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ABSTRACT

The instability of the downwelling front along the southern coast of Asia Minor is studied with a multimode
quasigeostrophic model. Linear analysis shows that the most unstable wave has a length of about 100 km. The
wavelength depends only very weakly on the transversal scale of the front. The wave period is larger by an order
of magnitude than the e-folding time; that is, rapid local growth occurs with little propagation. The growth rate
is proportional to the maximum of the speed of the downwelling westward jet.

The evolution of the frontal waves can be divided into three stages. At first, the evolution is mainly due to
linear instability; the second stage is characterized by closed eddy formation; and finally, isolated eddies separate
from the front and penetrate into the open sea. The largest amount of available potential energy is transferred
to kinetic energy and into the barotropic mode during the second, eddy-forming stage, when several dipoles
develop in this mode. The formation of anticyclonic eddies is due to advection of the ridges of the unstable
wave’s first baroclinic mode by the barotropic dipole. The baroclinic eddies ride on the barotropic dipoles. The
propagation of such dipole-rider systems is determined mainly by the evolution of the corresponding barotropic
dipole.

These results suggest that the warm- and salty-core eddies observed in the Eastern Mediterranean are due, at
least in part, to the instability of the downwelling front along the basin’s northeastern coastline. There is both
qualitative and quantitative similarity between the observed and calculated eddies in their radius (35-50 km),
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thermal structure, and distribution along the coast.

1. Introduction

Eddies with warm and salty cores have been shown
to exist in the Eastern Mediterranean by Feliks and
Itzikowitz (1987), Hecht et al. (1988), and Ozsoy et
al. (1989). In these eddies the 14°~16°C isotherms
slope downward by 100-300 m over a horizontal dis-
tance of about 50 km. The same slope was observed
in the 38.75-39.05 psu isohalines. The water type in
the core of these eddies, down to 450 m, is that of
Levantine Intermediate Water (LIW) in its region of
formation by downwelling along the Asia Minor coast.
Some eddies were observed down to depths of 800-
900 m, and could persist in the region for more than
a year.

Feliks (1990) studied numerically the evolution of
an isolated vortex in a four-mode §-plane ocean model
and showed that such a vortex can persist for several
simulated years. He proposed that a barotropic modon
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with a baroclinic rider, which develops in this model,
is a good idealization for Eastern Mediterranean warm-
core eddies. The validity of this modon-rider system
as a persistent eddy model is due to its being nondis-
persive for a long pertod of time and its speed of prop-
agation being mainly determined by the mean current
advection.

Feliks (1991) studied further, in a multilayer Bous-
sinesq system with rotation, the downwelling along the
northeastern coasts of the Eastern Mediterranean in-
duced by winter storms, the so-called Cyprus cyclones.
He showed that intensive downwelling and a westward
current develop along the south coast of Asia Minor
in an alongshore band about 100 km wide. The tem-
perature and salinity profiles in the downwelling zone
are very similar to those observed in the Mediterranean
eddies with warm and salty cores.

Feliks suggested that baroclinic instability may act
in the downwelling front to create significant mean-
dering and that later, due to nonlinear dynamics, eddies
will detach from the front. Baroclinic instability mech-
anisms had been proposed for the California Current
system by Mysak (1977), Hukuda (1982), and Ikeda
(1983) to explain the meandering of the upwelling
front. Their studies were able to explain some of the
observed features, like the wavelength and growth rate,
based on the length of the most unstable wave of the
corresponding linear model.
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A different mechanism for coastal-front instabilities,
somewhat related to Kelvin-Helmholtz instability, was
proposed by Paldor and Ghil (1991), with some en-
couraging comparisons to the meandering of the Al-
gerian Current in the Western Mediterranean. Ghil and
Paldor (1991 ) showed that the initial, weakly nonlinear
evolution of frontal instabilities on a coupled density
front is dominated by the linearly most unstable waves.

In this paper we study the instability of the down-
welling front, along with eddy formation and detach-
ment, using a quasigeostrophic numerical model with
four vertical modes. In section 2 the mathematical for-
mulation of the problem is presented. In section 3 the
linear instability is studied in terms of normal modes
in the vertical, rather than levels. In section 4 the de-
velopment and detachment of eddies is described. In
section 5 the dependence of the results on several pa-
rameters is examined. Concluding remarks follow in
section 6.

2. Mathematical model

In this study we use a quasigeostrophic rigid-lid
model with several modes in the vertical, following Fe-
liks (1990). The model equations are nondimension-
alized by the following characteristic scales:

L
tc—==T, Yoc VL,

X, YcL, Zox H, %

where V is the particle speed, L is the Rossby radius
of deformation of the first baroclinic mode, and H is
the vertical scale. The appropriate scales for the Eastern
Mediterranean downwelling case are listed in Table 1.

The nondimensional potential vorticity equation
with this scaling is

dq N

Wiy - 2.1
ot B8 Ix J(¢¥,q) =0, (2.1a)
where
8 (16y
=V + =l .1
q V¢+62(S82)’ (2.10)
N*H? L?
S=?F’ /3=1307, (2.1c,d)

fis the value of the Coriolis parameter at a central
latitude (34°N), N(z) is the mean Brunt-Viisili fre-
quency, and B, is the meridional gradient of fat the
central latitude. The mean Brunt-Viisild frequency
in the following numerical experiments (Fig. 1a) was
taken from the end of the downwelling simulation de-
scribed by Feliks (1991).

The vertical structure of the model is based on the
eigenfunctions ¢,(z) of the eigenvalue problem

2L

2
dz \S dz (2.2)

) = —Med,
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with the boundary condition d¢,/0z = 0 at the sea
surface z = 0 and at the mean depth z = —H,. We
designate by k = 0 the barotropic mode, and by k
= 1, 2, + - the successive baroclinic modes. The ex-
ternal Rossby radius of deformation, L/, 1s infinite,
according to the rigid-lid assumption; the kth internal
Rossby radius of deformation is L/ N\, k = 1,2, - -.
The first three internal radii are listed in Table 1, and
the first four eigenfunctions, one barotropic and three
baroclinic, are shown in Fig. 1b.

We decompose the streamfunction { and the poten-
tial vorticity g into vertical normal modes:

Vx,y,z,t) = 2 ulx, y, Hi(2), (2.3a)
k

q(x, y, 2, ) = 2 qu(x, y, Du(z).  (2.3b)
k

The equations for the modal amplitudes (Flierl 1978)
are

d 9
Ok | g\ s T a) =0, 0<k<3,
ot ox Iy
(2.4a)
where

1 0
G = VA — N £ = = f didibedz; (2.4b,c)
HO —Ho

£, are the triple interaction coefficients, and their val-
ues for the downwelling case are given in Table 1.

TABLE 1. The scales and the physical parameters
for the downwelling.

14 L H T Bo 8= L_2
(cms™ (km) (m) (days) (cm's7!) v
5 10 2000 231 1.82%107% 0.364
mode k L/ (km)
1 9.4
2 3.8
3 24
1 0
ik Ej = E‘O J:Ho S yrdz
000 1.00
011 1.00
022 1.00
033 1.00
111 2.60
112 0.75
113 0.24
122 0.56
123 0.72
222 —-1.31
223 —0.39
233 —-0.98
333 —0.81
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FIG. 1. (a) The vertical profile of N? in the downwelling simulation
of Feliks (1991). (b) The first four vertical modes: the barotropic
one ( X with long-short dashes) and the first three baroclinic modes.

The integration domain is rectangular of size 1458
km X 576 km. This domain has a coast along its north-
ern boundary (y = 0, Fig. 4a). The basic state is a
coastal jet flowing westward along the northern
boundary of the form

¥(x, y, z) = a1 ¢,(2), (2.5a)
2 2 (22
q(x,y,z)=ae™”’? [55 (b—yz - 1) - A?}dn(Z).
(2.5b)

This jet describes fairly well the downwelling front and
the baroclinic part of the coastal jet obtained in the
simulation of Feliks (1991). The values of the intensity
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parameter g and the width parameter b are determined
by the maximum speed of the jet, up, and the distance
from the coast of this maximum, y,, respectively:

a=uwuye?/VL, b=wV2/L. (2.6ab)

The appropriate values for the Anatolian downwelling
case are yp = S0 km and up = 6 cm s ™.

Feliks (1991) showed that the width of the jet is
proportional to the square root of the horizontal dif-

“fusion coefficient. Due to uncertainty in the value of

that coefficient, the location of the maximum of the
jet is also uncertain. Hence, we examine the stability
of different jets as a function of ), in section Sc.

The streamfunction on the boundaries is time in-
dependent. Along the coast v = dy/dx = 0; that is, ¢
is constant along the coast. To calculate the potential
vorticity on the coast we assume nonslip conditions;
thatis, u = —3d¢/3y = 0.

The numerical scheme is the same as in Feliks
(1990). Key features include fourth-order accurate
discretization by finite elements in the horizontal (cf.
Haidvogel et al. 1980), a second-order Adams—Bash-
forth scheme in time, and a fourth-order Shapiro
(1970) filter for every time step. A uniform grid of 244
X 97 points in the horizontal was used, with a spatial
and temporal resolution of Ax = Ay = 6 km/L and
At = 2700 s/ T, except in sections 3b and 5c, where a
higher resolution was introduced for comparison pur-
poses.

The fourth-order filter has a very similar effect to
viscous dissipation. It can be shown that the filter is
equivalent to adding the following higher-order diffu-
sion term to the right-hand side of Eq. (2.4a),

AViq = AVH(VY — M), (2.7)
where 4 = (1/16)Ax*At. For the resolution given
above and used in most of the experiments, A = 0.6

in nondimensional units, or 4 = 3 X 10" cm*s™'.

3. Linear instability
a. Linearization and eigenproblem

Many linear instability studies of coastal and ocean
currents are based on layer models (e.g., Mysak 1977,
Haidvogel and Holland 1978; Ikeda 1983; Paldor and
Ghil 1991). In the following we study the stability of
the downwelling jet with a model based on vertical
normal modes rather than on layers.

Linearizing Eq. (2.4) about the downwelling jet
(2.5), we superimpose on this jet a perturbation that
has the form of a wave propagating along the coast;
that is,

V(x,y, 2, 1) = 2 e“TOD(0)¢s(2), (3.1)

J

where ¢’ = 0 at y = 0 and y = —oo . Here cis the wave
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speed and k the wavenumber. The perturbation for

each vertical mode j has the form:
Y= e Dy(y), (3.2a)
= [—(k*+ \)D; + d*D;/dy*}e* . (3.2b)

After some mathematical manipulations, we get the
following set of second-order ordinary differential
equations for the vertical modes of the perturbation:

c[ D" — (k* + N)D;] = BD; + X Dikjie
I

X[g'+ ¢ (K> +N)]— 2 D" &y, (3.3)
1

where ¢ and ¢ are defined in (2.5), and &, by (2.4¢).
The boundary conditions are D; =0aty =0,y —>
—oo. The eigenvalue ¢ and the eigenfunctions D; are
functions of ¥ and k. All the other parameters are de-
termined by the mean stratification N(z).

The solution of the eigensystem (3.3) is obtained
numerically as follows. The second derivative with re-
spect to y is approximated by second-order differences,

d*D;  Dy(y + Ay) + Di(y — Ay) — 2D;(¥)
afy2 Ay?
so Egs. (3.3) become
J Ry + &) | Diy= Ay)
dy? dy?

, (3.4)

_ D+ N+ 2/Ay2)] - BD,(»)

-« Dy + Ay) 2y e
+§ A7 Gmrpr Y ae™"?

(y — Ay) 2y

+ 2 m y Eij A 2 ae yib

2
+ 2 Dp(¥)éim2 'b_J; ae™1?

— A2, - k2) . (3.5)
This homogeneous linear system can be written in vec-
tor—-matrix notation as

cAd = Bd;

d is the matrix having as its columns the discretized
eigenfunctions

d=(7,4d7, .-+, dD7, (3.7a)

where ()7 is the transpose, # is the number of vertical
modes, and

d;=(Dn), -+ -, D))", 1<j<n, (3.7b)

with / the number of grid points in the y direction.

(3.6)‘
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The matrix A is block diagonal:
A = diag(A)), (3.8a)

where each A, is an (/ X /) tridiagonal symmetric ma-
trix; the elements on the main diagonal are equal to
—(k2 + N + 2/Ay?), and the elements on the upper
and lower subdiagonals are both equal to 1/ Ay?,

—A; = tridiag(—1/Ay% k* + N} + 2/Ay?, —1/Ay?).

(3.8b)
The matrix B has the form
B! B! B)
2 2 2
p-| B B B (3.9a)
B B B!

where each B is an (/ X /) tridiagonal symmetric ma-
trix,

2a _ 252 .. ,V2 -2
"= Ein 52 ¢ /b trldlag(—Ay2 , ——Ayz
4y 6 y?
toat N — N — K A_yz) + B, (3.9b)

l; being the / X [ identity matrix. Writing (3.6) in the
following form,

cd=A""'Bd, (3.10)

the eigenvalues and eigenvectors of the matrix A'B
are found by the eigensystem subroutine package EIS-
PACK (Smith et al. 1976).

b. Numerical results

To study the linear stability problem, we used a
higher meridional resolution, Ay = 1 km; this does not
affect the comparisons with subsequent time-dependent
integrations, where Ay = 6 km. In the parameter range
10 km < y, < 100 km of coastal-current width there
is only weak dependence of the growth rate on the 8
effect; this is shown in Table 2 for up = 6 cms™'
by comparing e-folding times for B, = 1.82
X 107 cm™' s7! and By = 0 when using a total of four
vertical modes (0 < k < 3). In Table 3 we examine
the importance of the 8 effect for different speeds uo
of the coastal current, given y, = 50 km. It is found
that only for a weak current, ¢y < 2 cm s, is the 8
effect important in determining the growth rate.

The eigenvalue ¢ is almost proportional to a, pro-
vided 8 is not too large, since the elements in matrix
B, except Bl, are proportional to a [cf. Eq. (3.9)]; that
is, the growth rate of the most unstable wave and its
phase velocity are simply proportional to the maximum
speed of the mean current [cf. Eq. (2.6a)]. Thus, in
the following we study the mstab111ty for the case where
Uy = 6 cm s™'; that is, the maximum speed of the
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TABLE 2. Dependence of the fastest growing mode of the frontal instability on coastal current width.

e-folding time® (days) PVe(cms™) WP* (days) —o (deg)
Yo WL
(km) (km) 4° 2% =0 4?° 28 8=0 4% 20 B=0 4% 2% =0
100 110 6.1 5.9 5.7 1.1 14 1.7 111 92 75 64 62 66
50 110 7.1 6.9 6.9 1.0 1.3 1.3 123 101 95 64 63 67
25 105 9.5 9.1 9.2 0.8 1.1 1.2 153 110 105 63 59 63
10 105 21.8 19.3 20.7 0.6 0.7 0.7 211 182 171 51 52 54

2 Column headings indicate WL = wavelength, PV = phase velocity, and WP = wave period.
b Experiments with 8, = 1.82 X 107*3 ¢cm™' s™! and with four or two vertical modes; the experiments with 8 = 0 all use four vertical

modes.
¢ Reciprocal of the growth rate,

coastal jet near the sea surface is 20 cm s™!

(z=10)=3.33.

In Table 2 the wavelength, the e-folding time (i.e.,
the reciprocal of the growth rate), the phase velocity,
and wave period of the most unstable wave are listed
as a function of y, for both the two- and four-mode
model (i.e., k=0, 1 and k = 0, 1, 2, 3, respectively).
The wavelength of the most unstable wave is almost
independent of y, and the number of modes. The
growth rate decreases as the core of the jet, y,, ap-
proaches the coast for two reasons: the baroclinic in-
stability is weakened due to the narrower current while
the presence of the coast also tends to suppress the
barotropic mode (Ikeda 1983). The wave period is
larger by an order of magnitude than the growth rate,
that is, we can expect the initial disturbance to grow
locally and almost not propagate.

In Fig. 2a the e-folding time of the most unstable
wave is shown as a function of wavelength. This time
has a minimum near 110 km, and increases weakly
(strongly) as the wavelength increases (decreases) away
from this minimum. In Fig. 2b the real and the imag-
inary parts of the eigenfunctions Dy and D, are shown
for the most unstable wave, and y, = 50 km. These
functions have the most structure in the interval (0.1 yq,
2.5y0). The extrema of the eigenfunctions obtain at
Yo, Where the mean current has its maximum.

, since ¢,

¢. Barotropic and baroclinic effects

Looking at the perturbation growth in different
modes we notice that the linear growth in the barotropic
mode is only due to the (projection on the barotropic
mode of the ) interaction of the baroclinic perturbation
with the mean current, according to the terms

BCM =J(¥, ¢)) + J(¥}, @), j=1 (3.11)

in the potential vorticity equation (2.4). The interac-
tion between the barotropic perturbation and the mean
current has no direct influence on the barotropic mode.

In the baroclinic mode, the linear growth is due to
two pairs of terms:

5111{-](\_0, qv) + J(WY, q_)} =§£BCM, (3.12,

that is, (the projection on the first baroclinic mode of)
the interaction between the mean current and the
baroclinic perturbation, like in the barotropic mode,
and

BTM = J(¥, o) + J(¥o, ), (3.13)

that is, (the projection on the first baroclinic mode of)
the interaction between the barotropic perturbation and
the mean current.

The relative importance of the BCM and BTM in-
teraction terms in (3.12) and (3.13), respectively, for
the growth of the baroclinic perturbation can be mea-
sured by tana, where « is the phase shift between the
perturbation in the (first) baroclinic and the barotropic
modes. To show this we can write the perturbation in
the barotropic mode at time ¢ as Yo = E(y) sin(kx
+ ). Because the wave period is larger by an order of
magnitude than the e-folding time of the most unstable
wave, the functional structure of BCM along the x axis
has almost the same form as ¢ . Thus, (3.11) and hence
(3.12) have both the same sinusoidal x dependence;
that is, the sum in (3.12) can be written as F(y) sin(kx
+ 4). The sum of terms BTM in (3.13) has the func-
tional form cos(kx + ) along the x axis; that is, it
can be written as G(») cos(kx + v). Thus,

% = F(y)sin(kx + v) + G(p) cos(kx + v)

= H(y) sin(kx + v + a), (3.14)

TABLE 3. Dependence of the fastest instability’s e-folding time on
velocity and 8 effect. Four vertical modes, one barotropic and three
baroclinic, are used.

e-folding time (days)

o = 1.82 X 10713
(cms™) (cm™!s7h) Bo=0
1 54.3 41.6
2 23.1 20.8
3 14.8 13.9
4 10.9 10.4
6 7.1 6.9
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FIG. 2. (a) The minimum e-folding time, corresponding to the
maximum growth rate, as a function of wavelength, for y, = 50 km
and ¥, = 6 cm s, (b) The real and imaginary parts of the eigen-
functions Dy and D, in this case: (X with long-short dashes) real
part of Dy; (* with long dashes) imaginary part of Dy; (+ with short
dashes) real part of D;; (O with long dashes) imaginary part of D, .

that is,
F(y) = H(y) cose, G(y) = H(y) sina,’
tana = G()/ F(y). (3.15a-c)

In Table 2 the values of o are given for the most
unstable wave in the interval y,/10 < y < 2y;. In this
interval the value of « is almost constant. In the case
where y; = 50 km and tana = 2.0, we can conclude
that the perturbation growth in the first baroclinic mode
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is mainly due tothe interaction between the barotropic
mode and the mean current.

In summary, the linear growth of the perturbation
in the barotropic mode is due to (the projection on the
barotropic mode of) the across-shore advection of the
mean current’s potential vorticity by the baroclinic
perturbation [cf. (3.11)]. The linear growth in the
(first) baroclinic mode is mainly due to the across-
shore advection of the mean current’s potential vor-
ticity, and hence streamlines, by the barotropic per-
turbation [cf. (3.12)-(3.15)].

This kind of advection can be seen by superimposing
the streamfunction of the first baroclinic mode, shown
in Fig. 3, on the barotropic streamfunction of Fig. 4 at
t = 7. Our basic time unit in describing the subsequent
experiments will be 7 = 160 Az = 2.16; dimensionally,
7 = § days.

The troughs and the ridges of the baroclinic mode
are located between the troughs and the ridges of the
barotropic mode, as 50° < a < 70° in Table 2. The
troughs (t", n = 1, 2, 3) and ridges (r", n = 1, 2) of
the baroclinic mode (Fig. 3) are amplified by the ad-
vection of the streamlines of the mean current due to
the flow perpendicular to the coast generated by the
barotropic mode’s closed high (H”, n = 1, 2, 3) and
low (L", n = 1, 2, 3) cells (Fig. 4). For instance, the
onshore flow generated between H'! and L' (Fig. 4b)
reinforces the trough t' (Fig. 3b), and the offshore flow
between L' and H? reinforces the ridge r'.

4. Eddy formation

The analysis in sections 3b and 3c applies only to
the first stage of the evolution, when the amplitude of
the unstable waves is small. Later on, as the amplitude
of the perturbations grows, the nonlinear interaction
between the waves dominates the formation and sub-
sequent evolution of the eddies. We proceed to examine
this evolution with the numerical model. The initial
perturbation for the basic experiment has the form

vi(x,,2,0)

dsin(kx)¢,(z), 720 km < xL < 996 km,
= —144 km < yL < —24 km,
0, otherwise;
(4.1)

here 2x/k = 130 km/L, d = 1/(Vk) and ¢’ is super-
imposed on the coastal jet given by (2.5). We choose
this wavelength since its growth rate is almost the same
as that of the most unstable wave (Fig. 2). In Fig. 3a
this initial current and perturbation are shown at ¢
= (. A short time after the start of the simulation the
perturbation that grows and becomes dominant has
the same y dependence in all modes as the solution of
(3.10). In Figs. 3b and 4b this can be seen at ¢ = 7 for
modes j = 0 and 1. The amplitude of modes 2 and 3
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is smaller by an order of magnitude, and their structure
(not shown ) is similar to mode 0.

a. Evolution of the first baroclinic mode

To simplify the description, we denote the initial
ridges by r! and r? and the troughs by t!, t2, and t3
(indices increase from east to west). Until ¢ = 47, the
linear growth of the initial perturbation is the dominant
feature. Later on, between t = 47 and 67 (Figs. 3c,d),
we observe the following four main tendencies. (i) In
the troughs (t'-t3) the streamlines stretch near the
coast, while in the ridges r'-r3 the streamlines stretch
in the open sea. (ii) The streamlines tilt onshore toward
the west in the troughs, with the larger tilt in their west-
ern part, while they tilt offshore toward the east in the
ridges, with the larger tilt in their eastern part. (iii) The
entire system of troughs and ridges propagates toward
the west; largest amplitudes are at the eastern end of
the wave train, and new features arise, with small am-
plitude initially, at the western end. (iv) As the per-
turbations grow, the mean current near the coast is
essentially suppressed by the trapping of the streamlines
into the eddies.

The first two tendencies lead to closing of the ridges
near the coast and formation of anticyclonic eddies in
the open sea, on the one hand, and closing of the
troughs in the open sea and formation of cyclonic ed-
dies near the coast, on the other. The first tendency is
due to the advection of the baroclinic-mode streamlines
by the barotropic flow, as shown forthwith. The ar-
gument is a mere refinement of the one given in the
last paragraph of section 3c.

Indeed, pairs of H” and L" cells in the barotropic
mode (Fig. 4) have convergence of onshore flow from
seaward to about 50 km off the coast (i.e., the distance
of the cell centers from the coast) and divergence from
that point on to the coast. This stretches the baroclinic
troughs (Fig. 3) in the alongshore direction near the
coast. Conversely, offshore flow between L” and H"*!
converges between the coast and the line of cell centers,
and diverges from there on seaward, thus stretching
the baroclinic ridges in their open-sea part, also in the
alongshore direction. Alongshore contraction of the
streamlines near the coast in the ridges and in the open
sea for the troughs follows obviously from the above.

The second tendency, that is, the tilting of the
streamlines in the first baroclinic mode, is likewise a
higher-order result of the phase shift, o, between the
waves of the barotropic and the first baroclinic mode,
as discussed also in section 3c. The weakly nonlinear
consequences of this phase shift are as follows. The
ridges of the first baroclinic mode overlap a larger part
of the cyclonic (L) cell in the barotropic mode than
of the anticyclonic (H) cell, and the troughs of the
former overlap a larger part of the anticyclonic (H)
cell in the latter. Thus, the advection of the ridges of
the first baroclinic mode by the barotropic mode in
the open sea is more pronounced in their eastern part
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than in the west, while the advection of the troughs of
the baroclinic mode by the barotropic mode near the
coast is more pronounced in their western part.

The westward propagation and downstream devel-
opment of the system is due to the interaction of the
first baroclinic mode with itself and to the linear 8
term.

The aforementioned tendencies can be explained by
examining the different terms in the equation for the
streamfunction of the first baroclinic mode in (2.4):

d d
%]- = _6[‘163\[/;(1 - LI[J(lﬁo, 41) + J(\bla qO)]

3 3
—EnLiJW, q1) — Ly Z E fljl-](%‘, anl,

Jj=0 1=0
(1, j#D)

(4.2)

where L; is the inverse Helmholtz operator for mode
Js

Lj = (V2 - Aj)_l. (43)

Tendencies (i) and (ii) are due to the interaction terms
between the barotropic and the first baroclinic mode:

—Li[J(%0, ¢1) + J(¥1, qo)]. (4.4)

In Fig. 5a, this sum is shown at ¢ = 47. Superimposing
the structure of the H and L cells in this figure on Fig.
3¢ shows both of the aforementioned tendencies.

The third tendency is due to the two terms

a2
=& LiJ(, ¢1) — BL, g

(4.5)
In Fig. 6 the sum of these two terms is shown at ¢
= 47. Superposition of this figure on Fig. 3¢ shows
clearly both the westward propagation and the down-
stream development. The other terms in (4.2) are much
smaller and at this stage can be neglected.

At t = 77 (Fig. 3e) the ridges r? and r? [the latter
having developed by ¢ = 47 (Fig. 3c¢)] have evolved
into anticyclonic eddies. In the time interval 87 < ¢
< 127 (Figs. 3f-j), r? propagates toward the southwest.
Eddy r? propagates toward the northeast until it reaches
the coast (Figs. 3f~h), after which it propagates west-
ward along the coastline.

In the time interval 77 < ¢ < 97 (Figs. 3e-g) the new
ridge r* evolves into an anticyclonic eddy. From then
on until ¢ = 127 (Figs. 3h-j), this eddy propagates
toward the southeast. In the time interval 97 <t < 127
(Figs. 3g—j) the anticyclonic eddy r? is also formed and
propagates toward the southeast.

The cyclonic eddies that evolve from the troughs ¢ '-
t3 live but for a short time, as they are pushed toward
the coast and spread out along it. These eddies then
merge and form a very narrow and rapid current along
the coast. The dissipation of that current by the friction
with the coast cannot be simulated adequately with a
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quasigeostrophic model, which requires the coast to be
represented by a constant value of the streamfunction.
Increasing the diffusion in the model [cf. (2.7)], will
act however to increase the width and reduce the in-
tensity of the current.

The propagation of the anticyclonic eddies r?-r? is
mainly due to their advection by the barotropic flow.
Each baroclinic eddy overlaps a barotropic dipole. This
dipole advects the eddy riding over it along the observed
propagation track of the latter. This can be seen by
considering the interaction term between the second
and first mode, Eq. (4.4). In Fig. 5b this term is shown
at ¢ = 107; at later times (not shown) it has similar
features. Superimposing this figure on Fig. 3h, the ad-
vection of the eddies r?-r? is clearly apparent. The other

terms in (4.2) are smaller by at least a factor of 5 in
the eddies.

The meandering of the model’s mean current am-
plifies, and eddies detach after about 37 time units or,
in dimensional units, about 15 days. Some of the eddies
(r%, r*, and r®) propagate away from the coast, some
(r?) toward the coast, and the position of one (r') seems
to oscillate back and forth.

There are noteworthy similarities between the eddies
obtained in the numerical simulation here and the ob-
served anticyclonic eddies in the Eastern Mediterra-
nean. First, the radii of both observed and simulated
eddies (Feliks and Itzikowitz 1987; Ozsoy et al. 1989)
are between 35 and 50 km. Furthermore, Ozsoy et al.
(1989) observed simultaneously a series of three an-
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MIN=-0.08 MAX= 9.95CI= 1.25

MIN=-0.01 MAX= 9.95CI= 1.24

ticyclonic eddies along the northeastern coast of the
Eastern Mediterranean, which—in their terminology—
“masked” the Asia Minor current. In our simulation,
several anticyclonic eddies were observed at the same
time along the coast and persisted jointly for a simu-
lated month or more. In both observations and sim-
ulation, the mean current is not noticeable along the
coast, while the eddies are forming near and moving
away from it.

Finally, the density field in the observed and simu-
lated eddies is very similar. Indeed, the horizontal
structure of the density deviation §;( x, y, ¢) from the
mean—in x, y, and t—of the density in mode j is the
same as the streamfunction of that mode [see Eq.
(2.3a)] in the quasigeostrophic model:

MIN=-0.01 MAX= 9.89 CI= 1.24

FI1G. 3. The streamfunction of the first baroclinic mode at successive
times in the subdomain 354 km < x < 1194 km, =174 km <y <0
km. Each panel shows the minimum (MIN) and maximum (MAX)
value of the streamfunction contoured and the contour interval (CI).

ad’j(z) .

5(X,y, z, t)= E\h(x’y, t) dz

j=1

(4.6)

Since the basic jet (2.5) describes well the density of
the downwelling front (Feliks 1991, his Figs. 4 and 5),
the density deviation of the first baroclinic mode in
the core of eddies r? and r? equals that of the observed
front about 15 km off the coast, which equals in turn
that of the observed anticyclonic eddies in the north-
eastern Mediterranean (Feliks 1991, his Fig. 9).

b. Evolution of the barotropic mode

In the time interval 0 < 7 < 47 the evolution in the
barotropic mode (Figs. 4a—c) is mainly due to linear
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instability and is discussed in section 3c. To simplify
the description of the nonlinear effects, we denote the
anticyclonic cells by H'-H* and the cyclonic cells by
L'-L3; the indices increase from east to west, as in the
previous subsection.

In the time interval 47 < ¢ < 87 the main tendencies
observed in the barotropic mode are as follows. (i) H',
H?, L2, and L? are pushed toward the coast, while L',
H? and the northern part of L? move away from the
coast. (ii) H' and H? merge and evolve into a larger
anticyclonic eddy, while L* and part of L? merge and
evolve into a larger cyclonic eddy. These large cyclonic
and anticyclonic eddies are elongated along the shore-
line. (iii) H', L', H?, and L2 all propagate westward.

(iv) The amplitude of the cyclonic and anticyclonic
cells continues to grow.

These tendencies can be explained by examining the
different terms in the equation for the barotropic
streamfunction (2.4):

Mo _ . o

ot BLO — LoJ (¥, q0)

Z LOJ(‘pjs qj),

j=2

— LoJ(¥1, q1) — (4.7)

with L; as defined in (4.3).
Tendcncnes (i), (iii), and (iv) are due in part to the
term —LoJ(¥,, ¢;). In Fig. 7 this term is shown at ¢
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= 67. Tendency (ii) and the other tendencies that de-
termine the movement of H'!, L', H?, and L3 are also
due to the term — LyJ(¥o, ¢o). In Fig. 8a this term is
shown at ¢ = 67.

From ¢ = 77 (Fig. 4¢) on, two dipoles, L>-H? and
L'-H?, form and persist. The dipole L2-H?> moves
southwestward, while the dipole L'-H? moves very
slowly westward. Another dipole evolves from the cells
L“-H*. This dipole moves toward the southeast. The
movement of the dipoles is mainly due to the term
—LoJ (Yo, qo); that is, their propagation is due to self-
advection (see Fig. 8b at ¢ = 107; at later times—not
shown—the pattern is similar). The term —LoJ (¢,
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MIN=-15.99 MAX=24.52 CI= 5.06

FI1G. 4. The barotropic streamfunction at the same times and for
the same subdomain as in Fig. 3. Panel (a) shows the geometry of
the model domain: tick marks indicate the computational grid.

q1) tends to rotate the dipoles L2-H? and L'-H? in
the clockwise direction and the dipole L*-H* in the
opposite direction, against the tendency of other terms
in Eq. (4.7).

There is an analogy between the self-advection of
barotropic dipoles in this subsection and the passive
advection of baroclinic monopoles in the previous one,
on the one hand, with the known propagation prop-
erties of barotropic modons with passive baroclinic
riders, on the other. The track of the barotropic dipoles
here is mainly determined by the nonlinear advection
terms and the linear 8 term, like for classical modons.
This adds coastal current instability to the list of po-
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FiG. 7. The tendency term — LoJ(yY,, q,) at t = 67
in the same subdomain as in Fig. 3.

c. E nergy

. The available potential energy (APE) of mode & is
APE, = My'%, and the kinetic energy (KE) of mode k
is KEy = (8y/0x)* + (¢ /dy)?. In Fig. 9 the integrals
over the entire domain of KEy(¢) and KE, (¢£)-KE,(0)
are shown. The growth of kinetic energy in the baro-
tropic mode is three to four times larger than in the
first baroclinic mode. This result can be interpreted to

MIN=-3.83 MAX= 3.23 CI= 0.88

FIG. 5. The tendency term (4.4) at (a) t = 47 and
(b) ¢ = 107 in the same subdomain as in Fig. 3.

tentially important formation mechanisms for modon-
rider systems in the ocean. The scarcity of data on the
Anatolian Current and its instabilities, however, does
not permit definitive confirmation of this heuristic hy-
pothesis by a study of the detailed dispersion relations
of the perturbations’ barotropic and baroclinic com-
ponents, as done for some of the other formation
mechanisms (McWilliams and Flierl 1979; Mied and
Lindemann 1982; Feliks 1990).

MIN=-3.66 MAX= 2.70 CI= 0.80

MIN=-0.76 MAX= 0.86 Cl= 0.20 MIN=-5.20 MAX= 648 CI= 1.46

FIG. 6. The tendency term (4.5) at ¢ = 47 in the FIG. 8. The barotropic tendency term — LoJ(¥o, go) at
same subdomain as in Fig. 3. (a) t = 67 and (b) f = 107 in the same subdomain as in Fig. 3.
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FIG. 9. The integral over the model domain of: (X with long dashes)
the kinetic energy of the first baroclinic mode as a function of time,
Jf (KE\(x,.y, 1) — KE((x, ¥, 0))dxdy; (+ with short dashes) the
energy transfer between this mode and the barotropic one as a function
of time, [[ EToi(x, y, t)dxdydt; (= with long dashes) the kinetic
energy of the barotropic mode as a function of time, [[ KEo(x, v,
tydxdy.

imply that 80% of the part of APE, that is transferred
to kinetic energy contributes to the barotropic mode.

An expression for the energy transfer between the
different modes is obtained by multiplying Eq. (2.4)
by y«. It follows that the energy transfer rate from mode
i to mode k is

ETu(x, y, 1) = ¥ 2 Ei Wi, @) + J(Y, g))] -

J

(4.8)

The energy transfer rate from mode 1 to mode O is,
therewith,

EToi(x, , 1) = YobounJ(¥1, ¢1). (4.9)

From Fig. 9 we see that the large transfer toward the
barotropic mode, Eq. (4.9), explains the accumulation
of energy KE, in this mode. The energy growth in the
barotropic mode is significantly faster after ¢ = 47 than
before, due to the larger energy transfer toward it from
t = 47 on; nonlinear interactions seem to enhance the
transfer substantially. The difference between the en-
ergy transferred to the barotropic mode and the energy
residing in this mode is due to dissipative losses intro-
duced by the filtering process [cf. Eq. (2.7)].

To provide more spatial detail on the energy transfer
rate, we show in Fig. 10 maps of ET g at different times
over the same subdomain as in Figs. 3 and 4. The
transfer rate in the ridges r’>~r* increases slowly during
the linear growth stage, up to ¢ = 47 (Fig. 10a). During
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eddy formation, ET ¢ increases rapidly (Fig. 10b). Af-
ter eddy detachment, this energy transfer decreases
(Fig. 10c). For the eddy r?, the transfer rate reaches
its maximum at ¢ = 87. At = 117, the energy transfer
is small and occurs in both directions (Fig. 10c). Along
the coast large energy transfers are observed at all times.

Comparing Fig. 10 with Figs. 3 and 4, we notice that
the energy transfer toward the barotropic mode has
much smaller scale than the flow in either the baroclinic
or the barotropic mode. The growth of the scale of the

MIN=-0.14 MAX= 1.78 CI= 0.24

" T C2_,... ,”}»‘,]'KW I

i

MIN=-12.85 MAX=21.80 CI= 4.33

MIN=-16.15 MAX=21.98 CI= 4.77

F1G. 10. The energy transfer rate between the barotropic and the
first baroclinic modes in the same subdomain as in Fig. 3: (a) ¢
=4r,(b)t=8r,and (c)t = 117.
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motion in the barotropic mode can be understood in
terms of the nearly two-dimensional character of
quasigeostrophic turbulence; that is, the energy in the
barotropic mode tends to cascade toward the larger
scales (Charney 1971).

The energy in modes 2 and 3 is smaller by two orders
of magnitude than in modes 0 and 1. This small transfer
of energy toward the higher baroclinic modes compared
to that toward the barotropic mode may result from a
related property of quasigeostrophic turbulence,
namely, that energy tends to cascade toward the larger
total scale; that is, most of the energy will cascade to
the lower vertical modes (Rhines 1977; Salmon 1978;
Fu and Flierl 1980; Feliks 1990).

5. Parametric dependence

To verify the robustness of the results reported in
section 4, a number of additional experiments, aside
from the basic one described there, have been carried
out. They include changes in the § effect, the number
of vertical modes, the horizontal resolution, and the
width of the coastal jet.

a) Barotropic

MIN=-19.92 MAX=21.89 CI= 5.23

b) First baroclinic

MIN=-0.19 MAX= 9.89 CI= 1.26

F1G. 11. The streamfunction for an experiment with 8 = 0: (a)
the barotropic mode; (b) the first baroclinic mode. The subdomain
is the same as in Fig. 3, and ¢ = 127,
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a. The B effect

To examine the importance of the 8 effect for the
previous results, 8 was set to zero. In section 3b we
found that the 8 effect was negligible for the linear
instability of the westward jet, except for very small uq
(see Table 3). The results of the numerical simulation
confirm this: only after eddies develop do significant
differences between the two experiments appear. In the
first baroclinic mode (Fig. 11b) the prominent differ-
ences are in the propagation track of the eddies: when
B = 0, r? is displaced much less toward the southwest
from where it arises; r* is formed farther west than in
the basic experiment (Fig. 3j) and moves a larger dis-
tance to the east. The largest differences between the
two experiments are observed in the position of r?,
since it forms before the other eddies do. The westward
acceleration due to the g effect for southward displace-
ments explains the differences in zonal propagation
between the two experiments. The differences in
southward propagation are discussed forthwith.

In the barotropic mode the main difference is that
when 8 = 0 (Fig. 11a) the cell L? rotates around the
cell H?. So at ¢t = 127, L? is west of H?, while in the
basic experiment the pole L? is always east of H>. This
difference in the position of the dipole H3*-L? causes
the slower southward propagation of the baroclinic
rider r? in the present experiment.

b. Number of modes

In the linear analysis of section 3b, we found that
there is only a small difference in any property of the
most unstable wave (see Table 2) between the model
with two or four vertical modes. We saw furthermore
in the basic experiment of section 4 that the higher
baroclinic modes contained very little energy.

Therefore, we integrated Eq. (2.4) with only two
vertical modes, one barotropic and one baroclinic.
Until ¢ = 97 the differences between the basic and the
present experiment are very small. Later on, as we
might have surmised from the results of Feliks (1990),
larger differences begin to appear. The main differences
are (i) the initial ridge r' develops into an eddy only
in the two-mode experiment (Fig. 12b); (ii) the anti-
cyclonic eddy r? and the barotropic dipole L>-H? (Fig.
12a) in this experiment propagate toward the southeast,
while in Figs. 3 and 4 they propagate toward the south-
west; and (iii) the barotropic dipole L2-H? (Fig. 12a)
in the two-mode experiment has orientation—defined
as the direction of the normal to the axis that connects
the two poles, with the cyclonic one to the left of the
oriented normal, that is, the direction of motion of the
dipole under its own velocity field—toward the south-
east, while in the four-mode experiment its orientation
is toward the southwest. This difference in the orien-
tation of the dipole explains difference (ii), since the
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a) Barotropic

MIN= 0.00 MAX= 9.89CI= 1.24

F1G. 12. The streamfunction for an experiment with two vertical
modes only: (a) the barotropic mode; (b) the first baroclinic mode.
Same time and subdomain as in Fig. 11.

Jjoint propagation of the dipole and its rider is mainly
due to advection by the dipole, as shown in section 4.

¢. The horizontal resolution

Since the horizontal resolution in the previous ex-
periments was Ax = Ay = 6 km/ L, that is, larger than
the deformation radii of the second and third baroclinic
modes, we examine in this subsection the evolution
for both a two- and a four-mode model when the spatial
resolution is Ax = Ay = 2 km/L and the time step is
At =1350s + T. We use the same fourth-order Shapiro
(1970) filter every time step. The integration domain
in the following simulations was of 513 X 193 grid
points or 1026 km X 386 km,; this is slightly smaller,
for reasons of computational efficiency, than the do-
main of section 4, with 1464 km X 582 km. The ini-
tial data were the same as in the previous experi-
ments, and the integration was carried out until ¢
= O7; up to this time, no significant interaction occurs
between the eddies and the computational boundaries
in the domain chosen here.

In the four-mode model the energy in modes 2 and
3 is still smaller by two orders of magnitude than in
modes 0 and 1. This result is the same as for the coarser
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grid, being an intrinsic property of quasigeostrophic
turbulence (see section 4c¢), not affected unduly by the
horizontal resolution.

Comparing the two- and four-mode simulations, we
find that until 1 = 97 there were no significant differ-
ences. We conclude that for short times the two-mode
model is as good as the four-mode model in cases when
the initial mean current is in the first baroclinic mode.

The four-mode model simulations on different grids,
thatis, Ax = Ay = 2and 6 km/ L, exhibit a very similar
evolution. The only difference is that on the coarser
grid the eddies are more diffuse, since the fourth-order
filter causes larger dissipation there. Indeed, given the
temporal and spatial resolution used in the high- and
low-resolution experiments, the diffusion coefficient 4
in Eq. (2.7) is about 40 times larger on the coarse grid
than on the fine grid. This explanation of the difference
was confirmed by running the model on the coarser
grid with an eighth-order Shapiro filter. In the latter
simulation the eddies are less diffuse and very similar
to those obtained in the fine-grid simulation with the
fourth-order filter.

d. The width of the jet

Feliks (1991) showed that the across-shore scale of
the jet is proportional to the square root of the hori-
zontal diffusion coefficient. Due to uncertainty in the
value of that coeflicient, the horizontal scale of the jet,
defined as the distance between the coast and the lo-
cation of the maximum speed in the jet, is also uncer-
tain. In this subsection we examine the eddy formation
given a different jet width; that is, the maximum speed
of the jet occurs at y, = 25 km off the coast. Since we
assume that the downwelling near the coast has pen-
etrated to the same depth in both cases, the value of
the streamfunction near the coast must be the same.
Thus, according to (2.6a), the maximum speed of the
jet is twice that of the basic experiment; that is,
= 12 cm s~!. Hence, a has the same value in both
experiments, while b has half its former value.

From the linear analysis of section 3 we obtain that
the e-folding time for this case is 4.7 days compared
to 7.1 days in the basic experiment. In the numerical
simulation the growth is faster for the narrower jet, as
expected. The general phenomenology, however, is
similar in both experiments. The main differences be-
tween the two are: (i) The anticyclonic eddy r! in the
current experiment splits into two eddies—its southern
part merges with r? (Fig. 13c), while the northern part
grows slowly into a strong eddy (Fig. 13d). (ii) The
amplitude of the eddies r* and r? is about one-half of
their previous value. (iii) Eddies r* and r’® propagate
here eastward along the coast, while in the basic ex-
periment these eddies propagated toward the southeast.
(iv) The radii of the anticyclonic eddies r2, r*, and r’
are about 24 km for the narrower jet, that is, 30%
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FIG. 13. The streamfunction for an experiment with a narrower downwelling zone along the coast: (a, b) the barotropic mode;
(¢, d) the first baroclinic mode; (a, ¢) ¢ = 67; (b, d) ¢ = 107. Same subdomain as in Figs. 3 and 11.

smaller than in the basic, broad-jet experiment. The
latter phenomenon is intuitively obvious, while the
former three are less so.

6. Concluding remarks

We have studied the instability of the westward cur-
rent associated with downwelling along the south coast
of Asia Minor. Both linear growth and subsequent eddy
formation and detachment were studied using a quasi-
geostrophic model with four vertical modes: one baro-
tropic and three baroclinic ones (Fig. 1b).

Linear stability analysis of a basic state based on the
results of Feliks (1991; see Table 1 and Fig. 1a here)
showed that the most unstable wave has a length of
about 100 km (Fig. 2a). This wavelength is remarkably
independent of both the cross-shore scale of the down-
welling front and the § effect (Table 2). The growth
rate of this wave is proportional to the maximum speed
of the coastal jet (Table 3), decreases as the horizontal
jet’s cross-shore scale decreases (Table 2), and is almost
independent of the number of vertical modes ( Table
2) and of the g8 effect (Table 3). The wave period is
larger by an order of magnitude than the growth rate
(Table 1), indicating linear growth of the instability
nearly in situ, with little displacement.

The growth of the perturbation in the barotropic
mode is due to cross-shore advection of the jet’s po-
tential vorticity by the perturbation of the first baro-
clinic mode. Conversely, the growth of the perturbation
in the latter is mainly due to advection of the jet’s po-
tential vorticity, and hence streamlines, by the pertur-
bation of the barotropic mode (section 3c, Flgs 3
and 4).

The subsequent evolution of eddies from the unsta-
ble jet, both weakly and fully nonlinear, was studied
numerically with the same model. This evolution can
be divided into three stages as follows.

1) The linear growth stage is dominated by numer-
ical evolution of the perturbations in excellent agree-
ment with the linear stability results. This stage lasts,
for the standard parameter values of the basic experi-
ment, about 16 days (twice the e-folding time).

2) The eddy-formation stage is when weakly non-
linear effects are the most important. A sharp increase
in the amount of available potential energy transferred
to kinetic energy occurs, and this transfer’s contribution
to the barotropic mode is dominant (Fig. 9). Conse-
quently, several dipoles develop in this mode from the
linear perturbation. Each ridge in the first baroclinic
mode overlaps a barotropic dipole; the latter advects
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the streamlines of the former, thus forming an isolated
anticyclonic eddy. The radius of these baroclinic eddies
is between 35 and 50 km.

3) During the nonlinear evolution stage, anticy-
clonic eddies—having detached themselves from the
coastal jet—propagate toward the southwest or south-
east. The propagation track of each isolated anticy-
clonic baroclinic eddy is determined mainly by the
propagation of the barotropic dipole on which it rides,
since the dipole advects the baroclinic eddy as it prop-
agates. During this stage, the energy transfer between
the different modes is much smaller than during the
preceding one. The evolution of isolated eddies during
this stage is very similar to the evolution of an isolated
vortex investigated by Feliks (1990).

A sensitivity study of the dependence of the main
results on several parameters shows the following. (1)
The B effect has a significant role in the last, fully non-
linear stage of the evolution, accelerating the westward
and southward propagation of the anticyclonic eddies.
In the barotropic mode, exclusion of the § effect causes
a dipole to rotate around itself. (ii) The evolution in
models with two and four vertical modes is very similar,
except that during the last stage the anticyclonic eddies
and associated barotropic dipoles propagate more to-
ward the east in the two-mode model. (iii) An increase
of horizontal resolution to better resolve the higher
baroclinic modes did not show significant differences
in the formation and propagation of the barotropic
dipoles or baroclinic monopoles. The only difference
was that on the finer grid the eddies are less diffuse;
this effect can also be obtained on the coarser grid by
using higher-order numerical dissipation.

We also examined the effect of the horizontal, cross-
shore scale of the downwelling front on the results.
Assuming that the downwelling near the coast pene-
trates to the same depth independently of this scale,
the maximum speed of the coastal current is inversely
proportional to the horizontal scale. It was found that
the stability of the front increases with the horizontal
scale: when the scale is smaller, so is the radius of the
eddies and, more often than not, their intensity.

These results are consistent with the idea that the
warm- and salty-core eddies observed in the Eastern
Mediterranean in recent years arise from the instability
of the downwelling front along the northeastern coast
of the Eastern Mediterranean (Feliks 1991). This idea
is based on the similarity between the available obser-
vations and our analytical and numerical results. The
radius of the eddies obtained in our basic simulation
fits the radii of the observed eddies (35-50 km), and
the thermal structure of the calculated and observed
eddies is very similar. Furthermore, Ozsoy et al. (1989)
observed along the Asia Minor coast a series of three
eddies that masked the coastal current and persisted
for the duration of their observations. In our simula-
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tions, a similar number of anticyclonic eddies form
along the coast, with the downwelling jet’s streamlines
being detached from the coast and absorbed into the
eddies, leading to a persistent, localized inhibition of
westward velocity along the coast.

The present model was designed for a relatively
straightforward process study. Given its simplicity, the
similarity between model results and the existing,
somewhat limited observations is rather striking. A
more detailed simulation of the eddy phenomenology
near the Anatolian coast would require first of all a
much higher observational resolution, in space and
time, of the flow and thermodynamic fields there. It
would also require including coastline curvature in the
model topography as well as thermodynamic forcing.
We plan to do the latter in a primitive equation model
based on Feliks (1991 ) while waiting for more detailed
field data to compare with prospective simulation re-
sults.

A pervasive and robust combination of barotropic
dipoles and baroclinic riders arises in the weakly non-
linear stage of the coastal-current instability growth and
characterizes isolated-eddy propagation in the fully
nonlinear phase. It is tempting to conjecture that this
combination might play a role in the open ocean as
well as, in particular, in the meandering and ring for-
mation of western boundary currents. Such a role could
help clarify the connection between the observed
monopole aspect of baroclinic Gulf Stream (Parker
1971) and Kuroshio (Cheney and Richardson 1977)
rings on the one hand and the remarkable stability of
barotropic dipoles, numerical (McWilliams et al. 1991)
and analytical (Sakuma and Ghil 1991), on the other.
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