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ABSTRACT

A diabatic ocean general circulation model based on primitive equations is described. It uses isopycnals as
Lagrangian coordinates in the vertical and predicts a free surface. Prognostic fields of temperature and salinity
enter the dynamics as active tracers through a realistic equation of state. The surface boundary layer is param-
eterized by a detailed mixed-layer model. A sca ice model with a viscous—plastic rheology is coupled to the
mixed layer. Thermal forcing, wind stress, and surface input of turbulent kinetic energy are determined from
monthly mean values of atmospheric quantities, while the freshwater flux still is parameterized by a Newtonian
relaxation towards the observed surface salinity.

The model equations are written in layer formulation. Each interface represents an isopycnal. As the equations
are written in flux form, the mass flux and the content of mass, heat, and salt are conserved in the model
domain. A potential vorticity conserving scheme is included. Except for the mixed layer, all layers are kept at
a prescribed potential density that is different for each layer. In the uppermost layer, potential density is allowed
to develop arbitrarily. A method is developed that treats vanishing layers by making the horizontal boundaries
time dependent in each layer. The time integration scheme consists of a predictor—corrector technique combined
with a semi-implicit scheme. The model is formulated in spherical coordinates with variable, but still orthogonal,

grid resolution in longitude and latitude and allows for any irregular geometry.

1. Intreduction

Cartesian coordinates are commonly used to for-
mulate fluid mechanical models. Based on these co-
ordinates Bryan (1969) developed the Geophysical
Fluid Dynamics Laboratory (GFDL ) model, based on
primitive equations and formulated on the sphere, It
represented a milestone in ocean modeling. By includ-
ing a realistic equation of state for sea water, it already
contained combined temperature and salinity effects.
The GFDL modet was the first running code capable
of simulating the global circulation. Semtner (1974)
and Cox (1975, 1984) recoded and improved Bryan’s
formulation, meanwhile, becoming the most frequently
used ocean model worldwide.

Because it uses primitive equations, this concept of
a numerical model requires a large amount of computer
resources. Therefore, Maier-Reimer and Hasselmann
(1987) formulated, in a separate line of development,
a highly efficient global model by application of the
geostrophic approximation, thus permitting inexpen-
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sive integrations modeling thousands of years. The long
advective time scales of the deep ocean make this fea-
ture necessary for carrying out many tracer experi-
ments.

But Lagrangian coordinates also have many attrac-
tive features, especially for the representation of a highly
conservative fluid such as the subsurface ocean. They
allow particles to conserve advective properties exactly.
However, the steady deformation of the grid causes
spatial derivatives (e.g., pressure gradients) to become
increasingly difficult to estimate with increasing inte-
gration time. A compromise that overcomes this dif-
ficulty is to choose the coordinate planes in the vertical
as space and time dependent in such a way that particles
move on these planes if they conserve their property
exactly. In the case of the ocean, potential density can
be used as coordinate planes. On these planes conven-
tional Cartesian coordinates can be employed to dis-
cretize the equations in longitude and latitude. Since
the model should be used for large-scale studies only,
additional terms in the equations of motion resulting
from the curvature of the potential density planes can
be neglected.

The choice of these coordinates ensures that the dy-
namically active part of the diffusion, namely the cross-
isopycnal part, is totally excluded if this process is not
parameterized explicitly. A rotation of the diffusion
operators on to isopycnal coordinates, as proposed by
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Redi (1982) and McDougal and Church (1986) for z-
coordinate models, is superfluous. Since the transport
of heat and salt along an isopycnal has no impact on
the potential density and, hence, on the pressure field,
errors in the advection discretization have to a first
order no influence on the dynamics. Another advantage
of isopycnic coordinates is that baroclinic structures
require fewer layers in isopycnic coordinates than levels
in z coordinates to obtain a similar vertical resolution.
Lagrangian coordinates automatically migrate into
those regions where fronts are starting to develop. Be-
cause the positions of fronts are not known a priori, a
level model needs a high resolution at all those locations
where a front might occur.

Numerical models with isopycnic coordinates re-
main simple as long as thermodynamics are not in-
cluded. If salinity is either kept constant or assumed
to have no dynamical impact, only temperature de-
termines the potential density. In this case, it is not
necessary to predict temperature and salinity to deter-
mine the oceanic pressure field. It is sufficient to specify
a horizontally homogeneous stability between two ad-
jacent layers. Such models are used to study the wind-
driven circulation but are, of course, not capable of
studying combined effects of temperature and salinity
as they become increasingly important towards higher
latitudes. Many models with such a restriction have
been used for studying the ocean. Robinson (1965)
was the first to use potential density coordinates. For
the atmosphere, Bleck (1974, 1984) and Shapiro
(1975) developed models with isentropic coordinates.
Such multilayer models have had some success in sim-
ulating lee cyclogenesis mainly due to the conservation
of potential vorticity. However, an essential part of the
atmospheric heating takes place in the free atmosphere
through convective rainfall and radiation. Therefore,
particles do not conserve their heat content. Since the
diabatic heating of the ocean is confined to the surface
except for a few narrow areas of deep convection, it is
more obvious to use the concept of isopycnal coordi-
nates for the ocean. Bleck and Boudra (1981 ) presented
a model based on isopycnic coordinates. They made
some compromise by moving locally to Cartesian co-
ordinates whenever a layer disappeared into the surface
or the topography. More recently, Bleck and Boudra
(1986) treated the problem of vanishing layers by tak-
ing the FCT (flux corrected transport) algorithm of
Boris and Book (1973) and Zalesak (1979). Using the
same technique, Bogue et al. (1986) and Huang and
Bryan (1987) formulated a similar model, but with the
inclusion of a surface boundary layer of constant depth,
which permitted a crude treatment of thermal forcing.

The motivation for the modeling efforts described
in this paper is to fill a gap in the hierarchy of ocean
models. A model with isopycnic coordinates has not
yet been developed that includes a satisfactory repre-
sentation of thermodynamics—as in Bryan’s model or
that of Maier-Reimer and Hasselmann—for vertical
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mixing and convection that allows an arbitrary ge-
ometry. Such a numerical model is developed here and
tested by application to the Atlantic circulation (see
Part IT). Meanwhile, Bleck (personal communication )
is also developing a model to include two active tracers.

The paper is structured as follows: section 2 contains
the model description. The underlying equations of
the ocean model are presented in section 2a, the mixed-
layer model in section 2b, the parameterizations of the
surface fluxes in section 2c, the treatment of internal
diffusion in section 2d, the sea ice formulation in sec-
tion 2e, and a general description of the numerical
techniques in section 2f.

2. Model formulation

Two types of surface boundary conditions enter the
description of the upper ocean, namely the ocean-at-
mosphere fluxes in the open ocean and the influence
of sea ice on these fluxes. The momentum flux can be
taken from observed fields of stresses. The evaluation
of heat fluxes is more critical. They determine the SST
directly and indirectly the mixed layer thickness and
therefore the response time scale to atmospheric forc-
ing. An ocean model with a prognostic mixed layer
responds differently to external forcing from a model
with a prescribed boundary-layer thickness. It is there-
fore important to reduce errors in the model forcing
by improving the heat flux computation. This also has
to be considered as preparation for coupling the model
to an AGCM.

The question arises as to whether it is advisable to
allow an outcropping of layers at the surface. The high
turbulence activity in the surface boundary layer allows
particles to cross isopycnals easily. Thus, it is not
meaningful to represent the surface boundary layer
with Lagrangian coordinates. A further complication
is the technical problem of how to distribute surface
fluxes among the several shallow near-surface layers
that could occur. Therefore, the uppermost ocean is
represented by a separate surface boundary model (see
Fig. 1), having the advantage that the thickness of the
boundary layer yields a more realistic response time
scale to atmospheric forcing. Its vertical structure is
idealized by the bulk mixed-layer approach.

Sea ice is a further component of the complete ocean
dynamics. Over large areas, it controls exchange pro-
cesses between atmosphere and ocean and contributes
through its own dynamics to the forcing of the ocean.
Sea ice has significant influences on the internal strat-
ification near the ocean surface. It is partly responsible
for the production of salty, cold and therefore, heavy
water that influences the vertical stratification globally.

The representation of the interior ocean by isopycnic
layers and the surface layer by a mixed-layer approach
leads to the question of how both components must
be coupled without violating the constraint to maintain
the isopycnal coordinates used for the deep ocean.
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FIG. 1. Vertical cross section of the layer thickness distribution.
The mixed layer is the uppermost layer; lower layers are the isopycnic
layers. Arrows indicate mass transfer rates representing various mixing
parameterizations.

From our understanding of the ocean it is evident that
atmospheric information enters the ocean at its surface
and propagates essentially along isopycnals into the
deep ocean. Schopf (1983), Schopf and Cane (1983),
and Schopf and Harrison (1983 ) developed a technique
for coupling a mixed-layer model to an underlying layer
model. They obtained some improvement with regard
to the propagation of equatorial waves and the SST

response during an El Nifio over models without a .

mixed layer. However, further difficulties arise because
of the constraint that the potential density of the un-
derlying layer is, by definition, constant in an isopycnal
model. Basically the mixed layer and the underlying
isopycnal model work with different coordinates (see
Fig. 1). As long as entrainment is considered, the po-
tential density in the next deeper layer is unchanged.
But in the detrainment case, water with an arbitrary
potential density may not be injected into an isopycnic
layer with an a priori specified potential density. Po-
tential density conservation would be violated. This is
a conceptual problem to be explained later.

Another difficulty arises since the model should in-
clude combined temperature and salinity effects. It is
not immediately obvious how a realistic equation of
state for sea water can be incorporated into an isopycnal
model. In wind-driven isopycnal models, such as that
of Bleck and Boudra (1986), it is implicitly assumed
that the equation of state relates only temperature to
density and that salinity is not a dynamically active
tracer or else is assumed to be constant. The conse-
quence is that isotherms coincide with isopycnals.
However, here it is not sufficient to include equations
for velocity and layer thickness, which is the vertical
distance between two specified isopycnic surfaces. Ad-
ditional equations for heat and salt content are re-
quired. Without vertical mixing and salinity as an ac-
tive tracer, temperature and consequently potential
density are constant in time, since they are a priori
constant within the same layer. The prediction equa-
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tion for temperature reduces to (47°)/(dt) = O since
all gradients along isopycnals vanish. In consequence,
neither a prognostic nor a diagnostic equation is nec-
essary to control potential density, temperature, or sa-
linity. The basic difference in the model described here
is its aim of using a realistic equation of state, which
is nonlinear in temperature, salinity, and pressure. This
gives rise to the following conceptual problem. Con-
sider an advection of temperature whose gradient is
balanced by an appropriate salinity gradient to obtain
a spatially constant potential density along the model
interfaces. In practice, discretization errors in the ad-
vection formulation yield an alongisopycnal artificial
mixing of temperature and salinity. Due to the non-
linearity of the equation of state this results in a drift
of the potential density and thus a drift of the coor-
dinates. This is called cabbeling. For clarification, be-
sides the artificial cabbeling due to advecting discret-
ization errors a physical cabbeling also exists that is
simply the result of alongisopycnal mixing.

In order to maintain the chosen coordinate system,
it is necessary to compensate for the coordinate drift
by suitable redefinition of the coordinates. Because
temperature and salinity vary along isopycnals, equa-
tions for temperature and salinity are necessary to con-
trol heat and salt conservation. On the other hand, it
must be postulated that the potential density coordi-
nates must be maintained.
~ There are two possible ways to resolve this problem.
The first is to reconfigure the coordinates after each
time step and determine the resulting mass exchange
rates necessary to maintain the coordinates. However,
this introduces a mixing process that possibly exceeds
physical realism. The other possibility, which is adopted
here, is to connect the process of maintaining the iso-
pycnic coordinates with the parameterization of cross-
isopycnal mixing. It is formulated by entraining water
into each layer out of the adjacent upper and lower

*layers. The ratio of these two entrainment rates is

treated as a free parameter, while the sum of the two
entrainment rates is derived from the available tur-
bulent kinetic mixing energy. Given the condition that
the instantaneous potential density must be kept at the
prescribed potential density, an appropriate choice of
the ratio of both entrainment rates is able to compen-
sate for the potential density drift caused by an along-
isopycnal discretization error of the advection terms
and the alongisopycnal diffusion. The instantaneous
potential density is thereby the result of the predicted
potential temperature and salinity. The entrainment
into a given layer appears as a detrainment for the ad-
jacent upper and lower layers and thus does not alter
the potential density in the adjacent layers (for details
see section 2d). The underlying idea is to introduce
some bookkeeping within each layer for the potential
density errors. The simplest way to achieve that is to
write the equations as if potential density is allowed to
vary arbitrarily. This ensures that dynamically other-
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wise ignored errors in the potential density do not lead
to a violation of conservation properties as conversion
between mean potential and kinetic energy. The iso-
pycnal coordinates are then introduced through the
back door by appropriate formulations of all vertical
exchange processes, such as vertical mixing and con-
vection.

More theoretically, the source of this problem is the
employment of an underdetermined set of equations.
To describe the ocean state, the flow and pressure field
has to be determined. The pressure is a function of
temperature and salinity. In addition, however, the lo-
cation of interfaces is predicted. Thus, the pressure field
is not uniquely defined by one set of model variables
but by an infinite number of them. As an example,
consider a vertical profile of potential density. One can
find an infinite number of layer-mean potential den-
sities with appropriate layer thicknesses to represent
the same profile in discretized space. The underdeter-
mined nature of the equations appears, for instance,
as freedom of how to mix vertically. Vertical mixing
can be achieved by moving the coordinates, altering
the carried quantities, or by any compromise of it. This
freedom is then used to select that representation of
the vertical profile which yields a constant potential
density within the same layer.

Further complications arise through disappearing
and reappearing layers below the mixed layer or at the
variable bottom of the ocean. An algorithm is needed
to treat the time dependence of the spatial extent of
each layer (for details see section 2f).

The concept of the model used here can be sum-
marized as follows. The ocean model is divided up into
two regions: the upper and the lower ocean. The former
is represented by a mixed layer. The lower ocean is
discretized by isopycnic surfaces where cross-isopycnic
mixing and convection are explicitly included in the
lower ocean. The atmospheric fluxes are distributed
within a fully active mixed layer and are modified by
a fully coupled sea ice model with rheology.

a. Ocean model

Ignoring, for the moment, dissipative processes the
basic quantities that should be conserved are momen-
tum, energy, mass, potential vorticity, heat and salt
content, and possible tracer concentrations. Momen-
tum, mass, and heat and salt content are easily con-
served if the flux form of the equations is chosen. Bleck
(1974, 1978, 1979) investigated the conservation of
energy and potential vorticity in a generalized coor-
dinate system. Isentropic coordinates for the atmo-
sphere or isopycnic coordinates for the ocean are only
special cases of these coordinates. Since Bleck’s results
concerning the atmospheric lee cyclogenesis behind
mountains or the Gulf Stream dynamics in the ocean
are so noteworthy, this scheme will be used for mo-
mentum transport here. Following Bleck and Boudra
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(1981), potential vorticity can be conserved after some
manipulations of the advection and Coriolis terms.
Total energy cannot be conserved exactly here, as it is
the intention to use the flux form of the equations of
motion. This is not crucial, as the model ocean will be
much more diffusive than the real ocean due to the
additional diffusion required for computational sta-
bility reasons. Thus, energy will be dissipated anyway.
Therefore, it is defendable to relax the total energy
conservation condition with the advantage of now
being able to conserve momentum, mass, heat, salt,
and potential vorticity. Following Arakawa (1966,
1972), the equations are discretized in the horizontal
using the B-grid.

The basic equations are formulated in flux form as
conservative equations for the vertical mean of the mass
flux ¥, = pvhy, the mass content &, = (ph)y, the heat
content O, = (6ph),, and the salt content I, = (Sph ),
in a column of the kA layer:

a

o W, =-V%¥)— hVp— X W,

+ VAPV + (wpv)E + (wov)§

— (Wpv)Ee — (wov)ko + 7k + 785 (1)
2 3= V- + (W)
o
+ (wp)k™ — (wp)kr — (wp)k- + RETE (2)
2 (O) = =V (Ov) + V. AiV(0), + QE
ot Cp
+ (wpb)§™ + (wpb)k* — (wp)k- — (wpb)ke  (3)

0]
2 (I = =V (v + V- ALV (), + RIE

+ (WoS)E™ + (WpS)Er — (wpS)k- — (WpS)f+. (4)

The terms (wpv), (wp), (wp8), and (wpS) describe
exchange processes of mass fluxes, mass itself, and heat
and salt content between neighboring layers. The dif-
ferent kinds of exchange processes are entrainment/
detrainment, vertical exchange as cross-isopycnal
mixing and convection. The terminology (. . .)% indi-
cates a transfer from the It layer into the kth layer,
where / = k— represents the next upper and / = k+ the
next lower (physically present) layer; N is the number
of layers, the index k starting with k& = 1 in the upper-
most layer (mixed layer). Note that the terms that ap-
pear as entrainment out of the adjacent layers into layer
k and as detrainment out of layer k into the adjacent
layers finally help to keep the potential densities close
to the prescribed one (see section 2d). All terms in
which 1-— or N+ occur are set to zero, except for the
term ™, which represents the surface wind stress, and
the term 4", which represents the bottom stress.

The Coriolis parameter f in Eq. (1) is related to the
earth’s rotation
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where Q is the angular velocity of the rotating earth.
The equations are formulated on the sphere. All metric
terms that are the result of the transformation onto
the curvilinear spherical grid are, for example, listed
in Semtner (1986). Note that all operators taken as
two-dimensional as derivatives in the vertical vanish
through the use of Lagrangian coordinates.

The stress T = (75, 7,) between neighboring layers
is parameterized as

th = cup VAV AV with
AV = (Au, Av) = (4 — g, v — 0);  (6)

o, 1s the surface air density. Since observed surface
stresses are used, the surface drag coefficient does not
need to be specified. For the internal stresses, ¢; = 10~
and at the bottom ¢; = 1073.

In order to complete the equations, in situ values of
the density p, temperature 7', salinity .S, and pressure
P are related by the equation of state for sea water
(UNESCO 1981), written symbolically as

Pk = pi( T, Sk, Pi). 7

After discretization, the in situ pressure in the first layer
is given as a vertical mean by

f=2Qsin(p) with Q= (5)

g
P1=§q’1,

where g = 9.8 m s™* is the gravitational constant. In
all deeper layers the in situ pressure Py is given by

(8)

2

Pi= Pt + 5 (@ + 0). )
One of the conceptual problems in layer models is
how to determine the horizontal pressure gradient. An
obvious choice would be to take neutral surfaces as
coordinates. However, technical limitations of com-
puting and storing large amounts of density data for
computing pressure gradients, without any reduction
error, onto a reference level makes it advisable to post-
pone a more accurate solution to a later state of the
model. Meanwhile, potential density is used. Note that
in situ densities cannot be taken, as each grid point
within the same layer is located at a different depth. In
the case of constant potential density within each layer,
horizontal pressure gradients can be derived from the
slope of the interfaces alone (see Bleck and Boudra
1981). In this model, however, potential densities are
allowed to be variable within all layers so that additional
terms appear, which reflect the generation of a pressure
gradient in the presence of a horizontal gradient of
potential density. Remember that the deviation from
a reference potential density will be small; this will be
guaranteed by the vertical mixing processes. The di-
agnostic equation for the pressure gradient is
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N k-1
Yok = goa1 (2, Vi + VD) + g 3 V(hay),
=k =1
hk k—1
+ g; Voo — gloow — 0g1) 2 Vhy, (10)

=1

where D is the height of the topography above some
reference level. Due to the nonlinearity of the equation
of state, the pressure gradients are weakly dependent
on the choice of the reference level, which for simplicity
is chosen here to be the surface.

The in situ temperature T is calculated by inverting
the formula of Bryden (1973), which relates potential
temperature to temperature, salinity, and pressure:

(11)

By combining the UNESCO formula for density with
the formula for potential temperature, the potential
density g, is defined by using the potential temperature
and salinity in the same layer and reducing it to a spec-
ified reference pressure level.

The forcing terms O, and R, in Eqs. (2) and (3)
represent the heat flux and the freshwater flux, respec-
tively. Thereby, REE (R£™E = 0 for k > 1) is the fresh-
water flux due to precipitation minus evaporation, and
RIEE due to the sea ice-ocean coupling. ¢, = 4180 J
(kg K)7! is the specific heat capacity of water. The
freshwater flux does not appear in the salinity equation
since it is written in flux form.

The total heat flux into the mixed layer is given by

OQ1=0un+ QL+ O+ Qfl —yexp(—hi/hp)] (12)

and consists of the sensible heat flux Qy, the latent
heat flux Q;, the net heat flux by longwave radiation
@O, and the heat flux Q, due to insolation. Following
Paulson and Simpson (1977), Az = 23 m is the decay
length scale for the absorption of solar radiation, and
v = 0.42 defines the fraction of the insolation that is
not immediately absorbed at the surface but penetrates
into the ocean. These values reflect clear water type L.
This means that when all upper layers are shallow
enough, deeper layers gain heat due to insolation. The
heating rates of all deeper layers are defined by

Ok = 0k(Tx, Sks Pri):

k—1

Ok = Qdexp(— 2 hi/hg)
I=1

k
—exp(—2 m/hg)ly. (13)

I=1

The coefficients 4% and A} represent the spatial and
time-dependent diffusion for momentum, heat, and
salt. Following Bleck’s tradition, the horizontal diffu-
sion coeflicient for temperature and salinity is param-
eterized according to Smagorinsky (1963) by relating
it to the deformation of the flow field:
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u  ov\? du  ov\*]/?
R L N + 45 (14
4 C[(ax ay) (6y ax)] o (19

Here, cis set to 5 X 10° m? to obtain realistic diffusion
coefficients, typically of order 104 m? s™! with a min-
imum diffusion coefficient of 4§ = 10°> m?s~!. The
diffusion coeflicient for momentum depends on the
grid spacing, which is variable in longitude and latitude.
It is made smaller in areas of a high resolution in order
not to destroy narrow structures there. The formulas
for the x and y components of the momentum diffusion
coefficient A™ = (A, A7) are

2
me Xy (15)
Ty cose
Ay?
A = —— + 4°, 16
Y Ty cose (16)

Here Ax is the zonal grid distance at a latitude ¢, and
Ay the meridional grid distance. The cose terms ensure
that the damping time for 2Ax and 2Ay waves have
the same scale, independent of whether waves at the
equator or near the North Pole are considered. Here
Ty is set to 4 X 10°® s, which results in a momentum
diffusion coefficient in the range of 10* m? s™! at the
equator. It becomes smaller toward the pole, thereby
taking account of the converging coordinates and the
higher resolution, which requires less diffusion for nu-
merical stability. That diffusion is chosen to be stronger
for momentum than for the scalar quantities is gov-
erned primarily by the need to couple the two separate
solutions in the B-grid (this problem does not appear
in the equations for ® and S).

b. Mixed-layer model

A mixed layer (ML) is the result of turbulence pro-
duced by wind stirring and surface buoyancy fluxes.
Temperature, salinity, velocities, and tracers are then
uniformly distributed in the vertical. Such a surface
boundary layer is included here. Since quantities in a
layer model are assumed to be constant vertically in
each layer, only the mixed-layer depth (MLD) appears
as unknown. On the other hand, the MLD is not in-
fluenced only by local mixing but also by horizontal
convergence of mass or heat. Therefore, the full dy-
namics represented by Egs. (1) to (4) are considered
and completed by a parameterization for the vertical
mass transfer and that of related quantities across the
ML base. The uppermost layer is used as the layer with
a thickness that is always nonzero and an arbitrary
instantaneous potential density o, (see Fig. 1). In all
deeper layers it is intended to keep the instantaneous
potential density g, at a prescribed value, henceforth
called ¢} . This quantity is constant within each layer
and depends only on the layer index.
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1) PHYSICAL BACKGROUND

Following Kraus and Turner (1967), the assumption
leading to a mixed-layer model is that wind-induced
breaking waves and buoyancy fluxes produce turbulent
kinetic energy (TKE), which is partly converted into
mean potential energy (MPE) and partly dissipated.
One of the main problems is that the different kinds
of mixed-layer models are tuned towards particular lo-
cal conditions [e.g., Ocean Station Papa; see Martin
(1985)]. A general formulation that is able to treat
quite different mixed-layer regimes in different parts
of the ocean is not available at present. The essential
difficulty is to simulate the deep mixed layer in the
western parts of the tropical oceans and to explain with
the same set of parameters the normally shallower
mixed layer in midlatitudes, where much stronger wind
stirring and convection through surface cooling occurs.
A summary of some of the difficulties concerning ear-
lier ML models is given in Gaspar (1988).

Here, results of sensitivity studies with different ML-
model formulations are briefly discussed in order to
Jjustify the ML-model version developed here. Results
for the Atlantic Ocean domain and one for the already
existing global ocean indicate that the Niiler (1975)
model generates a too shallow mixed layer of about 20
m in the western parts of the equatorial oceans. In
higher latitudes the ML is too deep, as numerical ex-
periments also indicate for the western part of the North
Atlantic. The error patterns coincide roughly with the
TKE production due to wind stirring [see u,-fields of
Bunker (1976); Oberhuber (1988)]. Strongest TKE
production appears south and east of Newfoundland
during winter and spring. It appears that TKE due to
wind stirring is dissipated with depth.

Niiler and Kraus (1977) formulated a model that
includes an additive term for the dissipation of TKE.
This modification allowed them to simulate a cyclo-
stationary state. But this model also fails to overcome
the shortcoming of a mixed layer that is too shallow
in lower latitudes. For reasons that are not yet under-
stood, less TKE is needed for mixing at higher latitudes
than at lower ones. Garwood (1977) tried to resolve
this problem by including a Coriolis parameter—de-
pendent damping term. The problem with both of these
ad hoc parameterizations is that, even without buoy-
ancy fluxes, the ML is limited to some depth. The basic
form of their entrainment relation is

wg'h = cyud + c;hB — c3h, (17)

where ¢, ¢;, and c3 are arbitrary tuning coeflicients;
u, is the friction velocity; and B is the buoyancy flux.
By setting w = O this results in the Monin-Obukhov
length h,,:

c,ui

By = X
M C‘3—CzB

(18)

For a sufficiently strong damping parameter c;, which
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is required to keep the mixed layer realistically shallow
in many areas, /1, always yields a positive solution for
the MLD. Independent of the internal stability, the
MLD cannot exceed A,,. As already noted by Deardorff
(1983), this type of parameterization allows the oc-
curence of unstable stratification (due to cooling) that
is not removed by convection (deepening of the ML).
The newer theory of Garwood et al. (1985a,b) proposed
an Q, 7, term, which acts as a source of TKE in easterly
winds and as a sink in westerly winds. Consequently,
this model generates a deep mixed layer in western
parts of the equatorial oceans, but it enhances mixing
in the trade wind area, so that the MLD in the latter
area is overestimated.

From these preliminary experiments it is obvious
that another form is required to describe the latitudinal
dependence of dissipation of TKE. Proceeding from
the equator poleward, it must decay more rapidly than
the cosine function of the €, term. On the other hand,
it should not suppress convection. The hypothesis was,
therefore, introduced that TKE decays exponentially
with depth with a length scale 4, given by the Ekman
scale. Thus, the TKE production term is multiplied
with an exponential function so that the entrainment
relation takes the form:

h
wg'h = exp( - —) X (TKE surface production).

hy
(19)

If the stability g’ approaches zero, the entrainment rate
increases independently of how small the exponential
function becomes. If the right-hand function is ex-
panded around a mean MLD #/,, one obtains:

wg'h = (1 _h ; ho) exp(— %)

X (TKE surface production).

(20)

This is a similar structure [ compare with Eq. (17)] to
that used in the models of Niiler and Kraus (1977),
Garwood (1977), and Gaspar (1988). Thus, their
models can be understood as Taylor expansions of the
subsequently presented ML model with an appropriate
definition of A, ¢, ¢2, and ¢3. Since the annual mixed-
layer variation at Ocean Station Papa is small due to
the strong thermocline in the North Pacific, a Taylor
expansion .is justified in this region, but it is obvious
that at high latitudes in the North Atlantic or in the
Circumpolar Current, it will fail if the decay function
is nonlinear.

2) MIXED-LAYER EQUATIONS

The mixed-layer model finally selected for this study
was the result of numerous sensitivity experiments, in
which the best simulation of the seasonal cycle for var-
ious mixed-layer models was optimized by tuning the
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model parameters using an inverse method. The mod-
els of Niiler (1975), Niiler and Kraus (1977), Garwood
(1977), and Garwood et al. (1985a,b) were tested in
this manner. The present model gave a reduced rms
error for the seasonal cycle of the ML between 25°S
and 65°N for the Atlantic. The equation for the en-
trainment rate w is

wg'h — w Rigi(Au? + Av?)
= 2moaul + ThhB, + (1 — T)hb(B — vB,)
+ (1 = T)YybBy[A(1 + exp(—h/hg))

— 2hp(1 — exp(=h/hs))], (21)
where

g R -T) 4Ty (22)
B=--(a0+8R) (23)

P

_SP

R =2 (P - E) (24)
B,=>£ 0, (25)

Cpp

£’ is the reduced gravity between the mixed layer and
the next layer below; Ri., is the critical Richardson
number (set to 0.25); B is the total buoyancy flux
through the surface; Q the total heat flux; R the cor-
responding equivalent heat flux due to the freshwater
flux; P — E denotes precipitation minus evaporation;
B, the buoyancy flux due to the solar radiative heat
flux Q;; and «, B are the analytically determined ex-
pansion coefficients with respect to temperature and
salinity.

The entrainment/detrainment rate w is related to
the transfer rates w in the equations (1) to (4) by

+1
wi o,

w= ’
Wit

The sea ice model described subsequently has some
influence on the relation for entrainment. In the pres-
ence of sea ice, I' = 1, otherwise I' = 0. B; is taken as
buoyancy flux and g7 as reduced gravity, if sea ice is
present. Both parameters are defined in section 2e.
The first term on the left-hand side of Eq. (21) de-
scribes the production of mean potential energy
(MPE), and the second is the production term of mean
kinetic energy (MKE) by entrainment. On the right-
hand side, the first term represents the TKE production
due to wind stirring (4 denotes the friction velocity ),
the following describe the influence of the surface-
buoyancy fluxes for the ice-covered and ice-free con-
ditions, respectively. The last term, which is only non-
zero for ice free cases, represents the influence of pen-

if w>0 :
(26)
if w<O.
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etrating solar radiation on the total buoyancy flux
(Denman and Miyake 1973). The free parameter m,
is set to 1.2. This value is approximately the same as
that derived from laboratory experiments. In the re-
lation for the entrainment rate the weighting coeffi-
cients a, b are defined as exponential decay functions:

a = exp[—hf/(kux)] (27)
b - {exp[—hf/(xu*)], if B<O 28)
exp[—hf/(uuy)], if B>0,

where k = 0.4 and u = 2.

Two different length scales are chosen, a larger scale
for those terms which create deepening and a smaller
one for those which reduce the MLD. This follows from
the heuristic argument that wind stirring generates only
u'w’ terms at the surface, whereas w'T"’ terms are also
produced as a result of positive buoyancy fluxes. In
this case, they act as a source of TKE due to the gen-
eration of unstable stratification. This kind of turbu-
lence penetrates into the ocean and creates on its part
again u'w' turbulence. Thus, positive buoyancy fluxes
are assumed to be more efficient than wind-induced
turbulence.

One of the preliminary findings during the optimi-
zation efforts was to find « = 0.39, which surprisingly
corresponds to the von Karméan constant if the thick-
ness of a turbulent boundary layer is estimated by «u /
/. The constant u, which also was found by optimi-
zation, is significantly larger. Note that u is the only
coefficient that is not known approximately and there-
fore can be used for tuning.

An important property of the dissipation formula-
tion presented here is that at the equator TKE generated
at the surface penetrates down to the mixed-layer base
without being partly dissipated. If f= 0, then a = 1.
The mixed layer in the western parts of the equatorial
oceans will be sufficiently thick as long as m, is large
enough. The value chosen for m, is much larger than
used by Niiler (1975), but in this model this is com-
pensated for by letting TKE decay towards higher lat-
itudes, thus giving a comparable TKE at the mixed-
layer base at Ocean Station Papa. Proceeding from the
equator poleward, the Ekman length decreases rapidly.
Therefore, the strong trade winds will not lead to an
unrealistically thick mixed layer. This was one of the
deficiencies in experiments with the model proposed
by Garwood et al. (1985a,b). In midlatitudes the strong
westerlies will not give large mixed-layer thicknesses,
since the decay length scale is about 30 m there.

In the retreat phase of the mixed layer the depth is
determined by setting w = 0 in Eq. (21) and solving
for /. The resulting equation for the Monin—Obukhov
length /,, in the case of no sea ice yields:

2moud + hy(B — vB,)
+ vB{ hul1 + exp(—hu/hs)]

— 2hgl1 — exp(~hp/hs)]} = 0. (29)
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The solution for A4,, is determined iteratively with a
Newton method. A second diagnostic calculation is
carried out as soon as the flow becomes unstable due
to excessive vertical shear. In this case, a minimum
depth Ag; is defined through:

hgi = Rigi(Au? + Av?)/g'. (30)
As a result, there are two constraints that limit the
MLD. First, the MLD cannot be deeper than the
Monin-Obukhov length, and second, it cannot be
shallower than Ag;. If the two constraints contradict
each other, /g; is taken as criterion. This means that
as long as the MLD is smaller than /), and larger than
hg;, the MLD is not altered by these diagnostic cal-
culations, but as soon as the MLD becomes smaller
than /g; or larger than #,,, the corresponding diagnostic
quantity is taken.

3) COUPLING OF THE MIXED-LAYER AND THE
ISOPYCNAL MODEL

Figure 2 demonstrates how layers disappear and
reappear during the seasonal cycle. Starting with a
rather shallow mixed layer (Fig. 2a), water is entrained
during the deepening phase (beginning with autumn)
from the second layer into the mixed layer. As the
mixed layer deepens (Fig. 2b), the second layer loses
mass until it has drained dry (Fig. 2c). Now water is
entrained from the next deeper layer (Fig. 2d). If the
atmospheric conditions allow the entrainment regime
to change to a detrainment regime (beginning with
spring), a new shallow mixed layer is formed, which

a) b) c)
M h1 hy
h2 A |h2 Ly
h3 h3 hy hs
hyg, by hy
d) el f)
X -
i h2 hy
h3 N ihj ,

i =,

FiG. 2. Seasonal cycle of layer thicknesses at and below the
mixed layer. For details see text.



816

is determined diagnostically (Fig. 2¢). The detrained
water masses of the old mixed layer are assigned to
other layers. During this phase, a vanished layer may
reappear formally through vertical mixing (Fig. 2¢) or
by detrainment into that layer.

The conceptual problem now is to select one of the
layers below the ML into which the detrained water
mass may be pumped. The solution would be unique
if the potential density of the detrained water coincides
with the prescribed potential density ¢ of the under-
lying physically existing layer UL. In this case, the de-
trained water would not alter the potential density in
that layer and therefore would not destroy the model’s
coordinate system. But, in general, this situation will
not occur since the ML potential density is allowed to
develop arbitrarily.

The following strategy was developed through the
need to maintain the isopycnal coordinates, that is, to
keep o, at or as close as possible to the prescribed
oy . In the first step, it is asked whether the currently
calculated oy is larger or smaller than the prescribed
o4 . The difference expresses the currently existing error
in the isopycnal coordinates. Then use is made of the
fact that detrainment occurs only if negative buoyancy
fluxes as result of a positive heat and freshwater flux
yield a steadily decreasing potential density in the ML.
This means that a steady decrease of g, in the ML will
also lead to a steady decrease of g, in the UL when
water of the ML is continuously mixed down into the
same UL. The following decision has been found to
work satisfactorily. In the case of 5 > o5 , the detrained
water is injected into UL. Thus, the lighter detrained
water is mixed with the UL water, which was originally
too heavy when compared with its prescribed potential
density. As a result, water in the UL becomes lighter
and therefore steadily approaches its ¢ . In the other
case, oy < oy , or if initially UL already contains the
correct gy, the detrained water is pumped into the next
upper, not yet physically existing, layer with £ = 0.
Since this layer corresponds naturally to a smaller oy
compared with the ¢; of the ML, the detrained water
will now be too heavy for this layer. However, because
of the steady decrease of o, of the detrained water, the
instantaneous g, in the flooded zero layer will decrease
towards its o . After having reached the corresponding
oy , the detrained water is injected into the next upper,
not yet physically existing, layer. In this manner, an
arbitrary number of layers may be flooded until de-
trainment stops owing to changed atmospheric con-
ditions. At the end of the detrainment regime several
flooded layers remain. Because of the finite time steps,
oy is never reached exactly. But as long as the time
step is small compared with the time scale of the at-
mospheric forcing, the remaining errors in the flooded
layers will be negligible. Only the layer that was the
last one into which water was detrained might contain
a significant deviation from o . But this layer is the
first one entrained into the ML and is, so far, only
physically active during a short period.
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¢. Parameterization of surface fluxes

The surface fluxes required by the model are the
fluxes of momentum, heat, fresh water, turbulent ki-
netic energy, and buoyancy. Required datasets are sur-
face air temperature, sea surface temperature, relative
humidity, cloudiness, the time-averaged absolute wind
speed and its standard deviation, wind stress, rainfall,
and surface salinity. Esbensen and Kushnir (1981)
calculated global surface heat fluxes on a coarse 5°
X 5° grid. Based on the higher-resolution COADS
[ Comprehensive Ocean-Atmosphere Data Set; Wood-
ruff et al. (1987)], Wright (1988) prepared data on a
2° X 2° grid, which is sufficient for forcing an OGCM.
These fields represent a 30-year climatology from 1950
to 1979. Using this data source Oberhuber (1988) de-
veloped and tuned parameterizations of all fluxes re-
quired for forcing an ocean model, such as heat, buoy-
ancy, fresh water, and turbulent kinetic energy. The
computed heat fluxes are in surprising agreement with
Isemer and Hasse (1987), who optimized their scheme
for the North Atlantic only.

1) PARAMETERIZATION OF SURFACE HEAT
FLUXES

The total surface heat flux Q consists of the contri-
bution due to shortwave radiation Q;, longwave radia-
tion Q,, sensible heat flux @y, and latent heat flux Q;.
The turbulent surface heat fluxes, namely the sensible
and latent heat fluxes, are estimated by the bulk for-
mulae

QH = Pacp,airCHV( T,—Ty) (31)
O = paLwcrV{(4a — 4s), (32)

where T, is the air temperature, T the sea surface tem-
perature, ¢, the air specific humidity, and g; the specific
humidity close to the surface, which is assumed to be
the saturated value; ¢, o = 1005 J kg~' K™ is the spe-
cific heat of air, and L,, = 2.5 X 10% J kg ™! the latent
heat of evaporation. The specific humidity g is given
by the water vapor pressure e and the atmospheric sur-
face pressure p. In the following relations, (33)-(39),
the unit for ¢ and p is pascal and the unit for 7 is
kelvin: '

e =611 X 1073(7-273.16)/(T-35.86) (33)
0.622¢
= -0378¢" 34
7 p—0.378¢ (34)

From this ¢; = g(p, e(T;)) and g, = q(p, r X e(T3))
are obtained, where r is the relative humidity. The bulk
coeflicients, cy and ¢, are calculated as proposed by
Large and Pond (1982). The respective formulae are
given in the next section.

The net longwave radiation at the surface is taken
from Berliand and Berliand (1952):

Ql = 4€UT3(T0 =Ty
— eoT4(0.39 — 0.05Ve/ 100)(1 — xn?), (35)
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where ¢ = 0.97 is the emissivity of water, ¢ = 5.67
X 107 W m™2 K™* the Stefan-Boltzmann constant,
and # the relative cloud cover. In order to account for
different properties of different cloud types, X varies
linearly with latitude, as proposed by Budyko (1974).

The insolation is calculated from the daily averaged
heat flux at the top of the atmosphere and is then cor-
rected after Zillmann (1972) for relative humidity and
inclination. Parkinson and Washington (1979) used
Zillmann’s formula for modeling the sea ice, while
Hsiung (1985, 1986) used the empirical formula of
Seckel and Beaudry (1973). However, since the latter
formula is valid in a latitudinal band only, Zillmann’s
formula, which can be used in global models, was se-
lected here. Following Reed (1977), the insolation is
reduced by a cloudiness factor. In contrast to Esbensen
and Kushnir (1981), the cloudiness correction of Ber-
liand (1960) is not used, since this underestimates in-
solation at high cloud cover, as pointed out by Weare
et al. (1981). The resulting relations required to com-
pute the daily mean downward shortwave radiative flux
Qs are

cosn = sind sing + cosé cose cost  (36)
SIN7peon = SING Sing + COSE COSQ (37)
k=1-0.62n + 0.00199100n (38)

Sp cos?y

0. - ﬁf” A (39)
*T % 2r dy rlcosn + 2.7)e(T)/p \d)
+ 1.085 cosy + 0.1

Here, S, = 1370 W m™ is the solar constant, and 7
the solar elevation. The constant v is chosen as 0.94
corresponding to an albedo of 0.06; a = 0.9 is a tuning
coefficient, d denotes the distance between the sun and
earth, and 4 its annual average. Following Paltridge
and Platt (1976), the ratio ( d/d)? is estimated in terms
of the Julian day S:

2
(S) = 1.00011 + 0.00128 sin(B)

+ 0.034221 cos(B) + 0.000077 sin(28)
+ 0.000719 cos(28). (40)

The declination é (in radians), needed to compute 7,
is given by

6 = 0.006918 + 0.070257 sin(B) — 0.399912 cos(8)
+ 0.000907 sin(28) — 0.006758 cos(28)
+ 0.00148 sin(38) — 0.002697 cos(38). (41)

Variations in the distance between sun and earth ac-
count for slightly more than 3% of the variations in
the net global solar radiation.

2) TRANSFER COEFFICIENTS

The bulk coefficients are taken from Large and Pond
(1981, 1982). Although the method is discussed in de-
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tail in both papers, all relations are listed again to clarify
which equations are used here:

Cr = cunV e/ cun (42)
H = -
1 = cavk ' can ¥n(Z/L)

cr = cinV Car/ Cun (43)
L = .
1~ conk e Wi(Z/L)

Vew/enw = (1 = Vaunc Y Z/L))™'  (44)
2
K
CuN = n2(Z/Z0) (45)
K
Cun = 0.0327 m (46)
K
civ = 0.0346 nZ/Z0) (47)
Ui
Zo = Cchar — (48)
g
ul = cpu? (49)
To=T(1 + 1.7 X 107%Tq). (50)

Here ¢y, cy, and ¢, are the transfer coeflicients for
momentum, sensible, and latent heat, respectively. The
subscript N denotes the transfer coefficient for neutral
conditions. For stable conditions it is

Yu=yu=yL=-1(Z/L) (51)
(Z/L) =~ Z?i (A0 + 2.5 X 1075T3Aq), (52)
while for unstable conditions it is

Yar=21In[(1 + X)/2] + In[(1 + X?)/2]

—2arctanX + w/2 (53)

Ya =y =2m[(1+X?)/2] (54)

X =(1—-16(Z/L))"* (55)

(Z/L) = — % (A0 + 1.7 X 107°T3Aq), (56)

where Agis the difference between the specific humidity
of air, and the sea surface and A#f is the potential tem-
perature difference.

The only difference from Large and Pond’s work is
that ¢y is not fitted against data using ad hoc chosen
curves but by tuning the Charnock constant. The Egs.
(45), (48), and (49) describe the dependence of the
neutral drag coefficient ¢,y on the friction velocity u,,
the von Karman constant « = 0.4, the height of the
measurement Z, and Charnock’s constant ¢cp,,. In or-
der to obtain a drag coefficient of about 1.15 X 1073
for neutral conditions at 10 m s™!, ccpar should be set
to 0.0064. The resulting dependence of the neutral drag
coefficient ¢y on the wind speed u is similar to Large
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and Pond’s result and within the accuracy of the mea-
surements presented by Large and Pond. However, as
outlined by Oberhuber (1988), cchar, in fact, was set
t0 0.032 to compensate for the underestimation of the
transfer coefficient resulting from the application of
monthly mean values instead of instantaneous values.

3) RELATION TO NEWTONIAN COOLING

Despite the complexity of the formulae for the heat
flux, the relations between SST and the resulting heat
flux are essentially of Newtonian type (see also Haney
1971), however, with a strong spatially variable cou-
pling coeflicient dQ/aT. If the heat flux Q is linearized
with respect to the observed sea surface temperature,
one obtains

0Q(SST)
aT

where T may be considered as the modeled surface
temperature and Q(7') as the resulting surface heat
flux. After introducing an equivalent temperature 7*
defined by

O(T) = Q(SST) — (SST —T), (57)

-1
T* = SST — Q(SST)(%) . (58)
Eq. (57) can be rewritten as
dQ(SST
o = -1 (s9)

The temperature difference (7* — T') = —Q(SST)/
(8Q(SST)/dT ) depends on the observed heat flux and
can therefore exceed 3 K for typical situations in equa-
torial upwelling areas (Q = 100 W m™2, (8Q)/(dT)
=30 Wm2K™") or even 10 K in Gulf Stream and
Kuroshio areas (Q = 600 W m™2, (8Q)/(dT) = 60
W m~2 K~!). Initial tests using SST instead of the
equivalent temperature 7* did indeed exhibit system-
atic errors. Therefore, it appears advisable to derive
fluxes from parameterizations that employ observed
atmospheric data rather than SST data and take ac-
count of the strong spatial dependence of 3Q/d7. A
further advantage of using atmosphere rather than sur-
face data is that the SST data already contain the time
lag due to the oceanic inertia of about 2 months. If a
model is forced with such data, the time lag would be
introduced twice.

4) EVALUATION OF THE NET FRESHWATER FLUX

Because rainfall is not sufficiently well known, a
Newtonian formulation was applied to the observed
sea surface salinity:

Sobs -8 1
S ’

where § = 5 X 107 m s™! is the time constant with

which the actual salinity relaxes towards the observed

RT™E=pié (60)
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salinity Sops. This approach circumvents the drift,
which could occur through the lack of any stabilizing
feedback if the ocean is forced with slightly incorrect
observed rainfall and evaporation.

In the presence of sea ice, changes of the salinity in
the mixed layer are not permitted by this parameter-
ization. In order to maintain the observed salinity (at
least in terms of the annual mean), the mean salinity
is determined from the mixed-layer thickness and the
sea ice. By employing this artificial salinity instead of
the observed one the required net freshwater flux is
calculated, which is added to the ice as snowfall. This
ensures that the mixed-layer salinity returns to the ob-
served value when all the ice has melted.

5) ESTIMATE OF TURBULENT KINETIC ENERGY
INPUT

Monthly mean absolute wind ¥ and its standard de-
viation o(V') were prepared from COADS by Wright
(1988). The standard deviation is required for accu-
rately evaluating the time-averaged third power of the
friction velocity u,, occurring in the relation for the
entrainment rate. Since #3, determined from the
monthly mean absolute wind # only, is much smaller
than the required u3, the effective u3 must be deter-
mined by the additional use of the monthly mean stan-
dard deviation of the absolute wind. By assuming that
the amplitude of the fluctuations is not too large com-
pared with the mean wind, the effective 13 can be ap-
proximated by:

3 capa\*? o 52 2
Uy = (T) V(V*+ 3c°(V)). (61)
The standard deviation of the wind is generally of the
order of half the mean wind strength, so that the
expression yields roughly twice as much kinetic energy
as would result from the mean wind alone.

d. Parameterizations of internal diffusion

Vertical diffusion is needed to prevent fronts from
becoming too strong and to allow a steady flow across
isopycnals as a precondition for deep meridional over-
turning. Thus, a parameterization for vertical diffusion
in the interior ocean is introduced by allowing mass
to be transferred between neighboring layers. An ex-
plicit convection mixing procedure is also included.

1) VERTICAL MIXING / COORDINATE
MAINTAINANCE

In order to formulate vertical mixing, some kind of
mass transfer rate w has to be specified. This could be
defined at each layer interface by transferring mass be-
tween two neighboring layers. However, as an addi-
tional constraint the potential density has to be main-
tained in each isopycnic layer.

To satisfy this constraint, the mass exchange of a
given layer with both the upper and lower layer is con-
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sidered simultaneously. As indicated in Fig. 3, the basic
picture is that each layer obtains mass from its neigh-
boring layers by an entrainment process and, at the
same time, loses mass to these layers by a detrainment
process. Each of the transferred water masses Afpw in
a time step At carries information relating to momen-
tum, temperature, salinity, or other tracer concentra-
tions. For illustration of the problem, it is assumed in
Fig. 3 that the upward and downward mass transfer
across an interface are identical. However, since a co-
ordinate displacement is allowed in the present model
concept, the relations (pw)£" = —(pw)X, and (pw)§™
= —(pw)i_ have to be relaxed. The notation for
(pW)E, (ow)¥™, (pw)k_, and (pw)%, is the same as
that used for the continuity equation (2). Figure 4
shows how the vertical mixing is generalized. The sum
of the four mass transfer rates yields the net change of
the mass content of the layer with index k. The en-
trainment and detrainment processes are treated in the
same way as in the mixed-layer model. If water is
transferred from one layer into a neighboring layer, the
velocity, temperature, and salinity are changed only in
the layer into which a water mass is transferred (en-
trainment ) but not in the layer from which the water
mass is removed. The final result appears as decom-
position of the net transfer rate from one layer into an
adjacent one. For each layer two entrainment and two
detrainment rates have to be determined. Only the en-
trainment rates are of importance for the tendency
equation for temperature and salinity. Since the de-
trainment rates are identical to the entrainment rates
of the adjacent layers, it is sufficient to determine the
entrainment rates only. Thus, two unknown quantities
appear for each layer, which reflects the underdeter-
mined nature of Egs. (1)-(4).

qu. 3. Design of the parameterization of vertical diffusion. In z-
coordinate models the relation wi* = wk, and w§~ = wi_ ensures
that coordinates { (= interfaces in layer models) remain unchanged.
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F1G. 4. Modification of the parameterization of vertical diffusion.
Compared to Fig. 3 the exchanged water masses are now not of equal
amount. The result is a net change of the interfaces.

Ahy=B¢ - Adis

Following the mixed-layer parameterization, it is as-
sumed that turbulent kinetic energy is converted into
mean potential energy via a u3 term. However, for the
interior ocean the friction velocity u, is not adequately
known. The contribution to u, from fluctuations (ed-
dies, transient internal waves ) can be much greater than
from the mean-flow contribution. Therefore, a constant
u, = 0.5 cm s~! in the entire ocean is chosen. The
value was tuned to obtain the best thermocline.

If water is entrained only from above or only from
below, the resulting equations for the entrainment rates
wk~* and wi™* are

2mous
whe = =2 62
A )
2mous;
witr = =2 63
: 8l hi (63)

The problem is underdetermined, since one is free to
choose how much is to be entrained from above or
from below. If a free parameter « for this unknown
ratio is introduced the equation for the total entrain-
ment rate wy is given by

we = (1 — a)wk * + awit* (64)

with individual entrainment rates
wi = (1 — a)wi™* (65)
Wkt = awk*, (66)

After substituting these entrainment rates into the mo-
mentum, mass, heat, and salt equations, the free pa-
rameter « can now be chosen to maintain the potential
density of the layer at the prescribed value o5 , at the
same time compensating the potential density drift due
to artificial and physical cabbeling. In order to balance
these errors, o must be made space and time dependent.
The equation that determines « reads

A + At(wE + wi) o

= Moo + AWK o + AWET ogs,

(67)
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stating that the potential density at the new time level
should be equal to the prescribed value ¢ 3. This equa-
tion was derived under the assumption that the poten-
tial density of a mixed water mass is the layer thickness
weighted average of the potential densities of the un-
mixed water masses. Together with the Egs. (65) and
(66) this yields as the final equation for o

o= h(os — op) + AtwE * (o — op-)
AWE * (05 — ou—) — AtwWET* (o — oges)
(68)

2) CONVECTION

At first sight it appears that it is not necessary to
include a procedure for explicit convection in this
model. Both the mixed-layer and interior ocean mixing
formulation should prevent the development of unsta-
ble stratification.

However, if the stability between ML and UL tends
towards zero, the entrainment rate increases drastically.
The time step extrapolation together with small values
of the exponential function for the dissipation of TKE
can then lead to situations where the stratification has
already become unstable, but the underlying layer has
not yet vanished. In this case, the unstable stratification
is removed by vertical mixing. All quantities are set to
their vertical average over the ML and the UL.

The consequence of this procedure is that the po-
tential density in the UL increases with respect to its
oy . For the purpose of setting bounds for this potential
density error (6, — o7 ), the following procedure was
found to work satisfactorily: if ¢, in the UL approaches
oy of the next deeper layer, the UL is totally entrained
into it. Ignoring nonlinear temperature and salinity ef-
fects in the equation of state, the instantaneous poten-
tial density o, in this next deeper layer is unchanged.
Since the former UL has now lost its entire mass, the
original third layer from the top becomes the new UL.
If instability persists for this layer, the same process is
repeated for the next pair of layers, the ML and the
new UL. After convection has finished, new zero layers
remain between the ML and the UL, which now has
bigger vertical extent.

In the isopycnal part of the model, layers are initially
stably stratified. The stability is maintained as long as
the entrainment/detrainment mechanism for main-
taining the initial potential density in each layer works
correctly. Unstable stratification due to vertical mixing
occurs only under extreme cases of vertical temperature
and salinity gradients when the assumption of a linear
equation of state conflicts with the nonlinear equation
of state, which in fact, is used. If in rare cases unstable
stratification arises through either situation, velocities,
temperatures, and salinity are set equal to their mean
values over the two adjacent unstable stratified layers.
Layer thicknesses are not altered.
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e. Sea ice model

Ice is an important boundary condition for the high-
latitude ocean. The seasonal cycle of ice thickness and
ice extension influences the heat budget at the ocean
surface and the internal stratification. During cold pe-
riods, freezing ice ejects salt into the mixed layer and
thereby contributes to the production of heavy deep
water. During warm periods, melting ice decreases the
salinity in the mixed layer and therefore contributes
to a stabilization of the upper ocean.

1) EQUATIONS

Parkinson and Washington (1979) developed a
model for the sea ice using the free drift approximation.
Hibler (1979) showed that a realistic rheology yields
improved results. This type of model demonstrates its
reliability in runs for the Arctic and the Antarctic. The
results of Hibler and Bryan (1987), who coupled such
a sea ice model with rheology to the GFDL model, also
gave some motivation to include a similar model. For
a number of technical reasons, such as the use of
spherical coordinates and the momentum and mass-
conserving flux form of the equations that permits an
easier treatment of the ice edge, it was decided to de-
velop a new model based on the same physics as in
Hibler’s model.

The basic equations for the ice flux v, for the ice
mass /, and the ice concentration g are

S Vh = V- AVvh — X vh— ghVT + 2+ 2 4 1F,
ot pr o pr
(69)
3
a—lh=V-AVh-V-vh+F;, (70)
)
—q=V-4Yg—V-vq+ F,, (71)

ot

where 7, and 1, are the surface wind stress and the
stress at the bottom of the ice, respectively, and T is
the sea surface. In these equations the transport of mo-
mentum has been neglected. Here A is a constant dif-
fusion coefficient currently set to be 2000 m? s~'; fis
the Coriolis parameter; F,,, F,, and F, are the forcing
functions for the momentum, mass, and ice concen-
tration; F, represents the sea ice rheology, defined to
be viscous plastic; F}, the ice thickness change; and F,
the change of the ice concentration due to external
heat fluxes. Following Hibler’s notation, the forcing
functions are defined by

. d ou v P
va“& (77+§')5;+(§'*77)a—y‘—3]

d du dv
W["(@*aﬂ 72)
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p
= 7
max(Z\/Z, €) (76)
=1 (77)

Parts of the operators on the right-hand side can be
identified as diffusion operator, with two diffusion coef-
ficients, the bulk viscosity ¢, and the shear viscosity 7,
which are highly dependent on the flow field. However,
additional terms occur that cross-couple the velocity
components. Similar to Hibler (1979), the free param-
eters have been chosen as P* = 10*Nm™2,e=2,C
=20, and ¢ = 2 X 1077; p; = 900 kg m™3 is the constant
ice density.

2) THERMODYNAMIC FORCING

The net heat flux through the ice into the ocean is
parameterized by

T,— T,
A .

Or=aq (78)

Here, T is the skin temperature of the ice surface and
h/q the current thickness of each ice floe. It is assumed
that no snow layer exists and that the ice is homoge-
neous. The conductivity parameter « is chosen to be
2W (mK)™'.

The heat flux through the ice surface is calculated
by the equilibrium condition that there is no heat flux
divergence. This yields the ice surface temperature 7
by an implicit definition:

Qu(T;, "')_QI(Tss T1,g)=0, (79)

where Q, is the atmospheric heat flux defined in section
2¢(1) and Qy the heat flux through an ice floe. From
this equation, the surface temperature T is calculated
by iteration. The resulting change in the local ice thick-
ness due to thermodynamics is then given by the sum
of the heat flux Q from the atmosphere into the ice-
free ocean, the heat flux Q, through the ice, and the
flux induced by the entrainment rate w:
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where ¢,,, = 334 kJ kg~ is the latent heat of fusion.

The forcing function of the ice concentration equa-
tion differs slightly from Hibler’s formulation and is
evaluated by

_ [Fh(l ~ q)/ ho,

(T — Ty), (80)

if F,>0

(81
if F, <0. )

th/Zhy

The free parameter 4 is set to 0.5 m. The goal of this
ad hoc parameterization is to relate the change of the
ice concentration with that of the ice thickness during
melting (F, < 0), while during freezing (F;, > 0) the
concentration change is related with an area that is not
covered by thick ice but contains thin ice of thickness
hy. Dependent on the ice concentration, the ocean ob-
tains its forcing either through leads from the atmo-
sphere or through the sea ice.

3) EXTENSIONS IN THE MIXED-LAYER MODEL

In the presence of sea ice the buoyancy flux B; from
the atmosphere into the mixed layer is determined by
8(S1 = S)) 8oy
aS “’

cpmp Oy

By = (qQ; + (1 — q)Q1) (82)

where S; is the ice salinity, set to be 0.5%. This expres-
sion implies that the heat flux through the ice is asso-
ciated with a freshwater flux, because ice keeps the
mixed-layer temperature at the freezing point. Fur-
thermore, with B; = 0, it is assumed that no solar ra-
diation penetrates through the ice. Finally, following
Lemke (1987), the reduced gravity in the entrainment
equation (21) is modified by

' Og1+ — 01 day
gr=g———+|o
[} a0 s.p

+ (S — Sl)%

481,

ym—mﬂ.wa

Cpm0yg

Compared to the entrainment equation without sea
ice there are additional mechanisms. Entrainment
provides some heat flux into the mixed layer. This flux
is exactly balanced by a heat flux due to melting or
freezing ice in order to keep the mixed-layer temper-
ature at the freezing point. Finally, this freshwater flux
induces a buoyancy flux.

4) SEA ICE-OCEAN SALT COUPLING

During freezing, salt is ejected out of the ice but is
not confined to the ML alone. It is assumed that a
fraction of this ejected salt penetrates more deeply with
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a length scale that depends on the stratification in the
surface layers. A higher stability should thereby give a
shorter length scale. The following ad hoc parameter-
ization for a salt transfer out of the mixed layer into
all deeper layers (k= 2, - - -, N) is chosen as

R }(CE

Fy| + F, — ap '
- 1B+ 5 "'2 "m(Sl—Sl)[exp(————”""h L th)
P =1
_ k
—exp(—%iln)], (84)
(4 I=1

where 4, = 20 kg m~? is a free parameter tuned to
obtain a reasonable model response. The salinity
budget in the ML is the result of the salinity gain due
to freezing ice and the salinity loss due to the downward
transfer of a fraction of the salinity gain. The salinity
change in the ML is given by

| Fy| + F)
2

Ogi+ — Op1
7 hl)]. (85)

Thus, water formed from melting ice (F;, < 0) is com-
pletely mixed within the ML since RIE = 0 for k
=2, -+ -, N, but freezing ice injects a fraction of the
salt into deeper layers. This allows the model to build
up a salinity stratification in the Arctic basin, although
in the annual mean there is a net transport of salt from
the sea ice through the ML into the deeper ocean. The
balance between this downward transport, vertical dif-
fusion, and other transports yields an equilibrium state
of the salinity stratification in areas covered by sea ice.

R{CE =pi(S) — SI)[Fh -

X exp(—

| Numerical schemes

The numerics of the present model are more com-
plex than in a standard ocean model. Besides the usual
space and time discretization problems, a number of
additional problems arise. First, the basic equations
are strongly nonlinear to the variation of layer thick-
nesses. Second, vanishing layers must be treated by
means of an algorithm that does not affect conservation
properties. Third, a sea ice model must be coupled to
the mixed layer and the mixed layer to the isopycnal
model. Finally, all techniques must be vectorizable with
the option to parallelize, too.

1) DISCRETIZATION IN SPACE

The most discussed problem of isopycnal models is
the matter of the treatment of coordinates that intersect
the bottom or the surface. The interfaces in the iso-
pycnic part of the model physically disappear either
into the mixed layer (where the isopycnals run in the
vertical) or into the topography, for example, at the
continental shelf or at sea mounts. Formally, a layer
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that has physically disappeared is retained in the model
as a layer with zero thickness. Grid points in this layer
do not contain mass, but still hold dummy values for
temperature, salinity, and other quantities. The key to
realizing this concept is to succeed in decoupling a zero
layer from the ocean by an appropriate boundary con-
dition. Furthermore, physical processes that change the
location where an isopycnal disappears/reappears or
that create water masses with a not yet existing potential
density must have their counterpart in a technique that
allows the shifting of boundaries or the flooding of zero
layers. Such a method must work under the constraint
that the ocean dynamics does not feed back to the
dummy values that are kept in the zero layer.

Following Arakawa (1966) a B-grid with no-slip
boundary condition is taken, as shown in Fig. 5. Since
fluxes are diffused instead of velocities, a linearly de-
creasing layer thickness together with a linearly de-
creasing flux yields a constant velocity even at the last
velocity grid point before the boundary (see Fig. 7).

A method is required that allows the displacement
of boundaries under the conservation of mass, heat,
salt, and momentum. The major reason why the well-
established FCT algorithm is not used relates to the
fact that the layerwise correction of a layer thickness
has no regard to resulting changes of the sea surface
elevation and to the baroclinic structure of the vertical
modes. Therefore, the following method was devel-
oped.

The idea of variable boundaries has been outlined
in Oberhuber (1986) and is shown in Fig. 6. The
hatched areas mark layers with zero thickness. Note
that the position of the boundaries corresponds to the
cross section in Fig. 1. The technique 1s illustrated in
Fig. 7. Consider a velocity point that is the last one

L L S s
R
i L L ! S>L ! S
| Y |
T
! L ! L L s
| | i i
| | | |
T
: L | L | L | L
| | | i
R S S 4

FI1G. 5. Schematic horizontal layout of the B grid: “ L” stands for
land points, “S” for sea points. Circles denote mass points, crosses
velocity points. The thick solid line denotes the boundary at a certain
time level. The dashed line marks the updated boundary at the new
time level in the case of outflow out of the enclosed mass cell.
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before the layer disappears at the topography. Because
of the grid staggering the next mass point lies on the
topography. The evaluation of the pressure gradient at
that velocity point contains a dependence on the to-
pography slope since the baroclinic part of the pressure
gradient depends on the slope of all upper interfaces.
This would yield a spatial discretization producing
enormous artificial accelerations since the topography
can change drastically within any chosen resolution.
This problem is resolved by interpreting the distribu-
tion of layer thicknesses as steps, as shown in Fig. 7b.
There are three types of velocity grid points. A ve-
locity point is surrounded by cells that either all contain
mass (h > 0), are all massless (2 = 0), or at least one
contains mass and at least another one is massless. In
the first case such a velocity point is part of the ocean,
whereas in the second case it is part of a zero layer and
has no connection to ocean points. However, in the
third case, a decision cannot be made a priori. This
preliminary freedom is used to define criteria that en-
sure a physically correct treatment of moving bound-
aries. The physical mechanisms that control the
boundary definition are horizontal mass convergence
and vertical cross-interfacial mass flux determined by
detrainment and vertical mixing. The proposal is to
prevent the development of a negative mass content,
and this is achieved as follows: If a massless point (4
= 0) is surrounded by at least one mass-containing
point (£ > 0), as in Figs. 7a,b, then the considered
massless point may receive mass from this neighboring
mass-containing point if the intermediate velocity point
results in a convergence at the massless point. In this
case, the intermediate velocity is defined as a sea point.
In the case when mass loss is diagnosed in the massless
cell, the intermediate velocity point is defined as a land
point, so that this cell is closed off from the ocean and
therefore does not receive a negative mass content.
The remaining problem is to predict the velocities
at those points that are required to define the boundary
conditions in order to connect massless cells only with
the ocean if finally an inflow will be predicted. For this
purpose the following method was developed. Since
only the sign of the mass convergence is important,
the momentum and continuity equations are integrated
explicitly forward. From this preliminary result, the

O-—> MOVING WALL

|
Y% <0
Y < o>

- =
W i ma <9
W )

FIG. 6. Schematic cross section of the model layout. Shaded areas
denote zero layers. Arrows indicate moving boundaries. The wall
positions correspond to Fig. 1.
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FIG. 7. Vertical cross section at a velocity point with a physically
disappearing layer. Circles denote mass points, crosses velocity points.
Upper panel (a) shows that the spatial distribution of interface height
is interpreted as a linear function. Lower panel (b) shows that the
spatial distribution of interface height is interpreted as steps.

location of the boundaries is derived and finally taken
to carry out one time step. This causes no additional
overhead, since in the semi-implicit time integration
scheme the required terms have to be computed any-
way. This procedure is repeated at the beginning of
each time step. Thus, the distribution of land and sea
points is updated every time step. An arbitrary number
of grid cells may be switched off and on. However, in
the case when horizontal (along isopycnal ) convergence
tends to flood several massless cells, the procedure al-
lows for the connection of only one cell per time step.

For the two-dimensional case, Fig. 5 shows a simple
example of how a mass cell is switched off. On the basis
of the updating process for the old boundaries (solid
thick line), the new boundaries (broken thick line) are
determined. In summary, a finite mass cell remains
part of the ocean as long as it contains mass and is
switched off from the ocean only if it has already lost
its entire mass and is still losing mass (thus avoiding
a negative mass content). Massless cells become part
of the ocean if convergence is predicted and remain
massless if the flow is divergent.

2) DISCRETIZATION IN TIME

In order to obtain large time steps a predictor—cor-
rector technique is adopted. Each of these steps is based
on a semi-implicit method. For details see Kwizak and
Robert (1971). The method yields an unconditionally
stable time integration scheme with respect to all ex-
ternal and internal waves, advection, diffusion, and
mixed-layer physics. In the predictor step, the pressure
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gradient, Coriolis term, and the vorticity part of the
momentum advection [see 2f(4)] in the momentum
equation, the flux divergence in the continuity equa-
tion, and the advection and diffusion terms in the
equation for potential temperature and salinity are
treated implicitly.

In order to demonstrate how this technique is ad-
justed here, the derivation of the wave equation is ex-
plained in detail. The predictor-corrector scheme is
outlined more generally in section a of the Appendix.
In the first step, the momentum equation is discretized
in time by using a centered Euler scheme (note that
this works more efficiently with the commonly used
leapfrog scheme). The x and y components of the mo-
mentum equation (1) then read:

d

hn+l - pn+l

(puh)"“ P

n_ A
= (puh) >

+ -(f+ o)™ + Fuy (86)

A 4
(pvh)n-H = (,D‘Dh)” _ __th,,.H 9 s
2 ay

- "‘(f+ Opuh)™t + Fry, (87)
where F},, and F7,, represent all the remaining terms
taken at time level 7. In the next step both equations
are written for (puh)™*' or (pvh)™*! only by cross ref-
erencing the flux components. This yields

9
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n+l
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An identity (see section b of the Appendix) therefore
is used to separate p and / from the product ph. The
quantity F¥" denotes the explicit part of the wave
equation (93), defined by

At (9 a
FY = :h~—£(5;F:u a vah) (94)
Together with the equation of state (6) and the relation
for the in situ pressure (7) and (8), Eq. (93) determines
A7, The density at the new time level is updated dur-

9
dy
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where F} and F}, are the abbreviations of

puh - (puh)n

{Fnuh + = (f+ ;)[(pvh)n + vah]}/
1+ 5 oo o0
F3,= (poh)"

+ { = S o[(puh)" + Fm” /

[1 +AT‘(f+ s‘)z]- 91)

If the continuity equation is discretized in the same
manner as the momentum equation this yields

2

. n+l __ n_At i n+l1 _a_ n+l1
.(ph) = (ph) [ax(puh) +6y (pvh) ]

+ Fpn, (92)

where 7, represents all the remaining terms taken at
time level n. If the flux divergence is now eliminated
by using (88) and (89), an equation for the layer
thickness # only can be obtained:

A12 Kl hit! 9
4 ax1+ A2+ 04 ax”t
A2 9 hETANS+ /2 8
4 ax 1+ A+ )24 dy

_A_tzi R Ae(f+ §)/2 i mi(93)
4 1+ A2(f+ Oaax’k

n+1

n+1 n+l

ing the iteration by using the layer thickness and the
previously determined potential temperature and sa-
linity. Finally, after having found the solution for layer
thickness and density, the mass fluxes are obtained
from (88) through (91).

The wave equation is formulated as a system of linear
equations in x and z and iterated in y, which is an
application of the “line iteration” method. The wave
equation consists of quadratic terms, which represent
the inertia—gravity waves, and mixed derivatives, which
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correspond to Rossby waves. Because of the large time
steps used in this model [ As(f+ §)/2 > 1], the mixed
derivative terms dominate the quadratic terms, so that
simple iteration methods used for Laplacian-type
equations cannot be used. Based on the fact that an
iteration converges if the mean diagonal elements
dominate over the neighboring diagonals, a method
has been developed that calculates for every grid point
an optimal relaxation coefficient by changing the mean
diagonal element artificially without changing the final
solution.
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where F is some forcing function representing residual
terms in one of the temperature or salinity equations.
The scheme is second order in space and time.

4) TREATMENT OF THE MOMENTUM TRANSPORT
AND CORIOLIS TERM

Bleck and Boudra (1981 ) tested a potential vorticity
and energy-conserving advection scheme for momen-

=fn +fn+1

u tan¢

d 9
i (uuph) — ;9; (vuph) + foph + vph

oh (ou®  gv? duph
=—-=|—+—)-u +
2\dx ox ax dy

and for the y component

u tang

d 9
i (uvph) — (—9; (vvph) — fuph — uph

where ¢ is the relative vorticity. The terms on the right-
hand sides represent, in this order, energy gradients,
momentum convergence, curvature, and an altered
Coriolis term, which now contains the absolute vortic-
ity instead of the Coriolis parameter only. This term
is included in the implicit formulation of the wave
equation (93), which is the predictor step. The residual
terms are treated implicitly in the first corrector step,
which also contains the momentum diffusion terms.
Since the momentum components are cross coupled
in the equations, the linear equation in x is formulated

ph [du? dv?
— ===+
2 \ ay ay
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3) DISCRETIZATION OF ADVECTION FOR T'AND §

For this study, an advection scheme similar to that
employed by Smolarkiewicz (1982) is used, namely an
implicit version of the scheme presented by Crowley
(1968). The scheme is less diffusive than the upstream
scheme and avoids the tendency of centered difference
schemes to overshoot. It can be understood as a simple
quasi-Lagrangian scheme in which higher-order terms
are neglected in the Taylor expansion of the problem.

If fis an arbitrary quantity, the scheme is given by:

Mﬂ * Li *
(u axl T 6yf )]

0 At 0 0
+Ar—|v"={u"—r*+v"— *||+F (95
lay[” 2 (u 6xf v ayf )] (95)

5 (96)

tum. Their idea is adjusted here to the requirements
of the implicit technique used to achieve large time
steps. The momentum advection and Coriolis terms
on the right-hand side of the momentum equation (1)
are rewritten in the following way for the x component:

dvph u tan¢g

r

)+vph +(f+ Dvph (97)

= (f+ Duph,

9
( uph+avph)_uphutand> (98)

ox ay r

simultaneously for both velocity components. See also
section ¢ of the Appendix for a discussion of the phys-
ical implications.

5) NUMERICAL FORMULATION OF THE SEA ICE
MODEL

The sea ice model works on the same spherical grid
and with the same time step as the ocean model. The
predictor—corrector method in connection with the
semi-implicit technique is applied. First, diffusion of
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ice thickness and ice concentration are determined im-
plicitly. In this step the flux divergence of ice thickness
and ice concentration are still taken explicitly forward.
In the next step, the stress and Coriolis terms are treated
implicitly. In the final correction step the sea ice rheol-
ogy in the flux equation is treated implicitly. The cou-
pling of the predictor and two corrector steps follows
the same procedure as outlined in section 2f(2). All
iterations are carried out in the y direction only, since
a system of linear equations is solved directly in x. The
matrix coefficients in the rheology part are updated
during the iteration to account for the extreme non-
linearities in Hibler’s rheology. This means that bulk
and shear viscosities are taken partly at the new time
step. For consistency with the continuity equation, 9-
point formulas are taken for the rheology. The for-
mulation of the model ensures that the small diffusion
coefficient 4 in Egs. (69) to (71) is sufficient to provide
computational stability.

g. Technical differences between isopycnic and
eulerian coordinates X

If the equation of motion is written in momentum-
conserving flux form, pv is predicted in z coordinates
and pvh in a layer model. The basic difference between
both vertical representations is that the layer thickness
is variable in a layer model. Consequently the pressure
gradient term in the equation of motion is weighted
with #.in a layer model. The resulting equations are
nonlinear. If the wave equation is derived in order to
obtain an implicit formulation for the layer thickness
h only, the resulting Eq. (93) is also nonlinear. In z
coordinates the comparable equation is linear, except
for a weak nonlinearity due to vertical density varia-
tions. Here, it is not appropriate to solve the nonlinear
wave equation with a technique where the matrix coef-
ficients are determined and the resulting matrix is in-
verted and kept fixed for a number of time steps as in
Maier-Reimer and Hasselmann ( 1987). Because the
matrix coefficients can change rapidly from time step
to time step, the matrix has to be updated every time
step. Furthermore, the nonlinearity in the pressure-
gradient term is part of the geostrophic balance. If layer
thicknesses vary slowly, it would be possible to use a
method where the matrix coefficients are calculated
once every time step. However, rapid changes in the
layer thicknesses as a result of the mixed-layer dynamics
mainly due to detrainment make it necessary to update
the matrix coefficients at each iteration. Without this
procedure strong imbalances in the geostrophy would
excite inertia-gravity waves, which would contribute
to an increased noise level in the model. Therefore,
the matrix is updated after éach iteration step. This
allows a reduction of explicit diffusion of momentum
for computational stability reasons, but it enhances the
costs of running such a model. It should be noted that

the enclosure of a mixed layer that is responsible for
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rapid layer-thickness changes is one reason for the
complex numerical methods needed for finding the so-
lution at each time step. The advantage, however, is
that no stability restrictions appear, as the x direction
is treated directly by linear equations. A spatial filter
is not required here.

3. Conclusions

In this technical description the major conceptual
problems to realizing an ocean general circulation
model based on isopycnal coordinates have been in-
vestigated. They arise essentially through the nonlinear
equation of state and the inclusion of salt as a dynam-
ically active tracer. Alongisopycnal discretization errors
of the advection formulation for temperature and sa-
linity, denoted as artificial cabbeling as well as the
physically existing cabbeling through mixing along an
isopycnal cause a coordinate drift that has to be com-
pensated. The proposed solution is to make use of the
underdetermined nature of the set of equations by in-
troducing constraints that select one solution out of
the infinite number of basically allowed solutions. The
constraint selects that model state whose coordinate
interfaces coincide with isopycnals. This is introduced
by an appropriate formulation of all vertical exchange
processes, such as entrainment/detrainment and cross-
isopycnal mixing and convection, and allows one to
compensate for the weak coordinate drift induced by
cabbeling. An alternative technique to treat vanishing
layers has been developed, essentially to have a scheme
that best fits with the strategy for solving the primitive
equations. This has been realized by choosing the well-
known semi-implicit technique and by combining it
with a predictor—corrector scheme. This yields a nu-
merically stable integration at large time steps and
makes the model relatively insensitive to the poleward
convergence of the spherical grid. This has been
achieved mainly with direct methods to solve the wave
equation, the advection and diffusion of momentum,
of temperature, and of salinity in the zonal direction.
In order to, at least, have the prospect to run the model
in a global mode, a model for the sea ice has been
included. The viscous-plastic rheology, therefore, has
the task to make the model less sensitive, while being
used for climate drift experiments in a coupled at-
mosphere-ocean-ice model. The development of the
mixed-layer model has two goals. First, the ideal be-
havior of the major parts of the deep ocean cannot be
assumed near the surface. The parameterization of the
surface boundary layer acts as a mediator between the
atmosphere and the deep ocean. Second, the under-
estimated variability commonly observed in coupled
ocean-atmosphere models is, hopefully, improved by
making the time scale of air-sea interaction also de-
pendent on the mixed-layer thickness. These extensions
have to be understood as investment in future appli-
cations of this model.
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APPENDIX
Comments on Time Discretization
a. The predictor-corrector scheme

Coupling of the semi-implicit steps has been de-
scribed in Oberhuber (1986). If ¥ is the mass flux
(pvh), ® the mass content (ph), © the heat content
(p6h), and I the salt content (pSh), then the predictor
step may be written symbolically:

At n At n n
-p*"“—?cz“ P+ =G+ AFYT(99)

At At

q,*n+l ___2_ ;n+1 = pn 4+ = ;n+AlF;n (100)
At _yn At xn n

O == G = 0"+ —- GE" + AFE" (101)

I* 7+ — % Gr™l ="+ % GR" + AtFE". (102)
All equations are discretized in time using an Euler
scheme; G represents all those terms that are treated
implicitly, and F those terms that are explicitly taken
forward; All remaining terms are collected in F;
yrentl @Entl @Entl and I1*"*! are first guesses for
the new time level n + 1. The entrainment and de-
trainment rate and the resulting changes in the mass
fluxes are treated implicitly in the first correction step.
The solution of the mixed layer part is obtained with
a Newtonian method to find zeros of the resulting non-
linear equation. Because no spatial derivatives occur,
the following equations can be solved pointwise:

At

W xn+l ____(;3*”‘H = Ykt —%Gi*" (103)
At
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where Y *n+l rxntl grantl and J7** 7+ are the
corrected guesses for the new time level # + 1. Finally,
the implicit part of the advection and diffusion of mo-
mentum is formulated by solving the resulting equation
directly in x and iterating in y. The equation is

yrekoxkntl _ EG***nH

2 £ 4
At
_= G***n,
2 A 4
Finally, Y **n+! gkkntl g@kntl anq [pe*n+l are
taken as final values for the new time level # + 1. From

= yrexnd (107)
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these quantities the physical quantities u, v, /1, p, 6, .S,
T, and o, are determined.

b. Separation of model variables into basic quantities

In order to split the momentum, mass, heat, and
salt content into the associated velocities, density, tem-
perature, and salinity variables the following identity
is used, where a and b represent any pair of variables:
a' + an+l

2

bn + bn+1

+ —— (an+l — an)'
2

This relation enables the prediction of the basic quan-

tities and at the same time solves the full flux form of

the equations of motion. With Eq. (93) an example

was given of how the total mass content is separated

into the density and the layer thickness.

(ab)n+1 — (ab)n — (bn+l — bn)

(108)

¢. Wave properties of the model

An exciting aspect of the model numerics is the wave
equation (93), used to determine the time development
of the layer thickness. It allows the deduction of how
Rossby waves propagate in this isopycnal model. For
simplicity, the limiting case for a large time step At is
considered [Ar> (f+ ¢)~']. In this case, the quadratic
terms in (93), which represent the inertia-gravity
waves, can be neglected. This means physically that
the geostrophic adjustment appears instantaneously.
Furthermore, if (93) is applied to a two-layer reduced
gravity model and rewritten symbolically as an analytic
equation, this yields a pure equation for the propaga-
tion of Rossby waves:

oh 0 h dh 0 h dh

—=g =g ————+G.

ot Ix ¢+ f oy dy ¢+ f ox
This now clearly demonstrates the behavior of Rossby
waves in layer models that conserve potential vorticity
exactly. In regions of constant potential vorticity,
Rossby waves do not propagate since both mixed de-
rivatives cancel. This is true as long as the forcing func-
tion G is negligible. This means that no extensive mix-
ing, convective processes, or wind forcing occurs so
that these are free waves.

After linearizing Eq. (109) with respect to a constant
ho/(fo + &) and ignoring {, it simplifies to
oh  g'hyB oh
o 72 ax+G’ (110)
where (g'hoB)/ f% is the phase velocity of a Rossby
wave in this linear system. A comparable linearization
is carried out to derive a QG model. Here the basic
difference relative to this model is visible. Since changes
of layer thickness associated with outcropping at the
surface or vanishing at topographic boundaries or even

(109)
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existing in the free ocean are strong compared with the
variation of the Coriolis parameter f, Rossby waves
propagate rather differently in this model compared
with a QG model. This was one of the conclusions
from an eddy-resolving experiment carried out by Bleck
and Boudra (1986) with their isopycnic coordinate
model.

d. Acceleration method

In addition to the implicit time step scheme an ac-
celeration method was implemented. It follows the idea
of Bryan (1984). It enables the achievement of a sta-
tionary state within a shorter integration time. In order
to do this the momentum, temperature, and salinity
equation is multiplied with some coeflicient w; that
depends only on the layer index. The equations are
rewritten :

g
wk& (puh, tha 03 S)k = (quh, Jpvh; Jﬂs JS)k' (111)

Note that the continuity equation, which is a predictive
equation for the coordinates, is not accelerated. Oth-
erwise, the variable topography would introduce a
strong barotropic mode as well as an unphysical cou-
pling between vertical modes. The first layer is not ac-
celerated, so that w; = 1. All acceleration coefficients
wy for deeper layers are given by the relation between
the phase speed of the kth and the phase speed of the
first baroclinic mode of the internal gravity waves.
Consequently, the acceleration method does not di-
rectly influence the mixed layer, and therefore it is pos-
sible (with some restrictions) to force the model with
a seasonal cycle. Only the time development in deeper
layers is directly influenced. The big advantage is that
advection of heat and salt, which is responsible for the
largest time scales in the deep ocean, is accelerated.
The disadvantages of this method are the same as in
other acceleration methods, namely that heat and salt
are not conserved as long as the local changes in time
do not vanish. In the stationary state, however, the
calculated state is identical to the state that would be
achieved with w, = 1.

e. Code properties

The model development started on a Cyber173 and
was continued on a Cyber205. Currently, the code is
optimized for computers such as Cray-2S and Cray-
YMP. The present version of the code, called OPYC
(Ocean iso PYCnal model), easily achieves 150 Mflops
on a single processor of a Cray-YMP. Recently, suffi-
cient parallelization for computers with shared memory
is available, too. The code has been optimized so that
it requires 12 CPU-seconds per day prediction with a
1-day time step for a global version formulated on a
T42-Gaussian grid, which has 128 X 64 X 9 grid points
and requires about 5 MW of memory. Up to 5-day
time steps are possible. The sea ice model runs at 170
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Miflops for the example above and contributes with
only 2%-3% to the total CPU time. Thus, the required
resources are reasonable compared with the additional
operations necessary to treat the time-dependent co-
ordinates, mixed layer, and sea ice. The good perfor-
mance is mainly achieved by applying “line-iteration”
as a method to solve the implicit problems for waves,
advection, and diffusion. The method offers a high de-
gree of parallelism as well as the available long vectors
necessary for a high optimization on a super computer
and moderate memory consumption. The program
language is standard FORTRAN77 with no extensions
used. Therefore, the code can be ported even onto
workstations such as SUN or IBM-RISC after using a
preprocessor that converts the code for a scalar com-
puter. Further utilities, such as the rotation of the
spherical coordinates by Euler angles to avoid grid
convergence at high latitudes or a multigrid method
for a more efficient spin up of the model, can be used.
Finally, a complete code package for postprocessing
requires only the GKS routines for plotting. An ex-
tended version of the GRIB code (Gridded Binary)
developed by the WMO and ECMWEF is used as post-
processing file format.
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