekman pumping, is a cornerstone for our
ideas of ocean dynamics. The decreased Ekman trans-
port suggested in the previous papers causes major
modifications to the spindown process, leading to a
nearly frictionless lower boundary condition for some
deep flows. In the following, we derive an expression
(with numerical support) for the time scale over which
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a model turbulent boundary layer on a slope will shut
down to help judge whether the proposed buoyancy
effects may be important to a given flow.

Several authors in the last 25 years have explored
the general idea of a boundary layer on a slope with
stratification and rotation, although it is only recently
that the phenomenon of decreased Ekman transport
has been recognized. Past theoretical discussions, like
this work, mainly involved one-dimensional models,
with variation only in distance from the slope, and
occasionally also in time, invoking the usual approx-
imation that the boundary layer is thin compared with
horizontal variation in the flow parameters {a notable
exception is the two-dimensional model of Ezer and
Weatherly (1990) of the “cold filament” in the North
Atlantic]. The earliest solutions to the one-dimensional
problem, arrived at independently by Holton (1967)
and Hsueh (1969), are essentially steady, differing little
from the classic Ekman solution. These authors specify
the density at the boundary, as may be appropriate for
atmospheric flows over the ground, with the result that
fluid advected up- or downslope tends to adjust to the
density of its surroundings, and hence, no large buoy-
ancy force develops. In the ocean, however, the correct
condition (in the absence of substantial geothermal
heating) is that there be zero density flux at the bound-
ary, that is, an “insulating” boundary.

Weatherly and Martin (1978) and Thorpe (1987)
solve the steady problem with zero density flux at the
boundary, but the result has a very curious property
that limits its applicability in the ocean. Unlike the
atmospheric solutions of Holton (1967) and Hsueh
(1969), the steady, insulating solution requires that
the interior, along-slope flow possess a specific value
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related to the slope angle, stratification, diffusivity, etc.
That is, the interior velocity is a part of the solution.
In addition, the steady theory demands that the value
of the cross-slope transport be «,/a, where «, is the
eddy diffusivity of density in the interior, and « is the
angle of the slope from horizontal (assumed small).
The reason for this constraint on the transport is that
the steady solution must satisfy a global balance be-
tween diffusive flux of density upwards in the interior
and advection of density upslope within the boundary
layer. It is clear that this result must not describe the
boundary layer over flat regions, where it predicts in-
finite transports. For constant coefficients of diffusivity
there is only one along-slope flow that will yield the
required transport.

There is, of course, a serious question confronting
a boundary-layer theory that sets its own interior ve-
locity: Does the interior flow control near-boundary
adjustment or vice versa? To address this, Thorpe solves
the steady problem with a fixed eddy diffusivity profile
that varies in distance from the boundary (high next
to the boundary and low in the interior). He finds that
by making different choices of eddy diffusivities and
mixed-layer thickness one may arrive at different steady
values for the interior along-slope velocity (although
the resulting solutions are not always statically stable).
Garrett (1990, 1991) takes this idea farther, deriving
an expression for the interior velocity for any diffusivity
profile and suggesting that the profiles could “self ad-
just” such that the given interior flow would be the
correct one to match the steady solution. Once again,
though, the constraint of static stability is felt, and
Garrett concludes that this adjustment process would
likely occur only for flows that initially had downslope
Ekman transport. Thus, we are left with some doubt

about the general applicability of a steady approach to *

the problem, although one must certainly not disregard
- steady solutions, as they are the end states toward which
any unforced, time-dependent flow must tend.

For time-dependent flows that include buoyancy and
momentum forcing, as in the ocean, the time over
which the steady solution is achieved becomes, then,
crucially important. If a given steady solution is rapidly
achieved by Garrett’s self-adjustment process, then one
could reasonably look to it for information on bottom
stress and boundary mixing of density and other tracers.
If, on the other hand, a steady solution is only slowly
achieved, then it may be overwhelmed by the forcing,
and have little influence on observed flows.

Thus, to understand how these boundary layers ap-
ply to the ocean it becomes necessary to explore the
time-dependent problem. Thorpe (1987) considers an
alongslope flow with oscillatory time dependence, but
the average transport of his solution is the same as that
of the steady solution and presents many of the same
difficulties. Weatherly and Martin (1978), in a ground
breaking study, develop unsteady numerical solutions
to the problem, using a Mellor and Yamada (1974)
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turbulence closure scheme to predict eddy diffusivities
near the boundary and comparing their results with
observations on the edge of the Florida shelf. Their
model flow starts from rest, and then an alongslope
current is turned on to drive the boundary layer. They
observe differences in mixed-layer thickness depending
on whether the flow has upslope or downslope trans-
port, and show that cross-slope advection of the density
gradient is the cause, although they do not make the
connection between buoyancy forces and temporal
changes in the Ekman transport or boundary stress.

MacCready and Rhines (1991) explore the sloping
boundary-layer problem through theory and numerical
simulation, using the same sort of impulsively started
current as Weatherly and Martin but with constant
diffusivity coefficients in order to compare with labo-
ratory experiments on stratified spinup in a bowl with
sloping sidewalls. Early in time the solutions resemble
the classic Ekman layer, but later the cross-slope trans-
port and the along-slope stress decay approximately as
(time)~!/2, owing to the type of buoyancy effects de-
scribed at the start of this section. An expression is
derived for the “shutdown time” for laminar flows,
and it is confirmed that Thorpe’s steady solution is the
final state toward which the flow tends. Recall, how-
ever, that the steady solution has a required interior
velocity, so one must in general affect the entire water
column before a steady state is possible. Such an oc-
currence seems unlikely for a one-dimensional bound-
ary layer in a rotating system, which typically only
grows to a very limited Ekman thickness. The recon-
ciliation suggested to this seeming contradiction is that,
in the same way that the cross-slope flow is variable in
time, the alongslope velocity is also time dependent,
obeying a modified diffusion equation, and the value
toward which this velocity diffuses (from the bottom)
is that of Thorpe’s steady solution. Thus, for the lam-
inar, one-dimensional case, one has a fair idea of the
time required to reach the steady solution, and of the
means by which the alongslope flow may adjust to its
required steady value.

Trowbridge and Lentz (1991) have recently ex-
tended the analysis of the time-dependent, impulsively
started problem to include a mixed layer, in order to
make comparisons with data from the Coastal Ocean
Dynamics Experiment. They use the slab mixed-layer
model of Pollard et al. (1973), and a velocity-squared
drag law for the bottom stress. They observe the decay
of the Ekman transport with time; however, their model
does not allow a simple expression of the shutdown
time, and they focus, as did Weatherly and Martin
(1978), on the prediction of mixed-layer thickness.

In the present paper we build on the previous work
to derive an expression for the shutdown time when
there is an evolving, turbulent mixed layer, with both
theoretical and numerical support. We also address the
diffusivelike changes to the interior along-slope flow
and their relation to the steady solution. :
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2. Governing equations and shutdown
scaling estimates

Can boundary-layer dynamics really be affected by
the weak stratifications typical of the ocean? Standard
scaling arguments (Pedlosky 1987, pp. 360-362) sug-
gest that the oceanic bottom boundary layer may be
treated as homogeneous, owing to its thinness and the
weakness of the stratification. However, advection of
density gradients on a slope will eventually invalidate
this scaling.

a. Basic shutdown time estimate

The time it takes for buoyancy to become important
may be easily estimated. Consider the near-boundary
advection that occurs beneath a uniform current V,
along a slope of angle «, with interior buoyancy fre-
quency N (Fig. 1). The fluid near the boundary is
slowed by viscosity, and so feels a pressure force upslope
(for V negative) that is not in balance with its Coriolis
force. The fluid accelerates upslope, but an opposing
buoyancy force, —gp’a, arises over time to oppose that
acceleration (assume « < 1). Here g is gravity, and p’
is the perturbation to the initial stratification of the
fluid, which one may also scale as p’ =~ [(po/g)N?a]
X [AX], assuming that the density at a point has
changed only owing to advection of the initial strati-
fication (AX is the cross-slope displacement of a fluid
parcel). Since the cross-isobar velocity in the Ekman
layer scales as —V, we may say that after a time 7 the
term AX will be about — 7 V. The downslope buoyancy
force will thus be poN2a?(7oV), which will be of the
same magnitude as the initial (upslope) Coriolis force,
JpeoV, by the time:

_
(Na)?*

T0

(2.1)

V (negative out of the page)

FIG. 1. Slope frame of reference for the coordinate system (%, ¥,
£) in which the equations of motion are developed, along with def-
initions of mixed-layer thickness H, slope angle «, interior alongslope
velocity V, and cross-slope displacement AX. The isopycnals are shown
as they would be displaced by strong mixing near the boundary and
by the upslope Ekman transport associated with an interior alongslope
velocity of negative sign.
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This time, 74, derived more formally in MacCready
and Rhines (1991), is the simplest estimate of the
shutdown time, or the time when buoyancy forces be-
come important to the boundary layer on a slope. In
this derivation we have tacitly assumed that the mixed-
layer thickness, H, is equal to the Ekman layer thick-
ness, and so diffusive changes to p’ will be unimportant
compared with advective changes. In section 2¢ we ad-
dress this problem using a more refined theory.

b. Governing equations

For a more precise idea of the shutdown behavior
in the case with a turbulent boundary layer, we must
formally develop the equations. Begin with flow along
a slope of constant angle, «. If the alongslope flow is
initially homogeneous and the fluid Boussinesq, as we
assume, the problem is greatly simplified, having then
variation only in the direction normal to the slope (and
in time). These assumptions, as in the development
of the classic Ekman layer, lead to solutions that are
locally valid if the space and time scales of variation
of the flow parameters are large and slow compared
with those of the solutions.

Following Phillips (1970), and using the notation
of MacCready and Rhines (1991), the equations of
momentum and mass conservation in the boundary
layer are

on . ~ 8 ( on
SIS = V)= —aB+ af(uaf), (2.2)
o . a8/ ab
—_— + = — —_— .
o T az‘(”az‘)’ (2.3)
8B . . ok o[ OB
== ~ N+ .
= Naii - N* af(x 62) (2.4)

Equations (2.2)-(2.4) are for velocities in the “slope
frame of reference,” that is, rotated by an angle « from
the horizontal (we assume throughout that o <€ 1, so
cosa =~ | and sina ~ «). Variables in this frame of
reference are denoted by a caret on top if there is any
chance for confusion with variables in the nonrotated
frame of reference. As in Fig. 1, upslope is the positive
X direction, while the normal to the slope is the positive
Z direction (the y direction is unchanged since the co-
ordinate frame was rotated about that axis, and there
is no variation in that direction). Similarly, # is the
upslope velocity, and © is the alongslope velocity, where
positive ¥ is into the page in Fig. 1. Here V is a geo-
strophic, alongslope velocity related to an imposed
pressure gradient in x, switched on to a constant value
at ¢t = 0 (thus, the pressure does not appear explicitly).
B is the (negative of the) buoyancy, given by

B=gp'/po. (2.5)
We have divided the density into three parts as
p=potp(z)+p'(Z0), (2.6)
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and p is defined by the buoyancy frequency, N, where

_"89%

N?=
po 0z’

(2.7)
which is taken to be constant. We make the Boussinesq
approximation: p < pg, and p’ < pg, but otherwise the
flow-induced perturbation p’ can equal or exceed p in
magnitude, leaving open the possibility of static insta-
bility.

We take W to be zero everywhere, and parameterize
the effects of vertical eddy velocities through coefficients
of eddy diffusivity: » for momentum and « for density.
The coefficients are variable in time and Z, to allow
solutions with an evolving mixed layer, as often ob-
served in the ocean.

Equations (2.2) and (2.3 ) describe a time-dependent
Ekman layer, with the important addition of a buoy-
ancy term, —aB, on the right-hand side of (2.2). From
(2.4) we see that this buoyancy term grows in mag-
nitude owing to advection of the mean stratification,
N2, by the cross-slope velocity, 7, as well as being
modified by density diffusion. With « large near the
boundary and small in the interior, the chief effect of
the diffusive terms in (2.4) is to cause a mixed layer
in the density profile in the region where « is greater.

At the lower boundary we assume a no-slip condition
on the velocity, and no diffusive flux of density out of
the boundary. Hence,

u=0=0 at =0, (2.8)
and
%IZ:;=N2 at Z=0. (2.9)
The upper boundary conditions are that
u,B—>0 as Z—> oo, (2.10)
and
D>V as Z—> oo. (2.11)

Initially, the # and B fields are set to zero, and the
alongslope velocity is set to V everywhere (except at
the boundary, where it is also zero). The specification
of the problem is then complete except for a relation
to determine the eddy diffusivities, which is given in
section 3 for the numerical integrations.

¢. An approximate theory of shutdown

We may simplify the problem to form an analytic
solution to the time-dependent problem, yielding a
much better estimate of the shutdown time, as well as
some ideas about the actual velocity and density pro-
files. First, assume that we have a turbulent mixed layer
of height H, which may be time dependent, with mo-
mentum eddy diffusivity v, inside and no diffusivity of
momentum or density outside. Further, assume that

VOLUME 23

the density within the boundary layer is well mixed
normal to the slope, which may be written as

%=N2

— for 0<Z<H,
0z

(2.12)

and that there is no flux of density through the bottom
boundary or through the top of the mixed layer. Note
that (2.12) satisfies both the upper and lower density
boundary conditions. All further calculations in this
subsection pertain to the mixed layer 0 < Z < H; the
fields beyond H do not change with time. Using (2.12)
the density equation immediately simplifies to

B
%—t=N2aﬁ, (2.13)
which we may integrate over the mixed layer to find
0B N’
—=—M, 2.14
ot H ( )

where M is the cross-slope transport, defined as

H
MEf udz. (2.15)

0
Since B has a constant gradient over the mixed layer,
its time derivative will be constant in Z over that region,
facilitating the integration to find (2.14). [ Mathemat-
ically it is helpful to think of the buoyancy term in the
boundary layer as a 7 integral of (2.12): B(Z,t) = N%2
+ C(t), where C is a constant of integration, variable
only in time.]

Although we assumed the density to be well mixed
below H(t), we now proceed by making the seemingly
contradictory assumption that the velocities are not
necessarily well mixed, despite the fact that the diffu-
sivities of momentum and density are likely to be equal
in the boundary layer. The boundary conditions on
the velocities are very different from those on the den-
sity, however. While the no-flux conditions tend to ho-
mogenize the density, the no-slip condition may sup-
port considerable velocity shear. This idea is also con-
sistent with numerical solutions to (2.2)-(2.4)
presented in the following section.

Now to solve the momentum equations we begin by
dropping the acceleration terms in (2.2) and (2.3), as
suggested by Gill (1981) and Trowbridge and Lentz
(1991), on the grounds that they only contribute sig-
nificantly to inertial oscillations, which are, for oceanic
scales, just small perturbations to the fundamental
shutdown solution (also, examination of these terms
in the following numerical integrations will show that
they are negligibly small after about one pendulum
day). We may then rewrite the momentum equations
in the boundary layer as

N

7 e (216)
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and
. 9%

f U=ry g s
with no slip at Z = 0, and no stress at Z = H. Thisis a
steady Ekman layer problem, but with parametric time
dependence through the term B, which, as seen in
(2.14), changes through the cross-slope transport of
the stratification. Equations (2.16)—(2.17) are then
solved in the usual way (it is helpful to take 3/9¢ of
both equations first, to eliminate the Z dependence in
B). For simplicity, we present here the solution in the
limiting case H > 6y, where 0, is the natural Ekman
layer scale of the problem, (2vy/f)!/?. MacCready
(1991) presents the full solution for arbitrary H, and
finds that this limit differs little from it, as long as H
= 0. We find (after taking a time derivative and in-
tegrating in Z to find the transport) that

B _-2f M
at a
Combining (2.18) with the result from the buoyancy

equation (2.14), we may form an equation for the
transport:

(2.17)

o (2.18)

M -1
—_—— 2.1
ot D, (2.19)
where
D=2H/8,, (2.20)

and 7o = f/(Na)?, as before. Thus, the shutdown time
for this problem is D7, proportional to our original
estimate (2.1). The shutdown time increases with H
because the density gradient advected by the cross-slope
flow is distributed by mixing over a thickness H, di-
luting the effect of buoyancy in the momentum equa-
tions. This is the main failing of our initial scaling (2.1),
which essentially assumed §, and H to be identical.
When H is constant in time, as is typical when A is
upslope, (2.19) implies exponential decay of the trans-
port in time from its initial value given by Ekman the-
ory without any buoyancy effects (assuming Dr
> f71). When M is downslope, however, H increases
in time (Weatherly and Martin 1978; Trowbridge and
Lentz 1991) because the advection of lighter water un-
der heavier leads to static instability. In this case (2.19)
is not easily solved, but still it implies that at any given
time the decay time scale of the transport is D7, an
idea used in section 3 for comparisons with the nu-
merical solutions.

Since the first observations of the ocean-bottom
mixed layer (e.g., Armi and Millard 1976), a classic
question has been the relation between the momentum
boundary layer and the buoyancy boundary layer. One
often reads that the deep mixed layer in temperature
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and salinity may be much thicker than the turbulent
Ekman layer, a possibility that our model allows. While
the quantities H and 6, may not be exact descriptions
of oceanic parameters (owing to the greater complexity
of real boundary layers) they should still be useful as
a way to “translate” from an observed flow to an ex-
pected shutdown time. For example, one could choose
the value of d, for a real flow based on the Ekman
transport it developed (when the effects of buoyancy
were negligible) as opposed to the actual thickness of
the boundary layer. The beginnings of such applications
are presented in MacCready (1991), for the Costal
Ocean Dynamics Experiment, and the Deep Western
Boundary Current in the North Atlantic.

MacCready and Rhines (1991 ) develop approximate
solutions to (2.2)~(2.4) with » and « constant, and
find a shutdown time for that case. Their main strategy
is to assume that the along-slope flow is in thermal-
wind balance. This proves useful for the laminar case
over most of the boundary layer, and they find that
the transport decreases as ¢ ~'/? (after the initial setup
of Ekman-like flow) with the time scale of the decay

given by
_1{1/0+5
Tlaminar S 1+ S T0 5

where S = (Na/f)?, a Burger number, and ¢ = v/«.
The transport decays towards its final value, «/ «. Note
that when ¢ > 1 (negligible density diffusion), and .$
< 1 (e.g., small slope), the shutdown time reduces to
our simple estimate, 7.

Trowbridge and Lentz (1991) approach the problem
with a turbulent boundary layer using a slab mixed-
layer model similar to that of Pollard et al. (1973).
They average i, D, and p through the depth of the mixed
layer and use a drag coefficient and velocity-squared
drag law to determine stress at the boundary. Their
mixed-layer height increases if the bulk Richardson
number falls below a critical value. Thus, they encom-
pass somewhat realistic mixed-layer height dynamics
[which they use to great advantage when making com-
parisons with ocean data in Lentz and Trowbridge
(1991)], although they do not resolve actual velocity
profiles in the mixed layer. In addition, they develop
equations describing the initial decay of the cross-slope
transport. The equations are too complicated to solve
in general, except numerically, but still yield insight
into the shutdown phenomenon. If we assume that the
mixed-layer height maintains a constant thickness
(clearly a better approximation in the upwelling case
than in the downwelling case ) then one may find from
their analysis that the transport initially decays expo-
nentially in time, similar to the solution (2.19), and
the time scale, 71, for the decay is (J. Trowbridge,
personal communication ):

_ U+ /(1 +28)
VB(2 + B)

(2.21)

(2.22)

TTL 0>
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where

2 CyN

2 f ’
and C; is the drag coefficient. For N = 3.5 X 1073 57!
f=10"*s"", and C; = 2.5 X 1073 (their value), then
B8 = 0.06 and 71 = 2.4 7, (the same value we would
predict for H/ 8¢ = 1.2). Of course their full equations,
which include changing mixed-layer heights, would
give a somewhat different answer than this. Neverthe-
less, (2.22) serves as a useful comparison. It is en-
couraging that both 7j,minar and 7y are proportional
to 79, or f/(Na)?, as is our estimate Drg, despite the
differences in how the flow is modeled. One may thus
think of 74 as the “base” value of the shutdown time,
with variations from that owing to the nature of the
diffusivities in the boundary layer.

| 5y

B

(2.23)

d. Other scales of the boundary layer

Buoyant shutdown of the Ekman flow has the re-
markable property that the developing shift of the iso-
pycnal surfaces, caused by the cross-slope transport
(and mixing), tends to establish a thermal wind-bal-
anced vertical shear that, of its own accord, brings the
velocity to zero at the boundary. In terms of the pres-
sure field, the sign of the buoyancy force is such as to
cancel out the cross-slope pressure gradient of the ini-
tial, interior, geostrophic velocity. For either positive
or negative V, the corresponding downslope or up-slope
advection of the density field always tends to relieve
the flow of the need for a viscous boundary layer. Strat-
ified spindown also has this property: interior isopyc-
nals are rearranged by Ekman pumping and the re-
sulting thermal wind shear brings the flow to rest at
the boundary. But note the differences: spindown re-
quires a curl of the interior flow, while shutdown does
not; also spindown may affect flow deep in the interior,
beyond the direct reach of viscosity, while shutdown
is confined to the thickness of the viscous boundary
layer (which may, however, grow rather larger than
one expects; see section 4).

For downwelling-favorable flows (where the initial
transport is downslope, that is, positive V') Trowbridge
and Lentz propose a steady, inviscid solution with lin-
ear shear in the alongslope flow. As in MacCready and
Rhines (1991), they assume that the current is in ther-
mal wind balance, and then combine that with a density
field that is vertically homogeneous in the boundary
layer. The maximum shear that the thermal wind may
support is aN?/f, and the mixed layer must have a
thickness of at least

Hpin = fV/(N?a), (2.24)

in order to bring the alongslope flow to rest at the
boundary. Such a solution is evident in the down-
welling-favorable numerical solutions presented in the
following section, and is implicit in (2.16).
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Another useful scale for the shutdown process is the
distance up or down the slope, AX, that isopycnals at
the boundary must be displaced to bring the along-
slope flow to rest. This is found from our initial scaling
of the shutdown time (section 2a) to be

AX = —fV/(Na)?, (2.25)

which is, of course, the same as V' ry. One may also
derive AX from a vertical integral of the thermal wind
equation. To the extent that viscous and time-depen-
dent effects are negligible within the shutdown bound-
ary layer, Ax should be a much more robust estimate
than 7,, which we saw to be greatly modified by H/
8o. Note that while H,;, applies only to downwelling-
favorable flows, AX applies equally to upwelling or
downwelling-favorable situations.

Using values typical of the ocean we may use the
foregoing scales to estimate when buoyancy forces may
be important. Assume in one case that we are on an
abyssal plain, with & = 1073, N = 1073s™!, and f
=10"*s"!. Then Hy, is 10 km (for ¥ =0.1 ms™!),
considerably larger than we imagine the benthic
boundary layer to be. The value of AX in this situation
is 1000 km, also rather large. The basic shutdown time,
Tg, 18 3.2 years. These values lead us to conclude that
one may probably ignore buoyancy effects on an abys-
sal plain.

If, however, we make the same calculations on the
continental slope, with tana = 1072, and N = 3.5
X 1073 57!, we find H;, is 81.6 m (again for V' = 0.1
ms™!), and AX is about 8 km. The basic shutdown
time is just under a day. Clearly, buoyancy may be
important for this case.

3. Numerical integrations

The coupled set of momentum and mass conser-
vation equations (2.2)~(2.4) were integrated numer-
ically using central differencing in space and forward
differencing in time. This integration scheme has the
virtue of simplicity, and works well for the diffusive
parts of the equations, but it is well known that forward
differencing is unconditionally unstable for inertial os-
cillations. This shows up as a “wrinkling” at the grid
scale, evident in some of the numerical results, but the
instability grows very slowly, is damped out by the dif-
fusivity, and does not significantly affect the results over
the time of the integrations. Tests of accuracy of the
code were carried out, using the known analytic so-
lution (Greenspan 1969, pp. 30-34) to the transient
Ekman layer problem with constant diffusion coeffi-
cients. The numerical solution arrived at the correct
profiles, with transients at the inertial frequency de-
caying in amplitude as 1 ~/2, as the theory predicts.

The lower boundary conditions used were no slip
(2.8) and insulating (2.9). To take gradients numeri-
cally at the boundary, where central differencing does
not work, we used upward differencing plus a correc-
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tion based on the second derivative of the field at the
grid point above the slope. The upper boundary of the
integration was always sufficiently far away that it did
not affect the solution. Initially both 7 and B were zero
for all Z, while D was set to V for all Z except at the
boundary, where it was set to zero.

In MacCready and Rhines (1991) we used constant
coeflicients of diffusivity for our numerical simulations,
modeling laboratory experiments where the flows were
laminar and the diffusivity was molecular. The present
model allows variable diffusivities, although the exact
way to parameterize that variability is the subject of
some debate; different researchers employ everything
from Mellor-Yamada level II turbulence-closure
schemes (Weatherly and Martin 1978) to “‘slab”
mixed-layer models (Trowbridge and Lentz 1991).
Actual ocean data are so sparse that it would be difficult
to decide which model was the “best” representation
of the actual boundary-layer physics.

We chose to use a model of intermediate complexity,
assuming that the diffusivities are a simple function of
the gradient Richardson number, Ri, defined here as:

— S\ 2 A\27-1
w2l (]
po 0Z|\dZ 0z
Price et al. (1986) add such a parameterization to the
Pollard et al. (1973) slab upper-ocean model, with ap-
parent success. We take the diffusivities to be large,
100 cm? s7! (1072 m? s™'), when Ri is below 0.2, and
small, 1 cm?s™' (107" m? s™'), when Ri is greater than
0.3. We will refer to the larger limit on the diffusivities
as vy or ko, while the lower limit will be called v, or
k.. Between these two values of Ri the diffusivities
decrease linearly with increasing Ri, as shown in Fig.
2. The diffusivities of momentum and density are set
equal, since the fluxes are assumed to be due to tur-
bulence. (This need not be so if internal waves are
allowed to transport momentum, but then we would
expect any diffusion equation to be a poor description

(3.1)

0.008 A

2 -

diffusivities (m's™)

0.006 A

0.004

0.002 -

0.000 t t f f
0.0 0.1 0.2 0.3 0.4 05
gradient Richardson number

FIG. 2. Plot of eddy diffusivity coefficients versus gradient Rich-
ardson number, used in the numerical solution of the equations of
motion. The lower limiting value of the diffusivities is 107 m?s~’,
and the critical Richardson number is around 0.25.
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of the momentum field redistribution.) Since our nu-
merical model has eddy diffusivities based solely upon
Richardson number, and not distance from the
boundary, we are unable to model the logarithmic layer
that presumably inhabits the lowest meter or so. This
omission should change only the details of the velocity
profiles but should not significantly alter the dynamics
of shutdown, which is our interest here.

Our diffusivity profile thus assumes a critical Rich-
ardson number of about 0.25. The ramp in the diffu-
sivities between 0.2 < Ri < 0.3 is motivated by the
range of turbulent dissipation rates observed in the
benthic boundary layer (e.g., Dewey et al. 1988). The
very nature of such a mixing model often gives rise to
a mixed layer of nearly constant density capped by a
small region of strong density gradients, along with
high dissipation in the mixed layer and low dissipation
above. This tendency is observed both in the ocean
and in the numerical results that follow, but observed
fields of dissipation also often have more structure than
a simple two-layer model will allow. We leave that pos-
sibility open in our numerical model by using a ramp
in the diffusivity-Ri curve, instead of a step.

The upper limit for diffusivity is based loosely on
direct turbulence measurements taken in the benthic
boundary layer and equatorial undercurrent (Trump
1983; Thorpe 1987; Gregg 1987). Placing an upper
bound on the diffusivity means that the density profile
may become gravitationally unstable, if advection
overpowers the diffusivity. Limiting the maximum dif-
fusivity puts a lower bound on the time-step size, how-
ever, which is numerically convenient, so we just avoid
driving the model with velocities so large as to cause
gravitationally unstable profiles. The lower value of dif-
fusivity we use outside the boundary layer is Munk’s
(1966) value, derived from an advective—diffusive bal-
ance in the Pacific. Some have suggested that most of
the deep mixing in the oceans occurs at the boundaries,
complicating any notion of an interior vertical eddy
diffusivity (e.g., Garrett 1990). Our philosophy in the
numerical modeling has been simply to assume that
there is some vertical diffusivity in the interior that is
very much smaller than that in the turbulent mixed
layer. For numerical stability it is necessary to have a
nonzero diffusivity in the interior, but the actual value
of that diffusivity has little effect on the boundary-layer
development during the initial shutdown (as long as
Ve, < ¥9). In the steady solutions, however, the value
of the interior diffusivity is crucially important, partic-
ularly to the cross-slope transport, which is required
to be ., /o, as stated earlier.

Sensitivity studies were carried out using different
forms of the diffusivity—Ri curve. In one case, the ramp
in the diffusivities was placed between Ri = 0.5 and
Ri = 1.5 (essentially a fourfold increase in the critical
Richardson number). This gave rise to thicker mixed
layers, as one would expect, and the size of the increase
was about 50%. Thus, the model was not overly sen-
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sitive to the details of the diffusivity-Ri relation, at
least for early times. At later times, however, the results
may be very sensitive to this choice. Garrett (1991)
(and see section 4) derives a steady estimate of the
Richardson number in the mixed layer, which one may
use to determine the eddy diffusivities there. Depending
upon which side of the critical Ri the solution lands,
one may end up then with substantially more or less
late-time mixing of passive tracers in the boundary
layer.

a. Upwelling-favorable case

The six plots of Fig. 3 document different aspects of
a three-day numerical integration of (2.2)-(2.4). We
initiated the integration with an alongslope flow, V,
of —0.1 m s™'. In the absence of buoyancy effects this
would give rise to an Ekman layer with upslope trans-
port, so we refer to this case as upwelling favorable.
The parameters were the same as those used in the
continental slope example in section 2d (7o = 0.94
days). The vertical resolution was 1 m, and the time
step 8 s. Figure 4 is from a numerical run using the
same parameters as in Fig. 3, but the integration was
carried out to 18 days, showing the behavior of the
flow after it was fully shut down.

One-half day into the integration, the cross-slope ve-
locity profile (Fig. 3a) had roughly the thickness of
an Ekman layer based on vy, which is 8¢ = (2v9/f)'/?,
or 14 m for our integrations. Later in the integration
the cross-slope current decreased in both magnitude
and thickness. This decrease was also present in the
transport (the vertical integral of the upslope velocity),
shown in Figs. 3f and 4f. The oscillations in the trans-
port were inertial waves excited by the abrupt startup
of the flow. The natural frequency of these oscillations,
predicted by Weatherly and Martin (1978) and con-
firmed by these runs, is f(1 + S)!/? [recall S = (Na/
f)?=0.12 in this case]. At first the transport increased
rapidly to approximately the value it would have based
on steady Ekman theory: —V 8,/2, which is 0.7 m? s !
for the present case.

The evolution of the alongslope current is plotted
in Figs. 3b and 4b. Note that ¥ in the boundary layer
decreased along with the cross-slope velocity. The evo-
lution of the alongslope shear stress, — pov(9D/3%), is
plotted in Figs. 3e and 4e. Although the shear is high
above the mixed layer, the stress is negligible there,
owing to the small eddy viscosity. Note also that the
shear stress at the boundary decreased in time.
MacCready and Rhines ( 1991 ) find that the along-slope
shear stress decreases as the transport decreases, as
shown by taking the 7 integral of Eq. (2.3):

. P fwaa )
foo fo dds = Po(V az,)f=0 po [z 32
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and assuming that the acceleration (third term) is small
after an early time. Both the transport and the shear
stress decreased to small, near-steady values by day 9,
yet they remained closely balanced. Thus, either would
be useful measures of the ability of the boundary layer
to spin down the interior. Although there is persistent
time variation of the alongslope velocity profile of Fig.
4b above the mixed layer, its integral is about an order
of magnitude smaller than the late-time shear stress at
the boundary. One may, in fact, show that the accel-
eration term is O(.S) compared with the first two terms
in (3.2), using the theory to be presented in section 4.
The acceleration term in (3.2) may also be large owing
to inertial oscillations, but in this instance it merely
serves to cancel with the oscillations in the transport,
leading to an along-slope boundary stress that looks
like a smoothed version of the transport.

By day 9 the transport appeared to have achieved a
constant, small value. It turns out, however, that it was
not truly steady, as one might guess from the continued
changes in the alongslope velocity and density profiles.
We may integrate the buoyancy equation (2.4) to form
an expression for the upslope transport:

© 1 * 9B K
1dz = —; —di+—=.
J(; ez aN? Jo ot z o

The expected steady value, .,/ «, is evident here, but
is attained only when the buoyancy term in (3.3) be-
comes vanishingly small. In Fig. 4 the transport by day
18 was about 0.03 m? s™!, three times the steady value,
Ko/ = 0.01 m?s™", The difference was due to per-
sistent changes in the buoyancy term of (3.3). This
profile continued to change indefinitely; by day 60 of
the same integration (not shown) the transport had

(3.3)

“dropped only to 0.025 m? s™'. This is an interesting

comment on steady solutions to the problem, indicat-
ing that although they must ultimately be correct, they
may take an extremely long time to develop in practice.
Differences persist because the interior velocity has not
yet achieved that of the steady solution. One does not,
however, know exactly what that.steady velocity will
be, since it is a function of the final diffusivity profile
(see Garrett 1991).

The diffusivelike thickening of the alongslope ve-
locity boundary layer, seen in Fig. 4b outside of the
mixed layer, is a very peculiar feature of flows on a
slope with rotation and stratification. MacCready and
Rhines (1991) find such a thickening in their integra-
tions with constant diffusivity, and develop an ap-
proximate equation to describe the behavior, calling it
“slow diffusion.” This is addressed for the variable dif-
fusivity case in section 4. The “job” of this diffusive
change in the alongslope flow is to bring it to the value
required by the steady solution. This will, of course,
take infinitely long, as our model fluid is infinitely deep.
Nevertheless, the transport does nearly achieve its
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FIG. 3. Output from a three-day numerical integration of (2.2)-(2.4) with: f=10"%s™', N=35%X 105", a =102, V=—0.1ms™"
(upwelling favorable). Plotted are (a) upslope velocity #, (b) alongslope velocity 9, (c) density perturbation p-pg, (d) eddy diffusivity
coefficients » and «, (¢) alongslope shear stress — pou( 9D/ 92), all versus Z, and (f) cross-slope transport versus time. Plots (a)-(e) show the
profile of the quantity in question at seven different times during the integration: day 0 (solid line), day 0.5 (dashed line with longest dashes),
and so on, every half day, until day 3 (dashed line with shortest dashes). Initially the transport was about 0.7 m® s™', as we might expect
from steady Ekman theory.
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steady value over the relatively short shutdown time,
indicating that the steady solutions may be more ap-
plicable for their predictions of the transport than for
their predictions of the interior velocity. Although the
early shutdown of the transport is not particularly sen-
sitive to v, OT k,, the slow diffusion process is very
much affected by the values of these diffusivities, of
which we have only a vague idea in the real ocean.

The evolution of the density anomaly, p — po, 1s
plotted in Figs. 3¢ and 4¢. The density was nearly con-
stant in depth within the mixed layer, as we assumed
in our approximate solution in the previous section,
and the value of the density within the mixed layer
increased over time, as the stratification was advected
upslope by the ii-velocity field. (The density is actually
plotted versus z, the true vertical coordinate, and is
then mapped into Z to make the plot. This is done so
that one may judge easily if a given profile is statically
stable: a vertical line in the density profile is neutrally
stable.) Note that the density anomaly showed the same
diffusive thickening as the alongslope velocity. The
alongslope flow was almost exactly in thermal-wind
balance with the density field in the region beyond the
mixed layer.

The diffusivities, shown in Figs. 3d and 4d, show
that the flow initially formed a turbulent boundary
layer about 20 m thick. Interestingly, the mixed-layer
height decreased in time, eventually settling at about
8 m. The reason was presumably a combination of
decreasing alongslope shear in the mixed layer, as well
as some small restratification. This process, which can-
not be reproduced by standard slab models, seems to
be peculiar to sloping boundaries (no such thinning
was observed in numerical integrations with « = 0)
and is certainly connected with the decreased bottom
shear stress associated with shutdown.

b. Downwelling favorable case

Figures 5 and 6 present the evolution of the boundary
layer for the case where V' = +0.1 m s~! (downwelling
favorable). This is the same sense as the flow in the
Deep Western Boundary Current in the North Atlantic.
All other parameters were as in Figs. 3 and 4. As before,
Fig. 5 is a three-day integration, and Fig. 6 is the same
run taken out to 18 days.

The main difference between this run and the up-
welling-favorable run was that here the turbulent mixed
layer continued to grow in height throughout the in-
tegration. The reason was that the downslope flow
tended to push lighter water under heavier, leading to
convective instability (or, as our model sees it, a low
Ri due to low values of dp/dZ, and hence high diffu-
sivities ). This asymmetry in mixed-layer height during
upwelling versus downwelling-favorable flows has been
observed previously in numerical experiments and in
ocean flows by both Weatherly and Martin (1978) and
Trowbridge and Lentz (1991).
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Initially the cross-slope flow, &, looked Ekman-like,
as in the early section of Fig. 3a. Later it thickened,
and decreased in magnitude. The transport history,
Figs. 5f and 6f, shows that the integral of the cross-
slope velocity decreased in magnitude as well, although
not as quickly as in the upwelling-favorable case, and
had clearly not completely shut down by day 18. The
theory presented in section 2 implies that the difference
in the transport decay was mainly due to the different
mixed-layer heights in the two cases. Recall that we
found that the decay time scale increased linearly with
H in (2.19). The alongslope stress at the boundary,
which, as we have said, should be linked with the trans-
port, also decreased in time (Figs. Se and 6e).

At the end of the integration the cross-slope flow,
Fig. 6a, formed a weak double jet with slight upslope
flow near the boundary and downslope flow near the
top of the mixed layer. The upwelling part was the first
sign of the steady solution that always has an upslope
transport «.,/«. Garrett (1990) relates the double jet
to boundary mixing, showing that it advectively re-
stratifies the fluid by slumping of the vertical isopycnals,
while diffusion is trying to remove any stratification
that arises in the mixed layer.

The alongslope velocity, plotted in Figs. 5b and 6b,
tended toward a simple linear shear over time, going
from zero to V over the thickness of the mixed layer,
and the predicted thickness, Hpin, is 81.6 m, very close
to the value we see by day 18 in Fig. 6¢c. The alongslope
flow was very close to thermal wind balance over all
of the boundary layer, unlike the upwelling-favorable
case where diffusive effects remained important within
the mixed layer.

The diffusivities, Figs. 5d and 6d, were initially high
in the mixed layer, but dropped off gradually at later
time, owing to the slowly decreasing velocity shear, as
well as a finite stratification within the mixed layer
itself at later time, consistent with Garret’s (1991) pre-
diction of the final Richardson number.

¢. Comparison of theoretical and numerical results

From the full numerical solutions we may check the
accuracy of our analytic shutdown time prediction,
Dry. Figures 7 and 8 show the cross-slope transport
versus time for six different full numerical solutions
(two of which were shown before in detail). We plot
the (absolute value of) transport on a log scale versus
a linear time scale. Exponential decay, which (2.19)
predicts for constant H, shows up as a straight line on
such a plot. Figure 7 is for three upwelling-favorable
runs, all with ¥ = —0.1 m s™', with three different
slope angles, @ = 0.02, 0.01, and 0.005. The upwelling
favorable cases all had relatively constant mixed-layer
thicknesses, so we expect nearly exponential decay,
which is borne out by the linearity of the curves during
the shutdown. Figure 8 is for three downwelling fa-
vorable runs, again with @ = 0.02, 0.01, and 0.005,
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FIG. 5. Output from a three-day numerical integration of (2.2)-(2.4), parameters as in Fig. 3 except ¥ = +0.1 m s™' (downwelling

favorable). Plotted are (a) upslope velocity i, (b) alongslope velocity D, (c) density perturbation p-p,, (d) eddy diffusivity coefficients »
and «, (e) alongslope shear stress — por(39/92), all versus Z, and (f) cross-slope transport versus time. Plots (a)-(e) show the profile of the
quantity in question at seven different times during the integration: day 0 (solid line), day 0.5 (dashed line with longest dashes), and so on,
every half day, until day 3 (dashed line with shortest dashes). The cross-slope transport tends to push lighter water down under heavier,
leading to an unstable density profile and hence a progressively thicker mixed layer.
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F1G. 6. Same integration as Fig. 5 but carried out to 18 days. The curves in (a)-(e) are plotted every three days in this case, day 0 (solid
line), day 3 (dashed line with longest dashes), and so on, to day 18 (dashed line with shortest dashes). Again the magnitude of the transport
(f) decreases with time, although not as rapidly as in Fig. 4f, owing to the greater mixed-layer thickness. The alongslope flow (b) gradually
assumes a linear shear from zero to V over the mixed layer.
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FiG. 7. Upslope transport (log scale) versus time for three numerical
runs. All parameters were as in Fig. 4 (upwelling favorable) except
the slope angle, «, which was varied as shown. The transport curves
were nearly linear during the initial shutdown, indicating that the
decay was close to exponential, as in (2.19). The strong dependence
of the shutdown time, D f/(Ne)?, on « is evident in these curves.

and ¥V = +0.1 m s~!. The curves are less linear than
in Fig. 7, and in particular the slope decreased in mag-
nitude at later times when the boundary-layer thickness
was greater. This is consistent with the longer shutdown
time scale we predict for greater H.

We may compare our analytic theory and the full
numerical solutions at any time during a numerical
run, and this is done in Fig. 9. The solid line in this
figure is the factor D, which multiplies 74 to give the
shutdown time from the theory, plotted versus H /3.
Thus, D has a slope of 2 in this graph. The solution
curve stops for H/6y < 1, since our solution is for H
> &9, but only diverges markedly from the full solution
when H/dg < 1 (MacCready 1991).

The crosses (+) in Fig. 9 are values of D observed
in the six full numerical solutions of Figs. 7 and 8.

2 -1

|down-slope transport] (m’s™)
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FIG. 8. Absolute value of the downslope transport (log scale) versus
time for three numerical runs. All parameters were as in Fig. 6
(downwelling favorable) except the slope angle, o, which was varied
as shown. The transport decreased more slowly for these cases than
those in Fig. 7, owing to the greater mixed-layer thickness.
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F1G. 9. Value of the factor D (solid line) from (2.20), versus H/
8o, the ratio of the mixed-layer thickness to the nominal Ekman
layer thickness, (vo/Q)'/2. Equation (2.19) predicts that, for constant
H, the cross-slope transport will decay exponentially in a time scale
Df/(Na)?. Also plotted (+) are values of D from (3.4), figured at
various times during the six numerical solutions to the full equations
shown in Figs. 7 and 8. Although H varied during a given run, es-
pecially for the downwelling-favorable cases, we may still calculate
a value of D at a given time. These observed values of D from the
numerical runs compare well with the analytic predictions.

Although H was changing with time in these runs, we
may estimate a value of D at a given time by solving
(2.19) for D, giving

(3.4)

All the terms on the right-hand side of (3.4) are cither
known or are easily found from the transport plots.
Then, by noting the mixed-layer thickness at that time
(defined as the height where v = »,,), we arrive at a
point to plot on Fig. 9. For downwelling favorable cases,
both the observed D and H changed over time. For
any given run points were taken at several different
times, starting when ¢ = 1 day, and going to the time
when the transport had approximately e-folded. As one
can see in Fig. 9, the agreement between the theory
and the full numerical solutions is fairly good, even
over a wide range of boundary-layer thicknesses, lend-
ing credence to our analytic estimate of the shutdown
time.

4. Long-time evolution; the slow-diffusion equation

As the cross-slope transport decays, the flow de-
scribed in the previous sections continues to adjust,
with gradual penetration of the momentum profile up-
ward above the mixed layer (Figs. 4b, c, and marginally
in 6b, ¢), drawing the interior along-slope velocity to-
ward that of Thorpe’s steady solution (MacCready and
Rhines 1991). The one-dimensional system seeks in
this way to establish a steady flow obeying the global
connection between cross-slope transport and interior
density diffusion, the steady limit of (3.3).
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What makes the effect so striking is that the classic
Ekman layer never diffuses beyond a distance &, from
the boundary. The reason for the continued diffusive-
like thickening of the alongslope velocity profile can
be seen from the following argument involving the me-
ridional (i.e., X, Z) circulation: first, any vertical di-
vergence of along-slope shear stress (e.g., curvature in
the velocity field) will have some cross-slope transport
associated with it (by 2.3); second, that motion advects
buoyancy, B, across the slope; and third, the displace-
ment of isopycnal surfaces will quickly require, via the
thermal wind, a decrease in magnitude of the along-
slope current, thus providing a pseudo diffusion of mo-
mentum normal to the bottom. Similar diffusivelike
thickening is seen by Gill (1981) and Garrett (1982)
in the context of a sloping shear region in the ocean
interior, with constant coefficients of diffusivity. We
call this thickening of the alongslope boundary layer
slow diffusion: diffusion because it obeys a diffusion
equation, and slow because it happens (for ¢ > 1) at
a slower rate than would be the case for a simple non-
rotating boundary layer with the same viscosity.

To develop the equation describing slow diffusion,
we assume in MacCready and Rhines (1991) that the
along-slope flow is in thermal wind balance. This ap-
proximation, which amounts to having a small Rossby
number and a small Ekman number in the cross-slope
momentum equation, (2.2), is suggested by scaling of
the equations, and by examination of numerical in-
tegrations. While the approximations cannot hold very
close to the boundary, they become increasingly ac-
curate at larger distance. Here we want to incorporate
nonuniform, time-dependent diffusivities in the theory,
appropriate to our numerical experiments. First, ignore
the acceleration and diffusive terms in the cross-slope
momentum balance, leaving:

f(D— V)= aB. (4.1)
Take derivatives of this to form:
OB _fab 8B [ ab
a aodt’ 9 adi (4.2)

These are substituted into the buoyancy equation,
(2.4), which may then be written as
18D a oD
100, J & (v —’ﬂ) . (43)
0z

Sot " cad? Sooi

This is substituted into the alongslope momentum
equation, (2.3), and the result rearranged to find

0 _—f(_S \or (l/o+S8\3 [ b
3 oal\l+S)3z 1+5 Jaz\"az)’
(4.4)

which is the slow diffusion equation for nonuniform,
time-dependent coefficients. When the diffusivity is
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constant the second term drops out, and the expression
reduces to the laminar slow diffusion equation of
MacCready and Rhines (1991). Equation (4.4) tells
us that in regions where the alongslope flow is in ther-
mal wind balance and the diffusivities constant, the
alongslope momentum profile will develop as in a dif-
fusive process, tending to thicken indefinitely. Yet both
v and « are involved in this development, through the
implicit role of the buoyancy of the fluid.

To compare the slow diffusion equation with the
full solution, numerical integrations of (4.4) were car-
ried out (Figs. 10 and 11) with the values of the dif-
fusivities taken from the exact numerical model runs.
They give a good representation of the evolution of
D(Z, t) for later times, except within the mixed layer
for the upwelling favorable case. There the viscous ef-
fects are not negligible [recall that our derivation of
(4.4) required a small Ekman number in the cross-
slope momentum equation].

For the upwelling favorable case, outside of the
mixed layer, the second term in (4.4) is unimportant
and the alongslope boundary layer thickens like

(1/0+S)”2(Vt)1/2_

1+5 (4.3)

Note that when ¢ = 1, as in our numerical integrations,
(4.5) reduces to (v2)'/2, as in a normal diffusion equa-
tion, while for ¢ > 1, as is typical of molecular diffusion
or situations where internal waves may carry momen-
tum, the diffusion may be much slower.

In the downwelling-favorable case the slow diffusion
equation (Fig. 11) predicts well the nearly linear vari-
ation of D with depth seen in Fig. 6b, which Trowbridge
and Lentz suggest as a possible steady solution (see
2.24). Garrett (1991) gives an important insight into
the slow diffusion equation that connects it with this
linear shear prediction. He suggests that at later times,
that is, 1 > D7y, the acceleration term in (4.4) may
become negligible. Dropping this term and integrating
the equation from Z to oo he finds

w_Sf(_S
Z al\l+aS

This predicts, as we would hope, zero shear in the ex-
terior where » = v, and in the mixed layer it predicts
a shear of (f/a)[S/(1 + aS)], provided v > v,,. The
shear predicted in section 2 is V/ Hy;,, which is equal
to N2a/f, or (f/a)S. Hence, (4.6) represents a mod-
ification to the prediction from section 2, decreasing
the shear in the boundary layer by a factor (1 + ¢5)7".

Since the stratification is assumed to be in thermal
wind balance with the alongslope flow, Garrett is also
able to predict the final Richardson number of the flow,
and hence its final diffusivity. These predictions are,
however, sensitive to the Ridependence of mixing that
is assumed. If the region of higher diffusivities extends
to larger Ri (say 0.5 or greater) then Garrett’s prediction

)(1 — Vo /). (4.6)
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F1G. 10. Numerical solution to the slow diffusion equation (4.4)
for the 18-day integration shown in Fig. 4 (upwelling favorable). As
in Fig. 4b, the seven different profiles are the along-slope velocity at
seven different times in the integration: day 0 (solid line), day 3
(dashed line with longest dashes), and so on, every three days, until
day 18 (dashed line with shortest dashes). The slow diffusion equation
captures well the diffusivelike thickening of the boundary layer beyond
the mixed layer; however, it is clearly wrong in the mixed layer,
owing to strong diffusive effects there.

works well, yet with our current choice (Fig. 2) the
diffusivity becomes small in the mixed layer at large
time, approaching its lower limiting value (the begin-
ning of this fall in the diffusivities is apparent in Fig.
6d). Then the slow diffusion equation remains essen-
tially time dependent and (4.6) is not applicable.

It seems paradoxical that we have a slow diffusion
prediction for the upwelling-favorable case that looks
like a diffusive penetration of momentum upward from
the boundary, yet on the other hand we have estab-
lished that the boundary shear stress is almost exactly
balanced by the Coriolis force on the diminishing cross-
slope transport. The resolution is that the slow diffusion
solutions are driven by the small shear stress at the top
of the boundary layer, secing that as an apparent
boundary stress, while inside the mixed layer such so-
lutions are inaccurate owing to the importance of dif-
fusive effects there.

5. Conclusions

Several recent papers—Weatherly and Martin
(1978), Thorpe (1987), Garrett (1990, 1991),
MacCready and Rhines (1991), Trowbridge and Lentz
(1991), MacCready (1991), and the present work—
have begun to illuminate the murky topic of stratified
oceanic bottom boundary layers over sloping topog-
raphy. The authors’ interests range from steady to time-
dependent solutions, and from momentum dynamics
to the mixing of density within the boundary layer.
This paper approaches the problem from the point of
view of the boundary stress that will slow down bottom
currents in the ocean, such as deep western boundary
currents. We find that evolving buoyancy forces cause
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the boundary stress (and its associated Ekman trans-
port) to drop off quasi-exponentially in time, with the
fundamental time scale given by f/(Na)2. Thicker
mixed layers may have substantially slower decay of
their boundary stress than thinner ones. Above the
mixed layer the current is slowed in a diffusivelike
manner, eventually bringing the interior flow in line
with that required by the steady solution.

Our discussion of long-time behavior here and in
MacCready and Rhines (1991) is carried out within
the one-dimensional framework of the model. The
slowness of this process merits examination, however.
The three-dimensional ocean is driven primarily by
temperature, fresh water, and momentum exchange
with the atmosphere above. These forcing effects are
transmitted to the deep interior by pressure forces and
direct advection. Until we have an appreciation for the
rates of invasion of these properties from both sea sur-
face and the benthic boundary layer, we cannot say
whether the seafloor drives significant interior circu-
lation or not. The one-dimensional problem by itself
suggests the importance of self-propelled circulations
driven by boundary mixing, but these may be lost in
the face of the other sources of motion and buoyancy.

Although the steady solutions may be achieved only
slowly, if ever, it appears that the near-zero boundary
stress may evolve much more rapidly (assuming a short
shutdown time), and hence be a more robust result.
The implications of a low-stress boundary could be
considerable. By eliminating fast classical spinup for
much of the ocean we have to look for other ways to
achieve a global balance of angular momentum. The
need for direct measurement of boundary shear stress
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FiG. 11. Numerical solution to the slow diffusion equation (4.4)
for the 18-day integration shown in Fig. 6 (downwelling favorable).
As in Fig. 6b the seven different profiles are the along-slope velocity
at seven different times in the integration: day O (solid line), day 3
(dashed line with longest dashes), and so on, every three days, until
day 18 (dashed line with shortest dashes). By day 15 (about 1.5 times
the shutdown time) the slow diffusion solution gives a good repre-
sentation of the along-slope flow. The linear shear is very similar in
form and thickness ( Hpi, = 81.6 m) to that proposed by Trowbridge
and Lentz (1991) and discussed in section 2d.
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is clear. Evaluation of inviscid form drag on deep-sea
topography (both at the small scale of internal waves
and the great scale of planetary waves) becomes par-
ticularly important (though it must be realized that
energy has to dissipated in a statistically steady ocean
driven by winds; inviscid momentum drag must be
accompanied by small-scale turbulent energy dissipa-
tion, whether it occurs in the boundary layer or in the
interior).

Full two- and three-dimensional problems (like the
laboratory experiments in MacCready and Rhines
1991) should now be pursued. Preliminary laboratory
studies of flow in a basin with both flat plains and el-
evated ridges suggest that the slipperiness of flow over
slopes is indeed important, and may set the stage for
strong instability between the jets that run along ridges
and the spundown fluid overlying the adjacent abyssal
plain.

There are many different questions one might ask
of models of deep-ocean boundary layers. Here we have
shown the development of momentum, boundary-layer
transport, and buoyancy fields for an assumed model
of Richardson number-dependent mixing coefficients.
While sensitivity to the form of this dependence did
not seem too great, the evolving profiles of » and « in
the mixed layer are themselves quite sensitive. Thus,
if one is interested in flux of a benthic tracer (radon,
biological communities, sediment, etc.) through the
mixed layer, further exploration of the mixing laws
should be made. Indeed, it might be that the nephe-
lometer and trace chemistry observations could con-
strain »(Ri) and x(R1) within the context of this model.

While we have not applied these ideas in detail to
observed deep-ocean flows, we are particularly inter-
ested in the rapid deep western boundary currents of
the World Ocean. These key elements of the global
circulation often begin as gravity currents, for instance,
where flows spill over the sill in the Denmark Strait.
Barringer and Price (1990) suggest that a simple bal-
ance between the buoyancy, bottom drag, and entrain-
ment drag determines how deep these water masses
fall before leveling out and flowing quasi-horizontally
along the sloping boundary (so that improved models
of bottom stress are of great interest). If it were true
that Ekman flux were carrying fluid across slope (often
downslope) at the classically predicted rate, then the
water within these currents would be recycled through
the boundary layer or otherwise bled off into the in-
terior remarkably quickly; yet it does not appear to
happen. Nor does the momentum drag on the deep
boundary currents appear to be as great as Ekman the-
ory would predict; essentially the classic spindown time
of a 500-m thick boundary current with a 50-m thick
benthic mixed layer is about 10 days! While global
pressure gradients are available to continually drive
boundary currents after they have gravitationally fallen
down from their source regions, the level of frictional
damping would alter the apparent long-distance integ-
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rity of these boundary currents [one may see the role
of diffusion in Kawase’s (1987) model of source-driven
deep circulation]. In addition, the classic calculation
of spindown of such a current would also involve pro-
duction of remarkable counterflows reaching to the top
of the ocean, for these currents tend to have a width
at least as great as the gravest internal Rossby defor-
mation radius.

It is not simple, though, to apply shutdown theory
to actual deep flows in the ocean. The theory was de-
veloped for an idealized situation, with flat isopycnals
intersecting the slope. The crucial quantity allowing
shutdown, however, is not just the ambient buoyancy
frequency in the fluid, but the existence of a gradient
of density on the slope itself, allowing the cross-slope
transport to change the density structure. In some
boundary currents driven by overflows of heavy water
the density structure may be far from our idealized
situation, with constant density on the slope across the
entire width of the current. In this case shutdown theory
would not be applicable. What then of the actual dy-
namics of the Deep Western Boundary Current in the
North Atlantic?

A final puzzle for future observational and theoret-
ical work lies in our inability to separate the upstream
preconditioning of the flow (which may tend to insulate
the current from the slope by a cushion of water already
in thermal-wind balance, as in the Straits of Florida),
from the shutdown or spindown processes, all of which
eventually leave the interior flow relatively free from
frictional effects at the boundary.
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