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ABSTRACT

A quasigeostrophic two-layer model of flow over finite topography is developed. The topography is a right
circular cylinder that extends through the lower layer and an order Rossby number amount into the upper layer
(finite topography model). Thus, each layer depth remains constant to first order, and the quasigeostrophic
approximation can be applied consistently. The model solutions are compared to those found when the total
topographic height is order Rossby number (small topography model). The steady solution for the finite to-
pography model consists of two parts: one similar to the small topography solution and forced by the anticyclonic
potential vorticity anomaly over the topography and the other similar to the solution of potential flow around
a cylinder and forced by the matching conditions on the edge of the topography. The finite topography model
breaks down when the interface goes above the topography. This occurs most easily when the stratification is
weak. Closed streamlines occur more readily over the topography when the stratification is weak, opposite to
the tendency of the small topography model. The initial value problem is studied in both two-layer geometries.
A modified contour dynamics method is developed to apply the boundary and matching conditions on the edge
of the topography in the finite topography model. In the small topography model, an eddy is shed that is cyclonic,
warm core, and bottom trapped; while the shed eddy is cyclonic, cold core, and surface intensified in the finite
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topography model.

1. Introduction

Seamounts in the ocean often reach nearly to the
surface and affect the flow of ocean currents throughout
the water column. For instance, Vastano and Warren
(1976) report observations near the Atlantis II Sea-
mount, which rises within 1645 m of the surface of the
ocean, over 3000 m from the bottom. Below the top
of the seamount, lines of constant potential tempera-
ture (which we interpret loosely as streamlines) split
around the seamount, while in the upper levels, some
fluid moves over the seamount and isotherms are de-
flected to the left (looking downstream) of the sea-
mount. Because the topography was so tall, quasigeo-
strophic dynamics are not useful in interpretation of
these observations. Even with a small hill [ for example,
see Gould et al. (1981) who studied flow near a 500-
m seamount] the rise of the isotherms is not as high
as would be expected from quasigeostrophic theory,
indicating that the finite nature of the topography (al-
though it was only 0.1 times the total depth of the
water) caused the flow to go around the topography at
the lowest levels.

Steady inviscid solutions of flow over topography
have been found previously by using the quasigeo-
strophic approximation, including the effect of strati-
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fication and g (for instance, see Hogg 1973; McCartney
1975; Janowitz 1975; Johnson 1977, 1979). The more
oceanographically realistic situation with topography
of finite height has also been considered with inviscid
models, although study has been limited to situations
in which the bottom boundary remains an isopycnal
surface (Merkine and Kalnay-Rivas 1976). This is an
unsatisfactory approximation when flow interacts with
tall s,amounts and isopycnals intersect the topography.

Buzzi and Speranza (1979) explore the limitations
of quasigeostrophic theory by studying the difference
between two classes of solutions in a continuously
stratified model: one where the topography has height
(ho) proportional to the Rossby number (¢), and the
other where the topography has finite height. They ar-
gue that when the stratification is weak or the topog-
raphy is small, the flow can go up and over the obstacle;
when the topography is tall or the stratification strong,
the flow must go around the obstacle in order to keep
the flow quasi-horizontal as required by quasigeo-
strophic theory. First, they consider flow over a hemi-
spherical obstacle. This solution is similar to other
quasigeostrophic solutions found in a stratified fluid,
and in the far field the velocity falls off as r~!. The
solution is found by applying the impenetrability con-
dition to the vertical velocity at the bottom. They then
consider flow past a half disk standing vertically in the
fluid. In this case, the topography acts like a vertical
wall, and the impenetrability condition is applied on
the horizontal velocity; the streamfunction at the wall
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depends only on the vertical coordinate and is specified
arbitrarily. The velocity in the far field falls off as r 2,
and the flow goes entirely around the obstacle. One
might expect that in a general stratified model with
flow over topography with finite vertical and horizontal
cross section, the solutions would contain elements of
the two types of solutions that they discuss. Ou (1991)
has also considered quasigeostrophic flow over a finite
height obstacle to look at the transition from partial
blocking of the fluid by the obstacle to total blocking
of the fluid. He used a two-layer model and used fric-
tional effects to tie the two dynamical regimes together.

Steady solutions give useful insight into important
dynamical processes, but we would also like to consider
how the steady solutions are related to the initial value
problem and time-dependent situations. There have
been several approaches to the study of the initial value
problem, using both finite-difference methods and
contour dynamics. Huppert and Bryan (1976) solve
for flow over topography in a periodic domain using
a primitive equation model with continuous stratifi-
cation. They demonstrate two different flow regimes:
one in which the fluid originated over the topography
and is trapped there and one in which it escapes down-
stream as a cyclonic warm-core eddy. James (1980)
considers the simpler problem of barotropic quasigeo-
strophic flow over an axisymmetric bump using a finite-
difference model and illustrates similar dynamics to
those seen in the more complicated model of Huppert
and Bryan (1976). When the eddy is partially trapped,
a patch of positive vorticity spirals onto the hill, and
successive pieces of it break away and then coalesce
back into the main patch of positive vorticity. Because
of the finite-difference nature of this model, friction is
always present. Verron and LeProvost (1985) study
the quasigeostrophic model, including the effect of beta.
Kozlov (1983) uses the inviscid method of contour
dynamics to demonstrate the two dynamical regimes
of the quasigeostrophic problem. More recently Chap-
man and Haidvogel (1992) study the problem of flow
over finite topography in a continuously stratified
primitive equation model.

To understand flow over tall seamounts in the ocean,
one must look beyond traditional quasigeostrophic dy-
namics, which allow the fractional height of the to-
pography to be only order Rossby number. In addition,
stratification must be taken into account since the flow
structure in the ocean changes with depth. To incor-
porate these effects in a simple model, we discuss flow
in a two-layer fluid over a right circular cylinder that
goes all of the way through the lower layer and only
an order Rossby number amount into the upper layer,
and compare the solutions to traditional quasigeo-
strophic solutions where the cylinder height is order
Rossby number. The model geometry allows consid-
eration of an obstacle that has both finite vertical and
horizontal cross sections, capturing both classes of
quasigeostrophic solutions described by Buzzi and
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Speranza (1979). In section 2, the model geometry is
discussed and steady solutions are presented for back-
ground flow with and without shear. In section 3, the
initial value problem is considered, first by reviewing
the work of Kozlov (1983) with the one-layer model
and then by extending this work to the two-layer model,
considering flow over both small and finite topography.

2. Steady solutions

Two model geometries are considered. The first is
representative of traditional quasigeostrophic models
(Fig. la). The topography is contained completely
within the lower layer, and as such is coincident with
an isopycnal surface. The second model geometry al-
lows the interface to intersect the topography (Fig. 1b)
and therefore allows solutions in a new parameter
range.

The formulation of the problem closely follows that
of McCartney (1975). The scaling is the same as his
except that the upper layer is indexed as 1 and the
lower layer as 2. The parameters in this inviscid theory
are

)
HL’
the Rossby number using the depth-averaged root-

€

mean-square velocity,

o b

FIG. 1. Side view of the two models. The topography has radius
L. (a) Two-layer model] with small topography. The lower-layer depth
is d' while the density of the upper and lower layers is p, and p,,
respectively. (b) Two-layer model with finite topography. The to-
pography extends an order Rossby number amount into the upper
layer and the interface intersects the topography. The relevant to-
pographic perturbation is given by k5. The prime quantities are di-
mensional.
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where d’ is the depth of the lower layer and H is the
total depth,

2 _ f%Pode
gHAp(1 —d)’

a stratification parameter which is the ratio of the radius
of the bump to the deformation radius, and

Ud=(1 —d)U}+ du3,

where U, and U, are the velocities in the upper and
lower layer, respectively. The topographic scale for the
small bump model is

3=

h0=

S

while for the finite bump it is
_h_h-d
H H

where # is the height of the topography.

When T is small, the stratification is strong and the
two layers are relatively uncoupled. When T is large,
the stratification is weak and the two layers are strongly
coupled. Under the quasigeostrophic approximation,
T is assumed to be order one and the Rossby number
is small. In addition, A, is of order Rossby number.
This last requirement allows the dynamics to be inter-
nally consistent so that the layer depth changes only
an order Rossby number amount, and the flow remains
quasi-horizontal in each layer.

Under the quasigeostrophic approximation, the two-
layer model is governed by the two-layer potential vor-
ticity equations. The formulation for the problem on
the beta plane can be found in Thompson (1990). The
horizontal velocities are scaled by Uj and the horizontal
length is scaled by L, the radius of the topography. The
two-layer equations become

3:gn + J(¥n, q,) = 0, (1)

where g, indicates the quasigeostrophic potential vor-
ticity in the nth layer. Away from the topography

g1 = Vi + (Y2 — ¥1)T24d,

ho

(2)
and

@ =V, + (Y1 — ¥2)T(1 — d). (3)

The deviation of the interface height from its mean

depth is given by

1= el¥s — i 1(1 — d)dT? (4)

and is an order Rossby number quantity. The vertical
velocity at the interface is given in the two-layer model
by

173
Wy = 7:’ = (1 ~ d)dT> (Y1, ¥s — ).
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In steady state, (1) allows a solution such that g, is
a function of ¥, for # = 1, 2. The functional relationship
between the potential vorticity and the streamfunction
in each layer is determined by upstream conditions. If

the velocity is uniform upstream, ¢, = —U,y. Thus,
using (2):
U, — U,)dI?
g=— L=y, 5)
1

and likewise using (3):
(U~ U)(1 —a)r?

= . 6
77} U 12 (6)
Thus, we can let ¥, = —U,y + ¢,. Away from the
topography we can write from (5) and (6):
U, (1 — d)T'?
vig, - DU b1 - 12
U,
and
U,dT
Vi, — Z ¢ = —¢dT.
3

For the small topography model, McCartney (1975)
finds an equation for ¢; and requires that ¢, and its
first three derivatives in 7 be continuous at 7 = 1, which
is equivalent to the velocity being continuous at r = 1
in both layers. The governing equation is

V3(V? + k3)¢) = hI'?, (7)
where
FZ
ki=— .

Ul U2
When k3 is negative, we define
K2 - _kz

2 2.

The fundamental length scale of the problem is set
by kz.

For r > 1, (7) applies for the finite bump geometry
as well. However, over the topography the potential
vorticity is given by

h—d
el —d)’

The same functional relationship should hold between
gy and ¥, asin (5). Thus, for r < 1 over the topography:

qa = V2¢1 +

¥ = ¢,
so that
hy—d
V24, + 2 ___ 1o
¢1 + ¢1k3 d-a)° (8)
where
(U, — U,)dT?

k3 =
3 U, 9
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The sign of k% depends on the direction and magnitude
of the flow in each layer, allowing either a wavelike or
an evanescent response. The boundary conditions for
the finite depth topography are chosen as follows: the
velocity should be continuous in the upper layer, and
the velocity normal to the cylinder should vanish in
the lower layer (Y, = const at r = 1). There is an un-
determined constant that is chosen by setting the cir-
culation in the lower layer at zero. This choice is made
because it corresponds to the steady-state solution of
an initial value problem where the velocity is brought
to the final value from rest. If initially there is no cir-
culation and the fluid remains inviscid throughout its
evolution, then no circulation develops.

The solutions for ¢; and ¢» can be separated into
an island component (odd in y) and a topographic
component (even in y). For the problem that Mc-
Cartney (1975) studied, ¢, and ¢, are purely even and
on the f plane are independent of 4, the azimuthal
coordinate. For the finite depth model, the odd com-
ponent is forced by the boundary conditions in the
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lower layer, while the even component is forced by the
topographic contribution to the potential vorticity
anomaly. With this simple geometry we capture ele-
ments of the two cases that Buzzi and Speranza (1979)
discussed.

a. Barotropic flow

When the background flow is barotropic (U, = U,),
x2 = I'. An example of the small bump solutions is
shown as a reference for the finite depth results (Fig.
2). The interface is raised uniformly over the topog-
raphy as a radially symmetric perturbation. The vertical
velocity is upstream—-downstream symmetric; positive
upstream where fluid parcels rise to go over the topog-
raphy and negative downstream.

For the finite bump geometry for r > 1 we have

¥ = a; Inr + a,Ko(T'r) + a; sinf/r

+ a4K,(T'r) sinf — rsinf, (10)

1
-t

I

=N

FiG. 2. Solution for flow over small topography with no upstream vertical shear when i = 1, T' = 2, and d = 0.5 (8 = 1). ga) Upper-
layer streamlines, (b) lower-layer streamlines, (c) interface height, (d) vertical velocity. In t.his and all supsequent streamline pictures, the
contour interval is 0:4 for the streamlines and 0.1 for the interface height and vertical velocity. The flow is from the left to the right.
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and forr < 1:
ho —

m r? + b,r sind,

Yi=b — (11)

while
VYo = a, Inr — 8a,Ko(T'r) + a3 sind/r
— 8a4K (Tr) sinf — rsinf, (12)

where = H,/H, = (1 — d)/d. Applying the matching
conditions we find that

al = _%2’
@ = anO(T)
27 2K(T) + Ko(T)’
2K,(T') + Ko(T)
as

T 2(1 1 8)K\(T) + Ko(T)

_ Ko(I') 1
by = q“(erl(r) +4)’

and
py = 20 +OKM)
2(1 + K (T) + Ko(T)
We have defined
g =2t D (13)

which is the magnitude of the potential vorticity
anomaly in the upper layer. The potential vorticity
anomaly is defined by the right-hand side of (8) and
is the stretching vorticity induced when fluid parcels
cross the topography. Notice that a3 and b, are inde-
pendent of g, and give the amplitude of the even or
axisymmetric component of the flow, while a,, a,, and
b, give the amplitude of the odd (dependent on 6)
component and are independent of ¢,. From the form
of the solution, one can tell that the axisymmetric flow
{bumplike, Buzzi and Speranza 1979, their case 1) falls
off as r~! while the 6-dependent component (islandlike,
Buzzi and Speranza 1979, their case 2) falls off as r 2
in the far field.

An example of the finite depth solution is shown in
Fig. 3. The odd component results in an interface which
is asymmetric and is higher in the north than in the
south, while the fluid is split by the topography in the
lower layer. The asymmetric response of the interface
is in accord with results from primitive equation models
(Chapman and Haidvogel 1992). The interface near
the topography in the south is depressed, responding
to the anticyclonic perturbation in the upper layer and
the requirement of no circulation in the lower layer.
The vertical velocity also exhibits the left-right asym-
metry. If g, = 0 then the interface would be tilted sym-
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metrically north-south, since all of the radially sym-
metric terms in the solution would vanish.

To understand the general structure of the solution,
we can calculate various critical topographic heights.
Ou (1991) has calculated these critical heights also.
The critical topographic height above which closed
streamlines form in the lower layer for the small to-
pography model is

hsy d

e Yd+(1-dLIDK(T)’

while the critical height for the upper-layer streamlines
to close, Ay, is found numerically. For reference, the
critical height for closed streamlines to form in a one-
layer model is 2D where D is the layer depth. Thus in
the weak stratification limit, the model behaves baro-
tropically and A, = h;; = 2¢. On the other hand, in
the strong stratification limit, A;; = oo because it be-
comes uncoupled from the dynamically active lower
layer, while A, = 2ed, the one-layer limit. These pre-
dictions are born out in Fig. 4a.

From the solution (10), (11), and (12), the critical
height for closed streamlines to occur in the upper layer
in the finite depth model is

haw _ 4(1—d)
¢ 2+ dTK(T)K(T)" (4

In the strong stratification limit A —> 2¢(1 — d), the
one-layer result for a layer with depth of the upper
layer; when the stratification is weak, the critical height
approaches zero (Fig. 4a).

Both A; and A, are monotonic function of d, with
heir having the opposite tendency of A;,. The limiting
cases can be predicted from the one-layer results. When
d — 1, hs; has a maximum value of 2¢; when d — 0,
hs, approaches zero. In interpreting these results, it is
important to point out that if d changes by an order
one amount in the finite depth model, the total topo-
graphic height changes by an order one amount; how-
ever, in the small bump model, this is not the case.

The solutions of the finite depth model must be
tested to see if they are physically reasonable. If the
interface goes above the topography anywhere, the
model geometry is no longer consistent. The critical
height for this to occur is found from n = Ay in (4). It
is given by

L 4T2K,(T)%T

e 2VsK,(T) + Ko(T))
X (2K (THY(1 + 8) + Kp(THT)

(15)

The maximum interface height always occurs at 6
=x/2 and r = 1 for eastward flow on the fplane. For
a physically consistent solution /4, must be greater than
h,. The critical height is a monotonically increasing
function of stratification, and in general is larger for
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FIG. 3. Solution for flow over finite topography with no upstream vertical shear using the same parameters as in Fig. 2.
(a) Upper-layer streamlines, (b) lower-layer streamlines, (c¢) interface height, and (d) vertical velocity.

smaller values of d (Fig. 4b). When the stratification
is large (T small), h, approaches zero, implying that
ho could be quite small and the solution would still be
valid. In this limit the interface is stiff and its vertical
deflection is limited. When the stratification is weak
(T large), the fluid responds barotropically and 4,/ ¢

approaches 46/(1 + 2Vs ).

b. Flow on the f plane with vertical shear

Because of the simplicity of the model geometry the
interaction between the effects of vertical shear and
finite topography can be examined. In this case k}
= (U, — Uy)T'*d/ U, indicating a wavelike solution
when U, > U,. For r > 1 we have

sinf
\bl = Inr + azKo(Kzr) + as ‘T

+ a4K; (k1) sinf — r sind

and

inf
Y2 = a; Inr — da,Ko{xar) + a3 E:—

— 8a4K,(kar) sinf — r siné.
Forr<1
_ hy—d
a1 — d)k3

The stationary waves over the topography come from
the effective potential vorticity gradient across stream-
lines. The background vertical shear maintains the po-
tential vorticity gradient in the exterior. The response
in the exterior does not support stationary waves; it is
trapped to the topography as evanescent waves. Because
of the wavelike character over the topography, the flow
is possibly barotropically unstable (e.g., Lorenz 1972).

In the limit of the largest vertical shear allowed in
the model, no flow in the lower layer, the solution gives

\l/l + b,Jo(k3r) + sz](k:;r) sinf.
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hyfe 0.8t

F1G. 4. Critical heights of the two-layer models. (a) Critical height
when ¢ = 1 for both the finite depth topography model and the small
topography model. The solid line is /. /€, the critical height for
closed streamlines to form in the finite depth model. The dashed line
is 55/ €, the critical height for closed streamlines to form in the small
topography model in the lower layer. The dotted—dashed line is A,/
¢, the critical height for closed streamlines to form in the upper layer
of the small topography model. (b) Critical height /,/ e as a function
of T, for d = 0.25 (solid line), d = 0.5 (dashed line), and 4 = 0.75
{dotted line).

¥» = 0 everywhere. In this case, k3 = I'2d and U,

= V1/(1 — d). The exterior solution is written
Y1 = ay Inr + az sinf/r — U,r sind. (16)

The coefficients are found by matching across r = 1
and are given by

— Jl(k3)Qa

k3Jo(ks)’

k3Jo(k3) — 2J,(k3)
k3Jo(k3) ’

as = U,

qa
by = o,
Y k3o(ks)
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and
.20,
ksJo(ks)

The height of the topography at which closed
streamlines appear is given by

Perit _ 2(1 - d)U,
e Jiks)ksJo(ks) — Ji(ks)]~

At zeros of J the critical height becomes infinite. At
this point, a resonant solution is present, similar to the
one described by McCartney (1975) for eastward flow
on the SB-plane. The resonant solution may be an ar-
tifact of the shape of the topography, although the
wavelike character is not.

The maximum value of 7 is

Mmax _ | 2UiT2d(1 — d)J,(k3)
€ ksJo(ks) ’

independent of the topographic height /4y, depending
on the background shear and stratification. Once again
the resonance is present; when k; is a zero of J; then
Nmax £0€S t0 zero. When k; is a zero of Jy, n7max becomes
infinite. In general, the interface is more likely to go
over the topography when the shear is strong, which
increases the left-right tilt of the interface. An example
of the solution is shown in Fig. 5 which shows the tilt
of the interface.

b3=

(17)

(18)

3. Time-dependent solutions

The initial value problem of flow impinging on to-
pography is explored next. If only barotropic incoming
flow onthe f planeisconsidered, the method of contour
dynamics can be used. We consider barotropic incom-
ing flow on the fplane and use the method of contour
dynamics, extending the work of Kozlov (1983) by
adding a second layer. To solve for the flow in the finite
depth case, the method must be modified so that the
matching and boundary conditions at the boundary of
the topography can be handled.

a. Flow in one layer over small topography

The evolution of the one-layer fluid is determined
by the quasigeostrophic potential vorticity equation of
the same form as (1) where the nondimensionalized
potential vorticity is given by

h
g=V¥y +—-.
€
If the vorticity, the topography, and the boundary con-

ditions are known we can calculate the streamfunction
using a Green’s function:

Wx,y) = ff q(x', y")G(x, x', y, y')dx'dy'

+ boundary contributions. (19)



FIG. 5. Solution for flow over finite topography with upstream
vertical shear, U, = 1.2, when /g = 1, ' = 2 and d = 0.5. (a) Upper-
layer streamlines, (b) lower-layer streamlines, and (c) interface height.

For Laplace’s equation in an infinite domain, the
Green’s function takes the simple form:

; 1
G(x’ x,’ Vs .V,) = ElnRa (20)
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where R = [(x — x')2 + (y — »')?)]"/2. If the potential
vorticity g is piecewise constant, it can be taken out of
the integral. In order to calculate the velocity at any
point, (19) is differentiated with respect to x and v,
the symmetry of the Green’s function is invoked, and
Green’s theorem is used to obtain

(i, ) = (=30, 3b) = 4 fw G(RY(dX, dy). (21)

The velocity at any point is found by doing the contour
integral.

The method reduces the problem of solving for the
nonlinear evolution of the field to that of evaluating
(21) at each time step. Once the velocity on 9D is
known, then it can be stepped forward in time to find
the new location of the contour. The implementation
of the technique used is described in Polvani (1988).
At each time step, the boundary of the region of con-
stant relative vorticity is stepped forward via Runge-
Kutta integration. The Green’s function is singular on
the contour, but the singularity can be handled as in
Polvani’s (1988) appendix B. The contour dynamics
computer code used here was developed by Meacham
(1991). As the contour deforms with time, the distances
between the points on the contour change, and an ad-
justment in the spacing of the points on the contour
must be made to accurately carry the calculation for-
ward in time. The points are redistributed according
to the local rate of curvature. In addition, points are
added or removed as needed, and when the contour
comes back on itself, it is pinched off. Only when many
(on the order of 10) pinch-offs have occurred is there
a significant (on the order of several percent) loss of
vorticity.

After the flow has been turned on, there are two
different regions of nonzero vorticity (Fig. 6). The re-
gion of fluid that originated upstream and moves over

FIG. 6. Schematic of the different regions of constant relative vor-
ticity. Outside of the two contours, the vorticity is zero. In region A
the vorticity is anticyclonic with value —/o/e. In region B the vorticity
is zero. In region C the vorticity is cyclonic with value /o/e. The
circular dashed contour delineates the boundary of the topography.
The solid contour delineates the boundary of the fluid which origi-
nated over the topography.
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the topography (region A) has relative vorticity —#y/
¢; the region of fluid that originated over the topography
and moves off the topography (region C) has relative
vorticity /o/e. Region B has no relative vorticity and
is composed of fluid parcels that originated over the
topography and remain there. Instead of evaluating
the contours that bound regions A and C separately,
we evaluate the topographic contour (a circle) using
potential vorticity —#4y/ € and the contour that bounds
the fluid that originated over the topography using po-
tential vorticity Ap/e and add the results to take ad-
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vantage of the cancellation in region B. This method
can be used for any arbitrarily shaped region and is
not restricted to a circle. Like Kozlov (1983), we con-
sider flow over a circular cylinder where the contour
integral around the circular topography can be done
analytically.

For reference, we repeat Kozlov’s (1983) calculation
to show the two dynamical regimes, complete shedding,
and partial shedding of the fluid that originated over
the topography (Fig. 7). When the background flow is
strong, all of the fluid is shed downstream, and the
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FIG. 7. Time evolution of the contour for a case when all of the fluid is shed downstream. (a) Ag/e = 1
and the flow is turned on abruptly at t = 0. Times are £ = 0, 1, - - -, 10 with time increasing to the right
and downward. The dashed contour is the boundary of the topography; the solid contour delineates the
boundary of the fluid that originated over the topography, and (b) #y/e = 5att=0, 1, - - -, 9.
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contour changes from a circle to a tear-drop shape as
it is influenced by the cyclonic circulation over the
topography, but it remains coherent. The shed fluid
remains close to the x axis as it moves downstream.
When the background flow is weak, some of the fluid
remains trapped over the topography, while some is
shed downstream.

b. Flow in two layers over small topography

In this section, the work of Kozlov is extended to
include a second layer; we begin by studying the small
topography model. This work is similar to that done
by Davey et al. (1992) who also studied this problem
with the contour dynamics model. Here we stress a
comparison between the results from the small topog-
raphy model and the finite topography model. The ad-
ditional dynamics are illustrated by considering two
situations: one in which the stratification is strong and
the other in which the stratification is weak. We choose
the topographic height so that comparisons can be
made to the one-layer examples discussed in section
3a. As is apparent from the steady solutions, there are
two additional free parameters in this problem: §, the
relative height of the two-layer depths, and T, the in-
verse of the Rossby radius of deformation.

The time-dependent dynamics are governed by (1)
where
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_ o (Y2 — T2
Vit T
and
e (Y1 = ¥2)T2 k(1 + 6)
Q@ = VY, + T4 + - .

The contour over the topography can be done an-
alytically to take advantage of the cancellation over the
topography giving

y (K‘;F)Io(r) ) r<ti
]=
f’9( [‘(P)Ko(r)—lnr) r>1,
€ T
and
@( 5K‘(F)10(rr)—- ) r<t
T r
(al‘g)Ko(rr) lnr), r> 1.

This is McCartney’s (1975) steady solution for flow
over small topography excluding the background flow.
The contribution from the contour integral is

FiG. 8. Time evolution of the contours delineating fluid that originated over the topography in the upper
layer (solid) and in the lower layer (dashed) in the two-layer small topography model for (a) T' = 0.25, &
=1,and hp/e =2.5att=0,1,2,3,4and (b) ' = 4.
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1+ 46
o =5 [ [2AED Gy ryaxay, (22)

where R = [(x — x')? + (y — ¥')*]"/? and Gj; is the
Green’s function that represents the effect on a point
in layer i of a point vortex in layer j (Polvani 1988).
For this problem, a subset of the G;; is needed since
the vorticity is zero everywhere except within the region
of fluid that originated over the topography in the lower
layer. These Green’s functions are given by

G = -l—i—alnR + I _1!_ 5 Ky(T'R) (23)
and
Gy = L InR — L Ky(TR), (24)
1+4é 1+46

where K is the modified Bessel function of order zero.

Since the upper-layer potential vorticity is always
zero, the interface height can be calculated by finding
the relative vorticity in the upper layer:

_THWa— ) _ 8V

(1 +8)2 148

(25)

from (3). The relative vorticity can be calculated di-
rectly from the contour integral (22):

Vz‘pZ = Ux — Uy
G (R)
ap R

There is no singularity in this integral, which is done
in the upper layer since the singularities in the Green’s
function are in the lower layer. In each run, a contour
delineating the fluid that originates over the topography
in the upper layer is followed throughout the evolution
of the flow. This contour is dynamically inactive but
marks the movement of the particles that originated
over the topography in the upper layer.

With strong stratification the upper-layer contour is
not coincident with the lower-layer contour, and the
response is baroclinic (Fig. 8a). The lower layer re-
sponds nearly as a one-layer fluid as described in section
3a, and the lower-layer contour evolution in Fig. 8a is
very similar to the contour in Fig. 7b. The upper-layer
contour moves off downstream with little distortion.

With weak stratification, the fluid responds nearly
barotropically (Fig. 8b). This is shown by the near
coincidence of the contours in the upper and lower
layers. Less fluid remains over the topography when
the stratification decreases because the disturbance is
less bottom trapped, as predicted by the higher value
for the critical height 4, calculated in section 2b. For
this example, we proceed to calculate the flow in both
layers (Fig. 9). The flow field is slightly bottom inten-
sified both near the bump and in the shed eddy. The
interface is raised over the topography, and the shed

[(x—xYdy' — (y —y)dx']. (26)
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FiG. 9. Flow field of the fluid for the case shown in Fig. 8b
at ¢ = 4: (a) lower layer, (b) upper layer.

eddy carries a warm anomaly downstream (Figs. 10
and 11) as demonstrated in the primitive equation
model of Huppert and Bryan (1976). When the to-
pographic height is the same as the example shown in
Fig. 7b, the development of the lower-layer contour is
similar to the one-layer example (Fig. 12). This results
because when the stratification is weak, the perturba-
tion is weakly bottom trapped. However, the baroclinic
nature of the flow is revealed since the contours in the
two layers are not entirely coincident.

c. Flow over finite topography in two layers

For the finite depth model, the method of solution
is different than that used in sections 3a and 3b because
of the boundary and matching conditions that must
be applied at the edge of the topography. The problem
is therefore solved in two regions and then a zero po-
tential vorticity solution is used to match the two re-
gions together.
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Fi1G. 10. Interface displacement for the case shown in Fig. 8b at 1 = 4. Dashed contours indicate
negative interface displacement. The interface is high over the topography and low over the shed
eddy. The solid line outside of r = 1 is the contour which delineates fluid that originated over the
topography in the upper layer; the line with the longer dashes delineates the fluid that originated

over the topography in the lower layer.

In the inner region (r < 1), the one-layer logarithmic
Green’s function (20) applies. In the outer region (r
> 1), the Green’s functions are similar to those used

n/e

FiG. 11. Interface displacement for the case shown in Fig. 8b for
a cut along the x axis at ¢ = 1, 2, 3, 4. Notice that the cut is not taken
through the center of the eddy, so that the maximum interface dis-
placement is larger than shown. The interface is offset by 0.75 for ¢
=2,15for¢t=3,and 2.25 for ¢ = 4.

in (23) and (24), but this time the singularity is located
in the upper layer. The Green’s functions needed in
the outer region are

) 1 .
G, = 1 +6lnR- I +6K0(PR) (27)
and
Gy = J InR — Ko(TR) (28)
T s M T T '

In order to find the zero potential vorticity or ho-
mogeneous solution, the contribution to the velocity
from the contour integral is found at » = 1+ for the
upper and lower layers by doing the contour integral
around region C in Fig. 6 and for the upper layer at r
= |— by doing the contour integral around region A
in Fig. 6. This velocity is then transformed into cylin-
drical coordinates, and application of a fast Fourier
transform decomposes the velocity into a sum of modes
in 8. Thus at r = 1+, the contribution to the velocity
from the contour integral can be written as

N2
u (B, r=1+)= Y ufPe ™  (29)
n=—N/2
NJ2
v (B,r=14)= 3 vy¥e ™, (30)
n=—N/2
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FI1G. 12. Time evolution of the contours delineating fluid that originated over the topography in the upper
layer (solid) and in the lower layer (dashed) in the two-layer small topography model, I' = 4, § = 1, and

hole=5,t=0,1,2,3,4.

where j = 1, 2 and

N/2 ]
ul™ (b,r=1-)= T ulDe™ (31)
n=-=N/2

N/2 )
ol (g, r=1-)= 3 ofDVe™™ (32)
n=—-N/2

for the velocity in the inner region (where now u is the
radial velocity and v is the azimuthal velocity).

The homogeneous solutions for the streamfunctions
are written:

////

———

27T,
)
\\ e

‘p(lh) =

and

¢(2h)

N/2

n=—-N/[2

N/2
= 2 —da,K(Tr)e™
n=—N/2

+b,r e + blnr

FiG. 13. Time evolution of the contour that delineates fluid that originated over the topography in the
upper layer in the two-layer finite topography model for (a) I' = 0.25,6 = 1, and Ay/e = 2.5at ¢ =0, 1, 2,

3,4and (b)T = 4.
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> @K (Tr)e ™™ + br~'"e™ + b lnr

(33)

(34)
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for r > 1 and
N/2

v = 3

n=—N/2

cr'l e (35)

forr< 1.

The boundary conditions at the topography in the
lower layer are satisfied independently for each mode.
For no flow normal to the boundary in the lower layer
we have

in(adb,K,) + u®t = 0. (36)
The condition on the circulation reduces to
—3TKy(T) + b + v§P = 0. (37)

The velocity in both directions must match in the upper
layer. These conditions are satisfied when

ut!™) + inc, = in(a, + b.K.(T')) + u'"  (38)

and
v + ne, = —na, + Tb,K\(T') + bd,e + vi',
(39)

where §;; is the Kronecker delta. We note that for a real
solution a, = a*, and b, = b*,.. For n = 0, there is no
contribution from the contour integral so that uy
= u})1 = 0 because the radial velocity is given by u
= —y,/ r and the lowest order mode in 6 of this is zero.
The coeficients in (33), (34), and (35) are solved for
using (36), (37), (38), and (39). The contributions
to the velocity are determined by analytically differ-
entiating (33), (34), and (35). In practice, 16 modes
in 6 were sufficient. The check on the method was to
keep track of the total vorticity in the system and make
sure that it was conserved.

After each numerical run, the height of the interface
must be checked to make sure that it does not go above
the topography. The interface can be calculated every-
where, using the lower-layer potential vorticity, as in
section 3b. In this case, the lower-layer potential vor-
ticity is zero everywhere. The interface height is given
by (3), and can be found by calculating the relative
vorticity in the lower layer everywhere,

VA,
T i+

The relative vorticity is calculated in two parts. First,
the contribution from the zero potential vorticity so-
lutions is determined analytically from the series ex-
pansion, which is equivalent to calculating 5 directly
from the homogeneous series solution from the
streamfunction in both layers. Next, the contribution
from the contour integral is calculated by taking de-
rivatives of the contour integral in the same way as in
(26). For the examples discussed below, the interface
does not go above the topography.

When the stratification is strong (Fig. 13a), the layers
are decoupled, and the development of the contour is
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FIG. 14. Flow field for the case shown in Fig. 13b
at ¢ = 4: (a) lower layer and (b) upper layer.

nearly identical to that seen in Fig. 7b, and the upper-
layer response of this model is the same as the lower-
layer response of the small topography model. The layer
depths are equal so the fraction of the dynamically
active layer taken up by the topography is the same as
in the small topography example. When the stratifi-
cation is weak (Fig. 13b), the layers are strongly cou-
pled, and the amount of fluid that remains over the
topography is increased, as expected from the calcu-
lation of the critical height /.. Examination of the
total velocity field reveals that the shed eddy is nearly
barotropic but slightly surface intensified while the flow
near the topography is baroclinic (Fig. 14). This re-
sponse is due to the requirement that all of the flow go
around the topography in the lower layer, while some
of the fluid goes over the topography in the upper layer.

The interface is depressed near the topography and
raised over the eddy (Fig. 15) opposite to what is seen
in the case of the small bump in the two-layer fluid
(Fig. 10). A cut along the x axis shows the time evo-
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FiG. 15. Interface displacement for the case shown in Fig. 14 at ¢ = 4. Dashed contours indicate
negative interface displacement. The interface is depressed near the topography and is raised over
the shed eddy. The shed eddy is cold core, cyclonic, and surface trapped. The solid line outside
of r = 1 delineates fluid which originated over the topography in the upper layer.

lution of the interface (Fig. 16). As the fluid that orig-
inates over the topography moves downstream, the in-
terface becomes depressed around the topography as
it responds to the anticyclonic potential vorticity

n/e

FIG. 16. Interface displacement for the case shown in Fig. 13b at
a cut along the x axis at = 1, 2, 3, 4. The height of the topography
in the same units is 2.5. The interface is offset by 1 unit at £ = 2, by
2att=3,andby3ats=4.

anomaly in the upper layer, and the shed eddy appears
downstream of the topography as a positive pertur-
bation as it compensates for the positive potential vor-
ticity anomaly in the upper layer. The shed eddy is
cold core because of the special structure of the strat-
ification in this model. One would expect that the shed
eddy would be cold core in a continuously stratified
model only if the stratification were strong near the
region of the interface, and relatively weak above that.
If the fluid were strongly stratified above the interface,
then the shed eddy would have a more complicated
vertical structure, possibly with a cold anomaly relative
to the external fluid in its deepest level and a warm
anomaly in its shallowest level.

Examples with 6 = 0.2 help to illuminate the dy-
namics further. The potential vorticity anomaly as de-
fined in (13) controls the qualitative evolution of the
flow in the upper layer. When g, is the same as in Fig.
13b, the development of the flow is similar to that ex-
ample, even though the total topographic height is an
order one amount higher (Fig. 17a). The shed eddy
remains closer to the x axis as it is caught up in the
islandlike flow which is important close to the topog-
raphy in this example. The velocity field shows this
strong islandlike flow (Fig. 18). When we let 4, be the
same as the run in Fig. 13b, more fluid is trapped over
the topography because the potential vorticity anomaly
is larger (Fig. 17b). The area of trapped fluid over the
topography is larger in this run, but since the layer
thickness is substantially less, the total volume of fluid
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F1G. 17. Time evolution of the contour that delineates fluid which originated over the topography in the
upper layer in the two-layer finite topography model for (a) ' = 4, § = 0.2, and hy/e = 0.833 atz =0, 1,
c+-,4and (b) Ag/e =2.5att =0, 6.67,13.34, - - -, 40.02.

that remains over the topography is actually smaller
than that in Fig. 13b.

4. Summary and conclusions

We have developed a model to study flow in a two-
layer fluid when the interface intersects a boundary.
Under the quasigeostrophic approximation the steady
nonlinear problem reduces to a linear set of partial
differential equations since the interface displacement
is proportional to the difference between the upper-
layer and lower-layer streamfunctions. The layer depths
are constant within an order Rossby number amount
so that the relative simplicity of the resulting system
allows the combined effects of stratification and flow
over finite topography to be considered. The model
solutions are compared to one with geometry repre-
sentative of what we term traditional quasigeostrophic
models. Both the steady and the time-dependent so-
lutions are studied.

From the steady solutions, two critical heights were
calculated. The critical height above which closed
streamlines form (/) was considered. Higher topog-
raphy leads to fluid being trapped over the topography.
More fluid is trapped within closed streamlines when
the stratification is weak than when it is strong, opposite
to the results of the traditional model. We also deter-
mined over what range of parameters the finite depth
geometry was physically consistent by calculating the
height below which the interface height rises above the
topography. This occurs more easily when the strati-
fication is weak.

The model successfully combines into one the two
classes of quasigeostrophic solutions that Buzzi and
Speranza (1979) discussed, and the solutions contain
characteristics representative of the two cases. The
model predicts that the interface is depressed on the
southern portion of the topography. This north-south
asymmetry is due to the change in symmetry of the
solution resulting from application of the boundary
conditions in the lower layer. It is enhanced when pos-
itive vertical shear is included. In contrast, in traditional
quasigeostrophic models the interface is uniformly
raised over the topography.

The structure of the eddy that can be shed down-
stream in the initial value problem is not predicted
from the steady solutions nor is the precise amount of
the fluid trapped over the topography that originated
there. To find these things out, the initial value problem
was explored. The finite depth models require the de-
velopment of a modified contour dynamics method.
This method has more applications than those explored
here (see Thompson 1990). In the traditional quasi-
geostrophic model, when the topography is small, the
shed eddy is warm core and bottom trapped. When
the topography is finite, the shed eddy is cold core and
surface intensified. The steady solutions predict that
less fluid is trapped near the topography as the strati-
fication increases. In the initial value problem, this ef-
fect allows less of the fluid that originates over the to-
pography to escape downstream. The increase of strat-
ification has the opposite effect in the small bump
model. Likewise, as the steady solutions would predict
in the finite depth model, as the lower-layer depth in-
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F1G. 18. Velocity field for the run shown in Fig. 17aat ¢ = 4.
(a) Lower-layer flow, and (b) upper-layer flow.

creases more fluid remains over the topography. The
parameter that is important in determining the amount
of fluid remaining trapped over the topography is the
topographic height in the upper layer relative to the
upper-layer thickness, the potential vorticity anomaly
d., even when the stratification is relatively weak.
The steady solutions do not necessarily predict the
exact structure of the final steady state of the initial
value problem in the inviscid limit. The key assumption
that allows construction of the steady solutions is that
all of the fluid that originated over the topography is
swept downstream. The solutions presented here show
that when the background flow is relatively weak, some
of the fluid originating over the topography remains
trapped there. The amount of fluid that remains
trapped over the topography depends not only on the
stratification and strength of the background flow, but
also on how the background flow is initiated (see
Thompson 1990 for a further discussion). In fact, the
steady solutions are only strictly correct in this context
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when no closed streamlines form over the topography.
However, we have successfully demonstrated that the
steady solutions are helpful in interpreting the results
of the initial value problem.

One would like to know for what situations the finite
depth model would be a good predictive tool for more
complicated, continuously stratified models. Two-layer
models can be calibrated according to the real ocean-
ographic stratification (Flierl 1978), and this calibra-
tion depends on what phenomenon is of interest. Al-
though we have not done the calibration here, we ex-
pect that the model would be most relevant to a
situation in which the stratification is localized in the
vertical and above that the fluid is relatively unstrati-
fied. This would happen if a ssamount were to pierce
the thermocline. A measure of the applicability of the
two-layer model would be the scale at which motions
are bottom trapped (H; = fyL/N) versus the depth of
the upper layer. If H; is much greater than the depth
of the upper layer, we would expect that our model
would be relevant.

One suspects, however, that the model would not
be a good approximation to a situation in which the
stratification were constant, or had a slow variation
with depth. To understand this, one can imagine solv-
ing the problem of continuously stratified flow im-
pinging on a right circular cylinder. We would require
that the circulation vanish below the top of the cylinder.
Likewise, the streamfunction and its first derivative
must be continuous at the edge of the topography. This
in turn gives the requirement that only modes odd in
# can be used to construct the solution, and the com-
ponent of the solution that reflects the anticyclonic
vorticity over the topography no longer exists. The ve-
locities fall off as =2 in the far field as in Buzzi and
Speranza (1979). In contrast, in primitive equation
studies with linear stratification over smoothly varying
topography, vorticity is generated near the topography
through vortex stretching whenever fluid parcels move
up the slope.
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