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ABSTRACT

Langmuir circulations reside in, and are responsible in part for the existence and maintenance of, the mixed
layer. It is, therefore, typical for the water containing Langmuir circulations to be bounded below by a thermocline.
When this bounding thermocline is strong, it may be expected to act as an effective “slippery bottom” constraint.
Such an assumption has been invoked previously, but failed to predict a preferred spacing for the windrows
produced by the circulations. This model assumed that the momentum transfers across the horizontal boundaries
of the mixed layer were independent of the water motion induced by Langmuir circulation. Here, mixed boundary
conditions are explored. Estimates of the transfer coefficients in these boundary conditions suggest that the
revised model differs only slightly from the earlier one, but allows for a more general and realistic stress model.
Incorporating these effects into the theory gives windrows with a finite separation, in accord with the observations.
The windrow spacing emerging from this modified theory depends in a simple way on the layer depth and the
constant of proportionality in the stress boundary condition when the latter number takes physically plausible
values. The analysis allows the water layer above the bounding thermocline to be homogeneous or either stably
or unstably density stratified. The stably stratified case permits oscillatory convection under certain restricted
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Langmuir Circulations in a Surface Layer Bounded by a Strong Thermocline

circumstances.

1. Introduction

Observational evidence shows that Langmuir cir-
culation may have a range of coexisting length scales,
the largest of which seems to be related to the depth
of the principal thermocline. This indicates that the
existence of a strong thermocline inhibits convective
activity and acts as an effective bottom for Langmuir
circulations. The idea that the pycnocline establishes
the effective depth of the circulations was first put for-
ward by Langmuir (1938), and it is consistent with
linear stability theory (see Leibovich 1977b). The
mathematical treatment of motion in a finite layer is
much simpler than in a body of water that is modeled
as infinite in depth, and is easier to treat in computer
studies. With these points in mind, several recent pa-
pers (Leibovich 1985; Moroz and Leibovich 1985;
Leibovich et al. 1989; Cox et al. 1992a,b) have con-
sidered a model of a horizontally infinite layer of finite
depth subjected to constant applied horizontal stress
at both top and bottom (abbreviated hereafter by CSM,

* Current affiliation: Department of Applied Mathematics, The
University of Adelaide, South Australia.

Corresponding author address: Dr. Sidney Leibovich, Dept. of
Mechanical & Aerospace Engineering, 248 Upson Hall, Cornell Uni-
versity, Ithaca, NY 14853-7501.

© 1993 American Meteorological Society

for “constant stress model”). The basis for these papers
is the theory (hereafter CL) of Langmuir circulations
developed by Craik and Leibovich (1976), Craik
(1977), and Leibovich (1977a,b, 1980), which shows
how the rectified effects of small-amplitude surface
gravity waves may destabilize wind-driven currents.
The theory allows for nonlinear equilibration in the
form of convective motions having as their preferred
form a system of vortical rolls with axes parallel to the
wind direction. Windrows are the surface manifesta-
tions of this roll system.

Our intent here is to take a step toward realism by
focusing on important consequences that follow from
choices made in modeling boundary conditions. No
claim is made to full incorporation of all physical effects
that come into play, even within the specific context
of the CL theory. .

Various boundary conditions may be appropriate to
the CL theory. Requiring constant stress at the bound-
aries implies that the stress perturbations vanish there.
This choice of boundary condition turns out not to
shed light on the preferred spacing of windrows and
underlying cells, at least on linear grounds, because
modes of infinite wavelength are the first to be desta-
bilized. This is also found to be the case in thermal
convection with thermally insulating boundaries
(Sparrow et al. 1964; Nield 1967) and in related prob-
lems. The inclusion of nonlinear effects appears to
provide no remedy, since numerical evidence offered
by Chapman and Proctor ( 1980) shows that initial data
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with finite wavelength cascade to larger and larger
scales. This nonlinear cascade is remarkable, because
for unstable conditions the mode that grows most rap-
idly according to linear theory has a finite wavelength.

Of course, the CSM fails to reflect the coupling of
the perturbed motion and the extra stress it must pro-
duce. Thus, the CSM, and especially the assumption
of vanishing perturbation stress at the base of the mixed
layer, is associated with some degree of error in mod-
eling the physics. Here, we try to improve on the CSM
by allowing for the omitted coupling, with attention
focused on the assumption that the motion is inde-
pendent of the coordinate in the direction of the wind.
In the model explored here, we assume that the wind
speed, rather than the stress transmitted to the water,
is held fixed, and the current speed below the pycno-
cline, rather than the stress at the base of the mixed
layer, is also held fixed. Under certain assumptions,
this leads to mixed boundary conditions that turn out,
in contrast to the CSM, to predict a finite windrow
spacing based on linear stability grounds.

The coupling effects are estimated to be moderately
small. We attempt to exploit this by exploring the
asymptotic limit as the coupling becomes extremely
small. This proves to be advantageous, because in this
limit, the horizontal wavelength of the marginally stable
linear mode is very long. With this fact as guidance,
we are able to construct a fully nonlinear model similar
to those produced in related physical problems (see
Chapman and Proctor 1980; Sivashinsky 1982, 1983).
Arguments based on the fully nonlinear theory confirm
the finite windrow spacing indicated by the linear sta-
bility results. Observations by Smith et al. (1987) reveal
large-scale Langmuir circulation with a windrow spac-
ing approximately three times the mixed-layer depth,
thus having a wavenumber of about 2, measured in
units of inverse mixed-layer depth. The long-wave limit
is not an accurate representation of these circum-
stances. The small-wavelength analysis nevertheless in-
terests us for three reasons. First, the observational
methods become increasingly inaccurate as the length
scale of the circulation increases and are unable to de-
tect extremely large scales if they are present. Second,
the consequences of the long-wave assumption allow
us to make considerable analytical progress, and at the
same time, comparisons with exact numerical calcu-
lations show that the long-wavelength approximation
is accurate for wavenumbers that are not small com-
pared to 1. Consequently, one might be prepared to
accept the asymptotic estimates as a guide even where
the formal conditions for the analysis are not satisfied.
Third, the results of the simple asymptotic analysis
contain features, such as cascades from small to large
scales, that have been associated with observational re-
ports of Langmuir circulation.

In previous theoretical treatments, the thermal
boundary conditions were taken to be either constant
temperature, or constant heat flux. One might think
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that modifications of the thermal boundary conditions
rather than the mechanical ones would provide a pre-
ferred wavenumber, but this turns out not to be true.
In this paper, we explore the effects of more general
thermal boundary conditions than we have previously
admitted in our theoretical studies on Langmuir cir-
culation. These boundary conditions are physically
more realistic and allow for variations in surface tem-
perature as well as spatial and temporal variations in
heat flux. In most cases, the qualitative nature of the
circulations is unaffected, but in a restricted set of cir-
cumstances with the thermal exchanges permitted here
at the boundaries, the convection becomes oscillatory
in time rather than steady.

Provided that the surface gravity wave field produces
a Stokes drift having a depth that is not small compared
to the depth of the mixed layer, the conclusion here is
that the preferred spacing of windrows is large com-
pared to the layer depth, with a weak dependence on
the exchange coefficient characterizing the stress
boundary condition. In the event that the dominant
waves are short compared to the layer depth, the anal-
ysis here does not apply, and the problem must be
reconsidered.

We describe the situations of interest in section 2,
giving particular attention to the boundary conditions
and to estimates of the parameters that appear in them.
A dimensionless statement of the full mathematical
problem for two-dimensional Langmuir circulations
according to the CL theory is given in the next section.
Instability thresholds and growth rates according to
linear stability theory are given in section 4; the alge-
braic details that lead to these results are given in the
Appendix. Although the description of the instability
found here is similar to that found by Chapman and
Proctor (1980) for thermal convection, and by Siva-
shinsky (1982, 1983) for Marangoni convection, there
are more cases to be considered. In particular, none of
the previous papers permitted a mixed boundary con-
dition in more than one dependent variable, while here
this is permitted for two (thermal and stress boundary
conditions). This leads to complexities not encountered
in the previous work, and the new possibility of oscil-
latory convection is found. Nonlinear evolution equa-
tions, valid without restriction on the magnitude of the
disturbance levels, are given in section 5 for the cases
where linear stability theory predicts bifurcation to
steady convection. The detailed results are given for
the case of exponentially decaying Stokes drift, but the
form and general conclusions are expected to stand for
an arbitrary Stokes drift, provided it has a monotonic
decay with depth. The remaining case, the nonlinear
evolution of oscillatory convection, is not discussed.
The results of sections 4 and 5 are discussed in section
6, where we present diagrams to illustrate the Langmuir
circulation cells in the extreme cases of short and long
surface gravity waves. A summary of our results is given
in section 7.
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2. Problem specification
a. Boundary conditions

To fix our problem, we suppose that the wind at
some ‘“anemometer” height above the mean water sur-
face is constant in speed and in direction, which we
take to coincide with the x axis. A strong thermocline
exists at a depth d below the mean water surface, z
= 0, and the water above it is either of uniform density,
or stratified with a modest density gradient. It is sup-
posed that the thermocline is strong enough to prevent
the penetration of any significant convective motion,
so that the plane z = —d acts like an impenetrable
surface. The water below the thermocline may be
moving, If so, its horizontal speed, like that of the wind,
is supposed constant in speed and direction with x and
y components of #eiow, Vbelow, Fespectively.

A stress will be exerted on the water, some of which
will provide the momentum radiated away from the
local water column by surface waves, and the residual
will increase the momentum of the local current sys-
tem. We suppose that the surface waves are statistically
stationary and horizontally homogeneous and that the
associated Stokes drift is rectilinear with speed Us(z)
in the wind direction. Furthermore, we suppose that
the wind speed U, has been discounted for any mo-
mentum transferred to the waves, so that only the stress
that transfers momentum to the current system is ac-
counted for. The mean surface water speeds are much
smaller than the wind speed at standard anemometer
heights, typically by a factor of 30 or so, and so the
usual practice in estimating the stress applied to the
water surface is to ignore the surface current speed. In
this approach, a constant value of U, implies a constant
applied stress. This is a good approximation, but there
are clearly small departures from it due to a number
of factors.

To begin with, imagine a (nonphysical ) situation in
which (through the action of some genie) the surface
remains plane when the wind blows. Let the stress vec-
tor be r. Assume a constant bulk momentum exchange
coeflicient, C,,, and fix the stress vector applied to the
water surface by the wind to be

rzcmpat(Ua_us)2+vz[(Ua_us)i_vsj]: (1)

where 1, and v, are the components of the mean surface
water current in the x (windward, unit vector i) and y
(crosswind, unit vector j) directions, respectively, and
pa is the air density. The water-current speed is small
compared to U,, so we can approximate (1) by

rzpwui[(l ——2%)i—%j], .
a a

where p,, is the water density, and u, is the water fric-
tion velocity defined here by p,u2 = C,p,U2. This
leads to the surface stress boundary conditions
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Invoking an eddy viscosity, v7, we may express the
stress at the boundaries as

r v
—=pr— at z=0,—d,
Pw 9z

and then (2) takes the form
(3)

where the diagonal matrix B is

B B, 0\ 12 O)

( 0 Bz) U, (0 1/

The mixed boundary condition (3) leads to a re-
duction of the stress as the surface current increases at
fixed wind speed. This is simplistic, however, since a
significant part of the stress transferred is due to mo-
mentum transfer from breaking waves. As the surface
current increases, the wave breaking increases as well,
so a larger fraction of the surface wave spectrum is
liable to breaking (cf. Phillips 1977). Increased wave
breaking offsets the stress reduction, perhaps even
leading, under some conditions, to a stress increase.
Nevertheless, it is not unreasonable to model the stress
by a boundary condition of mixed type as in (3), but
with B a diagonal matrix with different, perhaps even
negative, elements.

Similar conditions may be applied, again admittedly
somewhat speculatively, to couple the mixed layer to
the water below it. Current speeds typically are much
smaller below the pycnocline than they are just above
it. The higher effective viscosity in the turbulent (or
simply the convective) motion in the mixed layer is
one way to think of the cause of the boundary-layer
character exhibited across the thermocline. The mo-

‘mentum flux from the mixed layer to the water below

is modeled here in a way that has been suggested for
integral models of the mixed layer (Niiler and Kraus
1977). The two transfer mechanisms contemplated are
due first to entrainment at the base of the mixed layer,
with an entrainment velocity, w,, to be specified, and
second to downward radiation of momentum in in-
ternal waves (Pollard and Millard 1970). Niiler and
Kraus (1977) suggest parameterization of this effect
by means of a constant drag coefficient. We note that
if the depth of the mixed layer remains constant, then
any time-independent horizontally averaged current
that may emerge must have the stress imposed at the
surface balanced by the stress imposed at the bottom,
and with the mechanisms suggested here, this implies
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that the stress is imposed by internal wave radiation.
Accordingly, we will take the contribution of the in-
ternal wave drag in the form p,[muii + Cpyu,(Aui
+ Avj)]. Here we have taken Au = uyo10m — Upelow and
AV = Vpgyom — Ubelow t0 be the difference of the hori-
zontal velocity components at the bottom of the mixed
layer (i.e., as z ¥ —d) and the corresponding velocity
components in the fixed current below the mixed layer;
the “extra” wave stress has been taken in the form of
a linear friction. Figure 1 summarizes some of the no-
tation introduced in this section.

The dimensionless parameter m is a measure of the
fraction of the stress attributable to internal waves.
When the mixed layer has constant depth and is in
dynamical equilibrium, then all of the stress at the bot-
tom is accounted for by internal wave radiation, and
m approaches one.

The bottom stress boundary conditions, allowing for
entrainment and radiation, are

i} Au
E u—(&+CIW)——+m,

ut oz \u, Uy

vy OV We Av

S —={—+Cw|—, 4

ul oz (u* IW) Uy )
at z = —d. In the next subsection, we shall estimate

the entrainment velocity based on the overall Rich-
ardson number across the pycnocline using the exper-
imental data discussed by Phillips (1977).

Whenever a nonzero entrainment velocity is in-
voked, we must allow the mixed-layer depth, d, to
change with time (since d = w,). In the stability analysis
to follow, we suppose that any such changes are much
slower than the time scales for Langmuir circulation
instability to occur, so that the depth variations may
be treated quasi statically.

Temperatures Velocities Co-ordinates

wind velocity U,
—_—_—

Vg z
T siress T 4115 y
X

mean ocean surface  z=0

T. o,

Py mixed layer
A%
T, bottom
bottom stress T " ou
- bottom
thermocline z=-d
T vbelow
below u
below

FIG. 1. A summary of the notation we have used in section 2a.
The subscript a refers to quantities associated with the air above the
ocean surface; s to quantities associated with the ocean at its surface;
“bottom” to quantities associated with the bottom of the mixed layer;
“below” to the water below the thermocline.
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We adopt similar mixed boundary conditions on
heat transfer at the upper and lower boundaries to relate
heat flux to temperature differences across the inter-
faces. If T, T, Tvottom, and Tpeow are the temperatures
of the air and water corresponding to U,, Us, Upottom
and Upeow, then Newton’s law of cooling gives

KT£=haw(Ta—Ts) at z=0, (5)
a9z
and
oaT
KT_(';Z— = hww( Toottom — Tbelow) at z = —d. (6)

Here h..., is the heat transfer coefficient across the ther-
mocline (heat flux divided by heat capacity, pyCpp, Of
a unit volume of water), A,, is the heat flux across the
air layer divided by the heat capacity of a unit volume
of water, and « is the (eddy) thermal diffusivity of
water.

b. Structureless equilibrium

By a “structureless” state, we mean one depending
only on depth and time. Horizontally averaged fields,
for example, are by definition structureless. Our con-
cern is with the stability and bifurcated states of time-
independent structureless equilibria.

The CL theory differs from the Navier-Stokes or
Reynolds-averaged Navier-Stokes equations by a term
representing the rectified effects of surface gravity
waves. These effects reside in a “vortex force”

Us X curly,

where v is the velocity vector of the complete (rectified)
current system. When Ug = Us(z)i, and the Coriolis
acceleration is ignored, the CL equations allow for a
nonconvective, rectilinear current and temperature
field in which the vortex force does not play a role.
When the Coriolis acceleration is accounted for, the
vortex force is important in determining the struc-
tureless states in the mixed layer (see Huang 1979).
While we recognize that the Coriolis acceleration gen-
erally may be expected to be nonnegligible in its effect
on the structureless equilibria in the ocean, a satisfac-
tory treatment of the combined “Langmuir-Ekman”
layer is a complex matter. For the purposes of the pres-
ent paper, which is to explore the effects of boundary
conditions, we ignore the Coriolis acceleration.

Applications of the theory to date assume constant
eddy viscosity and constant eddy thermal diffusivity.
Although the theory is not restricted to this represen-
tation of the incoherent turbulence, we continue to
adopt this parameterization.

Given these preliminary remarks, the problem for
nonconvective or “structureless” states in the layer is
(quasi)laminar and the vortex force term simply mod-
ifies the mean pressure distribution. If we seek steady
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structureless equilibria, then the velocity vector lies in
the horizontal plane and must be a linear function of
z. Similarly, the temperature, 7(z), must be a linear
function. The boundary conditions are (3), (4), (5),
and (6).
Defining
R, = %4
vr

the velocity field satisfying the equations governing the
CL theory, and the boundary conditions (3), (4), (5),
and (6) has x component

u=U(z)=U ‘—Zi+ Uo, (7)
where
l—m+ R, + ow
U0=u*( m + o) Ry + op(Ubetow/ Us ) (8)
oap + a, + apay
and
+ R, — ow
U = u, (ap + ma,) Ry — aop(Uneiow/ Us) . (9)
ap + o, + apoy
where
2 d
oy = B,u*R* = . R* and ap = TWE + CVIW‘R,.t
a T

(10)

are dimensionless parameters. In (10), B; has been
replaced by the “simplistic” (and most likely extreme)
choice. In accordance with the remarks following (3),
«, may be smaller, perhaps zero.

The y velocity component is

O pUbelow (

v=V(z)= ——mMMm——
(2) o, + a0 + 20

—a,§+2). (11)

In the work to follow, we assume that both o, and «;
are nonnegative and that (#peiows Vbetow) = 0. (The latter
assumption is always permissible, though not neces-
sarily convenient, since we can always adopt a coor-
dinate system moving with the fluid below at the ex-
pense of altering the specification of the wind and sur-
face wave fields.)
The corresponding temperature field is given by

T(z) = T,(‘—21’+ 1). (12)
In(12),
Ta_T ow
Ty =4 teow (13)
L+~ +7v5
and
—1 + -1 w
IETa+'Yb Tat 77 Toelo (14)

b
Ta - Tbclow
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where

dhg, dh.
v = , and v, =
KT Kt

(15)

are Péclet numbers. The structureless temperature field
may be statically stable or unstable. Density gradients
are not necessary to the Langmuir circulation insta-
bility mechanism: the motions are not buoyancy
driven. We shall think primarily of the situation in
which the layer is stably stratified, but the case of un-
stable stratification is not excluded from the analysis
we present.

¢. Typical parameter magnitudes

We estimate the parameters o,, a3, v,, v5 by para-
meterizing u, and vrin terms of the wind speed, taking
uy/ U, ~ 1073, consistent with an air-sea momentum
exchange coefficient C,, = O(1073), as is generally re-
ported [e.g., see Busch (1977) for typical values]. This
implies the (extreme) estimate

a, ~2X 1073R,.

The question of the loss of momentum from the
mixed layer to internal waves is too difficult for us to
address here. In many cases, we expect that this mo-
mentum transfer will be small compared to the direct
loss to entrainment [see the discussions of this point
by Niiler and Kraus (1977) and by Kantha (1977)].
In any event, for the present purposes, we take Ciy
= 0 in estimating the parameter a;.

According to the experiments of Kantha and Phillips
(1976) in a two-layer stratified water body driven by
an applied surface stress, the light turbulent upper layer
entrains nonturbulent heavy fluid with an entrainment
velocity given by

We = ux f(RI).
Here the overall Richardson number is
. gdA
Rl = g_2 _._l_) ;
Ux P

Ap is the difference in density between the heavy and
light fluid, and fis a function that at present must be
experimentally determined. The data from the Kantha/
Phillips experiment, as discussed by Phillips (1977),
suggest the rough approximation to this function:

: W, 6

—_—~—~ —

U, Ri’ (16)

If (16) is used to estimate the entrainment velocity in
Op,
6
ap ~ — R,.
bR
Relating the friction velocity to the wind speed shows
that
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()

For purposes of estimating, we will take Ap/p ~ 1073
as a plausible value for the fractional density “jump”
across the pycnocline terminating the mixed layer, then

Uz uxd
d vVr )

From this, we arrive at the estimate o«,/a;
~ (1/3)gd/ U?2. For a wind speed of 25 m s™' and a
mixed-layer depth of 50 m, the ratio is about 0.26. For
a wind speed of 10 m s™!, and the same depth, the ratio
is about 1.5.

Returning now to the estimation of «,, we assume
a parameterization of v similar to that quoted in
Leibovich and Radhakrishnan (1977), vy ~ 2.5
X 1073U3/g. Then,

2
a,~105><(%) %—Z

8dAp

106 &2 gd Ap
U2 p

U2 p

ap~6X 1073 =2

Again assuming u,/U, = 1073, a mixed-layer depth
of 50 m and a 25 m s~! wind, we get o, =~ 0.06. Choos-
ing the eddy viscosity to be proportional to U/ g, as
we have done here, makes «; independent of the wind
speed and mixed-layer depth. With the specific param-
eterization introduced above, «;, ~ 0.24.

By comparing with the data on the transfer of sen-
sible heat at the air-sea interface given by Busch
(1977), we find our exchange coefficient to be

[Pcp]air
hayw = —— U,Cs,
[pcp]water ae

where the conventional bulk exchange coefficient for
heat, Cy, is approximately the same as C,,. Our di-
mensionless heat exchange coeflicient at the surface is

3C, X 107 u,d

Y~ —_—. 17
T T ualUs) k1 (n
This shows that
0.15¢q, KT
¥, ~——, where 7=—
T vr

The parameter 7 is an inverse Prandtl number. The
molecular value of 7 is about 0.15, but a more likely
value when based on turbulent diffusivities of heat and
momentum would probably be around unity. In either
event, when q; is small, so is v,.

At the base of the mixed layer, it seems reasonable
to set A, = w,, then

w.d
Yo = % (18)

KT T

SO v, 1S comparable to «p.
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The arguments in this section suggest that for mixed-
layer depths not much larger than 50 m and for high
wind speeds, a;, < ap, so that the correction to the con-
stant stress model is more important at the base of the
mixed layer. Since we expect «, to be less than the
extreme expression used for the above estimates, we
are inclined to think that the constant stress model is
adequate at the air-sea interface. Nevertheless, o, will
be carried through the analysis that follows.

3. The governing equations for dimensioniess
quantities

We now set up the dimensionless problem to be sat-
isfied by the perturbations to the basic state [(7), (12)].
From here on, a superscript asterisk denotes a dimen-
sional quantity. We assume that variations in the x*
direction are negligible, so the motions are two dimen-
sional. A streamfunction, Y*, may then be used in lieu
of the velocity components v* and w* in the y* and
z* directions. We make the problem dimensionless as
follows:

y = y*/d,
u=(u*—

44

U_

z=2z%d, t=rt*r/d?,
U(Z))/Uly \b = d/*/ vr,

_U*d/VT, W=—%=W*d/VT,
ay

0 =(0%—T(z))/ T,

where ¢, u, and 6 are the streamfunction, the pertur-
bation to the velocity component in the wind direction,
and the temperature perturbation, respectively. Sub-
stituting these expressions into the governing wave-fil-
tered Navier-Stokes and heat equations, we find the
governing equations for ¥, u, and 6 to be (Leibovich
1985; Leibovich et al. 1989)

_‘2_22: %_% 2
(& vy¢ Rh(z) 3 = S50+ T, 7).

9 _ g\,
(az V)u 5 T B0,

J [
V20 =—+ .
(az ) 3y J(¥, 9) (19)
The parameters in these equations are
_Ud’ U5 T.d?
B0, 5B (g0
v% T vr

which represent the destabilizing vortex force and the
stratification, respectively, where 3 is the coefficient of
thermal expansion, and g is the acceleration due to
gravity. The function /4(z) is the dimensionless Stokes-
drift gradient, so

6US aUS

(0)A(2),

(z) = —
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where Us(z) is the Stokes drift (in the x* direction).
The Jacobian is defined by J(a, b) = a,b, — a.b,.

The dimensionless versions of the boundary con-
ditions on the perturbation velocity field, using the
stress model introduced in (3) and (4) are

2 d
%+%a,%=£+azu=0 on z=0, (21)
and
92 d 4

The corresponding conditions on the dimensionless
perturbation temperature are

a0
~—+v8#=0 on z=0, (23)
0z

and
a
——0—7,,0=0 on z=-—1. (24)
0z

The remaining boundary conditions on ¥ are that the
vertical velocity vanishes on the planes z = 0, —1, so

¢v=0 on z=0,-1. (25)

We analyze the linear stability of the basic state [(7),
(12)] by dropping the nonlinear Jacobian terms from
(19) and considering disturbances that are normal
modes proportional to e**!, where k is the horizontal
wavenumber and o is the linear growth rate. For suf-
ficiently small values of R, all modes are damped
[Re(o) < 0], and so the basic state is stable to small
disturbances. As R is increased through a threshold
critical value, R, the basic state is destabilized. This
occurs when the real part of the growth rate of some
mode, whose wavenumber we denote by k., becomes
positive,

When a, and a3 both vanish (so the perturbation
stress vanishes on the boundaries), the critical wave-
number, k., is zero, so the first motions to become
linearly unstable occur on the largest horizontal scale
available. This consequence of these (or mathemati-
cally analogous) boundary conditions is seen in a va-
riety of other convective systems, for example in Ray-
leigh~-Bénard convection between nonconducting sur-
faces (Sparrow et al. 1964; Nield 1967; Chapman and
Proctor 1980; Chapman et al. 1980; Gertsberg and Si-
vashinsky 1981; Depassier and Spiegel 1982), which
is mathematically identical to the two-dimensional CL
theory without thermal stratification; in surface ten-
sion—-driven (Marangoni) convection (Sivashinsky
1982); in the directional solidification of a dilute binary
alloy (Sivashinsky 1983); in mildly penetrative ice—
water convection (Roberts 1985). In all these examples,
a shallow water approximation that exploits the dis-
parity between horizontal and vertical length scales al-
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lows one to derive a model equation that describes the
nonlinear evolution of the long-wavelength distur-
bances.

When the « are nonzero (from their definitions, they
are always nonnegative), a finite horizontal length scale
of the convective motions at onset is found. For typical
conditions, the estimates of section 2 indicate that the
« are small, and below we calculate the linear growth
rate of Langmuir circulations under this assumption.
Figure 2 illustrates the qualitative difference between
the marginal stability curves for o, + o, = 0 and «,
+ a # 0: in the former case, the first motions to be-
come unstable as R is increased have infinite wave-
length (equivalently, k. = 0), while in the latter their
wavelength is finite (k. > 0).

4. Calculation of the growth rate, o

a. Analysis of small-k disturbances

When a = o; + a4 is small, the critical wavenumber
is small also, k., = O(a!/*) (see Proctor 1981; Gertsberg
and Sivashinsky 1981). In this section we give the first
few terms in a small-k expansion for the linear growth
rate of small disturbances. The details of the calcula-
tions are given in the Appendix. There are two cases,
v = v, + v, > 0 and v = 0, which must be treated
separately. Since the physical problem suggests ex-
amination of small v, we follow the two analyses with
a discussion on the crossover between the two cases.
We treat in detail only the case of constant Stokes drift
gradient, 4(z) = 1, which is the most analytically trac-
table, and describe results for more general expressions
for A(z) in a later section.

We expand the variables in powers of k,

Y =ik + ks + - 2)ee”,

u= (up+ k*uy + kK*ug + -+ -)e™e”,
0= (00 + k*0> + k%4 + - - -)e™e”,
o=k?, + ko, + - - -,

R =Ry + k*R,, (26)

where each of the coefficients, ¥;, u;, 6, is a function
of z alone. The expressions in (26) are substituted into
the governing linearized equations, which are then
solved at successive orders in k. It turns out that the
appropriate scaling for small « is kK = O(a'/*), so we
write (a;, ) = k*(a,, @), where a,; = O(1). Sim-
ilarly we define ¢ = a, + «,.
At O(k°) in the governing equations,

D%, =0 and D%, =0, (27)

where D = d/dz. To this order, the boundary condi-
tions are that Duy = 0 on z = 0, —1, and that D6,
= —~fo0n z =0, and Dby = v,0, on z = —1. Therefore,
Up is a constant, and we see that there are two cases for
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FI1G. 2. Critical Rayleigh number, R,, for the onset of convection
plotted against the wavenumber, k. The fluid is unstratified (S = 0),
and the parameters R and S are as given by (20). For the lower curve,
the parameters ap and o, are both zero and as a result, the critical
wavenumber is k, = 0. Here the widest rolls are the first to be desta-
bilized. For the upper curve a; and «, take the values 0.28 and 0.06,
respectively, which are typical magnitudes of these parameters in the
ocean. Now the widest rolls are stabilized, and at onset the motions
have a finite wavelength (k. =~ 1.1).

6o. If ¥ > 0, then 6y = 0, but if vy = 0, then 6, is an
arbitrary constant.

b. Growth rate of small-k disturbances when v > 0:
Case I

We consider now the first case (which we call “I”),
where v > 0. The algebra is described in the Appendix
and yields the following expression for the growth rate
¢ for small-wavenumber disturbances:

- R
o=—a+ R_Ro_o k?
_ 1091 691y, + 2077y + 5544 .
5544 5544 (v, + )

+ O(K%). (28)

The parameter S/(1207) occurs frequently in what
follows, so we have represented it by the symbol Z in
(28) and in expressions that will follow. We have also
replaced the sum v, + v, by the symbol vy. Lele (1985)
has calculated this expression for ¢ in the special case
a5 = v = 0, but his expression for the coefficient of
k* contains an error.

c. Growth rate of small-k disturbances when v = 0:
Case I

We now turn to case II, where v = 0, so that at
leading order there is a nontrivial solution to (27) where
both #, and 6, are nonzero constants. Then,

Dalpl = _Rou() + Seo,
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subject to the boundary conditions D%}; = ¢; = 0 on
z = (0, —1, which has the solution
Y1 = —(Roup — Sbo)(z*/24 + 23112 — z/24).
At O(k?) we find
oatlo — D’up = —up — Y, (29)
0200 — TD?0, = — 70, — Y. (30)
Integrating both of these equations across the layer, we

find

o2+ 1 — Ry/120 S/120 w\ (0

( 02+T+S/120)(00)=(0)’
(31)

—Ry/120
and for a nontrivial leading-order solution the deter-
minant of the matrix must vanish; that is,

12002 + (S + 1207 + 120 — Ry) o,
+(S+ 1207 —7Ry) = 0. (32)

We now determine the values of R, at which the
basic state becomes unstable to steady or oscillatory
convection. The onset of steady convection occurs
when one root of the quadratic (32) passes through
zero, while the other is negative. One root is zero when
Ry = Rg, where

Rs = 120(1 + Z).
At this point the second root is
og=2(1-7)—1,
which is negative provided
(l—-71)Z <.

Alternatively, the basic state becomes unstable to
oscillatory convection when the roots of the quadratic
(32) are ¢, = tiw (with w real), at Ry = Ry, say. We
find that

Ry = 12011 + 7(1 4+ Z2)]
and that
w?=7[(1 —7)Z - 1].

This bifurcation can, therefore, occur only when

(l—7)Z>r.
We note that whenever this condition is fulfilled Ry
— Rs = —120w?/7 < 0, so the oscillatory bifurcation

1s the first bifurcation of the basic state as R is increased.

When v = 0, then, there are two subcases according
to the sign of (1 — 7)Z — 7. We consider first the case
[“II(S)”], where this quantity is negative, so the basic
state becomes unstable to steady convection, that is,
o, = 0 when Ry = Rs. The solvability condition (31)
then requires that 8, = uy/7, and with no loss of gen-
erality we take 1, = 1. The remaining algebra necessary
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for the derivation of the growth rate is given in the
Appendix and yields

(1+§ﬁ:l$a=—41+z)
T

L R—Rg,, 1091

120 5544

In case II{H), when (1 — 7)Z — 7 > 0, the growth
rate has a nonzero imaginary part, o; = *iwk? + O(k*),
and so the convection is oscillatory. The expressions
for the real and imaginary parts of the growth rate are
rather messy and are given in the Appendix.

k2

k* + O(k%). (33)

d. Analysis of the expressions for the growth rate

In all cases, the real part of the growth rate [given
by (28), (33), or (55)] is of the form

Re(o) = —cya + (R — Ro)k?/cy — csk* + O(k9),
(34)

where the coeflicients are summarized in Table 1. To
this order in the calculation, «, and «, occur in the
expression for the growth rate only in the combination
o = a, + ap; they occur independently at higher order
in the expansion for o.

For a given value of R, the largest growth rate occurs
for the mode with wavenumber k., = [(R — Rg)/
(2¢2¢3)]1"/2. This wavenumber is independent of a:
even for the CSM, with « = 0, the fastest-growing mode
has a finite wavelength whenever R > R,. It is the
nonlinear cascade to the widest cells that results in the
Langmuir circulations of the CSM taking the largest
horizontal length scale available [see Chapman and
Proctor (1980), for the analogous cascade in Rayleigh—
Bénard convection]. Such a cascade is possible in the
CSM because the largest scales are the first to become
unstable and are unstable whenever R > Ry. We can
immediately identify in (34) the role of @ > 0 in sta-
bilizing these modes, because Re(o) - —cja < 0 as
k — 0. We, therefore, expect that the cascade to the
largest possible scales does not occur when « > 0, be-
cause the widest cells are stable.
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Instability occurs first when R = R, and k = k.,
where

R.=Ro+2c(cice)'?, k.= (ciafc3)'*. (35)

Thus, for small « > 0 the critical wavenumber grows
rapidly with o (Proctor 1981; Gertsberg and Sivashin-
sky 1981; Sivashinsky 1982, 1983).

c. The competition between cases I and II when
2+0

When 2 = 0, cases I and II above collapse to case
1. The temperature of the water column is uniform,
and the value of v therefore is irrelevant. On the other
hand, when £ # 0, we have arrived at results that can
be qualitatively different depending on whether v is
zero or nonzero. In the first instance, we of course do
not mean that + is really zero, but that it is small com-
pared to «. In application to physical problems, it may
be unclear which expression for the growth rate [that
is, (28), (33), or (55)] is appropriate for given values
of the parameters. This question, whether instability I
or II occurs first as R is increased, can ultimately be
resolved only by solving numerically the full linear sta-
bility problem obtained from (19) and (21)~(25). In
the small-wavenumber limit that arises in practice,
however, we can provide an asymptotic estimate of
when each case applies, for the (physically realistic)
limit as v — 0. We assume throughout this section
that « is small, and our remarks are specifically in the
context of the small-wavenumber theory developed in
this paper. If the critical wavenumber of the full nu-
merical linear stability problem is too large then the
expansion (26) we have considered becomes invalid,
and the full numerical solution must be used.

Figure 3 illustrates the competition between insta-
bility according to case I and instability according to
case II(H). Several marginal stability curves are plotted
on this figure, for various values of vy, with all the other
parameters fixed. The lowest curves on the figure are
those for the largest values of v and correspond to
steady convection (case I). As v is decreased, the steady
marginal curve is restricted to smaller values of k£, and
the critical Rayleigh number, R., for steady convection

TABLE 1. Coefficients of the expression (34) for the growth rate o in the three cases: I, ¥ > 0, steady convection; II(S),
vy = 0, steady convection; II(H), v = 0, oscillatory convection.

o} (5 5544c¢; Ro
1091 + 6913 + 13863
I 1 120 4+~ 120
Y+ Y
143 S(r—1) 1091
IS _ o1+ =~ S L —
® 1+ 2(r — 1)/r ( T ) 1+ 20— /7 12001 + 2)
1
1 ! _ _
TI(H) 5 240 7 [Z(1 = 7)(31 = 3307) 120[1 + (1 + )]

+ (7 + 1)5307 + 1091)]
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FiG. 3. Critical Rayleigh number, R,, plotted against the wave-
number, k, for stratification S = 100 and inverse Prandtl number
= 1/6.7. The parameters R and S are given by (20). The curves are
all for &, = oy = 0.5 X 107*, and in increasing order of line thickness
correspond t0 v, = v, = 0.5 X 1074, 0.5 X 107, 1.0 X 1073, 20
X 1073, 0.5 X 1072, 0.5 X 107!, 0.5. The flat parts of the curves to
the right of the diagram represent the stability margin for oscillatory
convection [case II(H)]; the approximately parabolic parts of the
curves to the left of the diagram represent the stability margin to
steady convection (case 1). For the smaller values of v, the first bi-
furcation is oscillatory, and the appropriate analysis is that which
assumes vy = 0 [case HI(H )]; the larger values of vy give a steady onset
of convection, and the appropriate case is 1. The crossover between
steady and oscillatory convection is seen to occur for a value of v
between 2.0 X 107> and 4.0 X 1073, The value of @ was chosen
artificially small in order to illustrate clearly the competition between
the two modes of instability.

increases. Eventually, the first instability is no longer
to the steady mode, but to the oscillatory mode, II(H).
We now analyze this competition and the similar com-
petition that arises between instabilities I and H(S) for
smaller values of the stratification parameter, S, and
we compute criteria for deciding which mode is desta-
bilized first.

First, we note that if we set ¥ = 0 in the model, the
instability is always case II. We then consider the
quantity @ = (1 — 7)Z — 7. If @ < 0 then the bifur-
cation of the structureless equilibrium is to steady con-
vection, and we take case II(S); if the inequality is
reversed, then oscillatory convection occurs, and so we
take case II(H).

When v > 0, however, there are two modes that
compete for the first instability of the basic state. If Q
< 0 these are modes I and II(S), while if Q > 0 they
are I and II(H). For arbitrary v > 0 the appropriate
growth rate in the limit as k = 0 is that of case I, for
steady convection. (This is shown in Fig. 3, for the left-
most part of each marginal curve.) Therefore, whatever
the value of v, provided it is larger than zero, there is
a steady bifurcation for sufficiently small k. The im-
portant issue is which instability occurs at the critical
wavenumber, k.. We now estimate this for the case of
small (but positive) v, where there is competition be-
tween 1 and either II(S) or II(H) (according to the
sign of Q). To decide between I and II, we note first
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that in the limit as v — 0, the critical Rayleigh numbers
of the three cases are, from (35),

1/2
R.(1) ~ 120(1 + 2{2‘?} )

1/2
R(IL(S)) ~ 120(1 FT4 z[a(l + z)!@] )

5544
R.(II(H)) ~ 120(1 + 7(1 + =) + (8ac3)'/?).

These expressions are correct to leading order in 2 /7,
as are the following computations. There are two cases.

First, if Q < 0 then we observe that R.(II(S))—R.(1)
has the same sign as v — ys, where

4o
s = "5‘ .
We are concerned with the first instability of the basic

state as R is increased, so case I applies whenever v >
7vs, and case II(S) whenever this inequality is reversed.

¥

In the second case, Q@ > 0, we note that
R.(II(H))— R.(I) has the same sign as y — vy, where
4T
= ——. 36
TET (¥ 2)%2 (36)

The critical wavenumber corresponds to steady con-
vection of case Iif v > vy and oscillatory convection
if the inequality is reversed. The crossover between
steady instability (1) and oscillatory instability [ II(H)]
in Fig. 3 occurs for a value of y between 2.0 X 1073
and 4.0 X 1073, This is consistent with the estimate
(36), which gives for those parameter values yy =~ 2.3
X 1073, (We have used an artificially small value of «
in this example.)

We emphasize that these expressions are formally
valid in the limit as ¥ — O [and the selection of II(S)
or II(H) according to the sign of Q is based on an
analysis of the problem when v = 0], so that the di-
viding lines between the cases given here are approx-
imate. Clearly these guidelines on the choice of cases
fail if ys or vy (as appropriate) is not small.

5. Nonlinear evolution

The disparity between the horizontal and vertical
length scales of the motions when «, and «;, are small
may be exploited for the derivation of a nonlinear evo-
lution equation for the Langmuir circulations [see
Chapman and Proctor ( 1980) for the Rayleigh-Bénard
problem between fixed-flux boundaries]. We empha-
size, as do Chapman and Proctor (1980), that this evo-
lution equation results not from a small-amplitude ex-
pansion, but from a long-wavelength approximation
and, therefore, its solutions are not restricted to be of
small amplitude. In fact ¥ may be O(1), while v
= O(uy) and w = O(uy,), where for the nonlinear
problem d/4dy replaces the wavenumber as the small
expansion parameter.
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The derivation of the nonlinear equation for Lang-
muir circulations is similar to the derivation above of
the small-k expansion for ¢ but the nonlinear terms
are retained.

For constant Stokes drift gradient, A(z) = 1, it is
feasible to compute the coefficients exactly. For case I,
that is, for v > 0, the equation is

. R-Ryu
a ¢ Re 92

(1091 | _ 691y, + 2077y + 5544) 8%

5544 5544 (vvs + 7) =

155 8 {du\?
+rzza;(5) > O
where R, = 120,

¥ = u,P(2) + O(uyy,), (38)

with
P(z) = =5z — 10z2® + 5z, (39)

and
0 = u,,Q(z) + O(uyyyy), (40)

with

z6 z% 573 +2)(yz— 1
0(z) = (? S (7”2””);1 S ))/1.

(41)

In case II(S), the steady convection that occurs when
v =0and (1 — 7)Z < 7 is governed by

(1+M)a—u=—a(l+2)u
T

ot
_ R—Rgd% 1091 %
120 ay 55448}/
155 2(12—1) d [ou\’
* (H 2 )ay(ay)’ (42)

T

where ¥ is given by (38), but now 78 = u + O(uy,).

a. Nonconstant Stokes-drift gradient

For a monochromatic wave train the Stokes-drift
gradient takes the form h(z) = e?*, where « is pro-
portional to the wavenumber of the surface waves. In
the above analysis for constant #(z) we have taken the
limiting case x = 0. We have generalized our results to
other values of k, but in practice we find that we must
perform these computations numerically because the
algebra involved in using the exact expressions is pro-
hibitive. As an example we treat the case v > 0, in fact
the extreme case v, = vy, = o0, so the thermal boundary
conditions are that § = Q0 at z = 0, —1.
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Equation (37) is invariant under the mapping u —
—u, which follows from the up-down symmetry of the
problem when « = 0. (When a; # a3 or v, # v, this
symmetry is weakly broken.) If, however, the Stokes-
drift gradient is not constant then the up-down sym-
metry of the problem is broken, and a symmetry-
breaking term appears on the right-hand side of (37).
The evolution equation for # then takes the form

Qu R-Ry %u 64u

= —aU — —-—(a1 +a22)
ou\?
(@) -

6t Ro 6y
du 92
+b—|—) +d—
(6y) ay?
Note that the parameters «, and «; occur in (43) only
as the sum o = o, + «;. This is just as we noted for
the case x = 0 in section 4d: the up—down asymmetry
of the problem when x # 0 does not change the equal
mathematical role of the a’s (to leading order). The
critical value R, has been calculated by Lele (1985)
for general values of « and is

Ro=323/[1 — k + k3/3 — e (1 + k — &3/3)].

Lele has pointed out that Ry ~ 96«? as k => o0, in
which limit the scaling that we have used for the layer
depth becomes inappropriate, and a more appropriate
scaling would be based instead on the depth of influence
of the Stokes drift.

In Table 2 we give the coefficients of (43) for various
values of the Stokes-drift parameter, x, when v, = v,
= oo. Coeflicients a;, a,, and b are only weakly de-
pendent on «, and the only coefficient that varies sig-
mﬁcantly is d, which multiplies the symmetry—breakmg
term (u; )

By rescaling y, ¢, and u we find that equations of
the form (43) have only two independent parameters,
one that quantifies the instability (and which depends
on a, 4, ¥: 5, R-Ry, and «), and one that quantifies the
departure from up-down symmetry (and which de-
pends only on « and %,;). For a given initial-value
problem, however, a third parameter will be the length
of the computational domain. Numerical investigations
by Chapman and Proctor (1980) and Chapman et al.

TABLE 2. Coeflicients of the evolution equation (43) for various
values of the Stokes-drift parameter, «. The limiting values of the
coefficients a,, a,, b, d as xk —> oo are, respectively, 1/5, 31/252, 128/
105, 99/140. Note that, apart from d, the coefficients are only weakly
dependent on «.

K a, a, b d
0 0.197 0.125 . 1.230 0

1.0 0.197 0.124 1.230 0.158
2.0 0.196 0.124 1.230 0.295
5.0 0.196 0.124 1.227 0.530
10.0 0.198 0.123 1.223 0.644
100.0 0.200 0.123 1.219 0.706
®© 0.2 0.123 1.219 0.707
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(1980) for the case « = 0 indicated that the convection
took the largest horizontal scale available to it. Some
particular numerical simulations by Sivashinsky (1982)
and Gertsberg and Sivashinsky (1981) with o > 0
showed that for mild supercriticality the nonlinear so-
lutions of (43) equilibrate to convection cells of finite
width, whose wavelength is close to the wavelength of
maximum linear growth. We therefore expect that for
a > 0 a similar result will hold for Langmuir circula-
tions, and that they will develop a finite wavelength.

6. Discussion

The form of the convective motion for v fixed, and
nonzero in the limit as « — 0, that is, in case I, may
be inferred from (38) and (40). To lowest order,

¥ =uP(z), 0=u,Q(z2), (44)

where P and Q are the polynomials given in (39) and
(41) if x = 0 and are transcendental functions of z for
all other choices of Stokes drift. Consequently, the hor-
izontal and vertical velocity components are given by,
respectively,

v =u,P(z), (45)

and the horizontally averaged convective heat flux
across any horizontal plane is

—wl = u}, H(z), (46)

where H(z) = P(z)Q(z), and the overbar indicates
the horizontal average.

In Fig. 4 we show the depth dependence of P(z) in
two cases: k = 0 and x = 0. In the first case the poly-

w = —u,,P(z),

0.0
1

-1.0

P()
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nomial is symmetrical about the midline z = —1/2;in
the second, for which we find P(z) = 8z + 1222 + 423,
this symmetry is lost, reflecting the asymmetry of the
Stokes-drift gradient. Contour plots of the streamfunc-
tion are given in Fig. 5 for the same values of x. We
have chosen an aspect ratio of « for the Langmuir cir-
culation cells, which corresponds to a typical value of
k. =~ 1. For x = 0 the motions are symmetrical about
z = —1/2, while for ¥k = oo the Stokes-drift gradient is
confined to a thin layer near the surface, and the con-
vective motions are strongest there. Note that, accord-
ing to (39) and (41), P(z) < 0 and Q(z) < 0 in the
layer. From (45), the sweeping (v) component of the
velocity vanishes where the windward velocity com-
ponent u is either a maximum or a minimum. Fur-
thermore, when u is a maximum, u,, < 0, so down-
welling occurs below lines of surface convergence, and
these correspond to locations of maximum windward
current. At the same location, 8 > 0, corresponding to
a surface temperature excess. Similarly, upwelling,
temperature deficits, and minima of the windward
current coincide. These features are familiar in Lang-
muir circulations and follow from simple physical
considerations.
The heat flux from the air to the sea surface is

T
kjﬂ—vm%QﬂL (47)

and the heat flux from the mixed layer to the water
below is

T
ij+7ML—LﬂL (48)

0.0

-1.0

T T T T T T T T 1
16 14 12 10 08 06 -04 02 00

P@)

FIG. 4. Plots of P(z) against z, where the streamfunction is ¢ = u, P(z) [see (44)].
(i) x = 0: P(2) = =5z* — 10z*® + 5z; (ii) k = co: P(z) = 4z® + 12z% + 8z.
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FIG. 5. Contour plots of the streamfunction y determined from linear theory, y = P(z) sinky. We have chosen the
wavenumber to be k = 1, a value typical of those predicted by our theory. The width of each Langmuir circulation cell is
then 7 times its depth. There is upwelling at y = 0, 2= and downwelling at y = m, each of equal magnitude according to the
linear theory. (i) xk = 0: P(z) = —52* — 102% + 5z; (ii) « = o0: P(z) = 42° + 122% + 8z.

The net heat flux, g, from the surroundings fo the
mixed layer is, therefore,

T
q= —k—d—‘ Y8y, 0, 2) + vy, =1, )], (49)

and if we use the lowest-order result for « = 0 given in
(40), we find the net heat flux

T,uyy

=k dr

(50)
In expressions (47)-(50), k represents the thermal
conductivity of water.

The relation (50) shows that there is a net transfer
of heat to the mixed layer where there is upwelling and
a minimum of surface current in the windward direc-
tion; and a net heat transfer out of the mixed layer
where there is downwelling and a maximum of the
surface current. At the order represented in (50), the
horizontally averaged heat transfer vanishes, but if
one goes to the next order, the net heat transfer is found
to be proportional to uf,y , consistent with (46).

When case H(y — 0) applies, the form of the velocity
field is the same as for case I, so Figs. 4 and 5 are
relevant. However, 6 is now u/ 7, which is larger than
for case I, where 6 oc u,,, because we have assumed
d/dy to be small. The horizontally averaged convective
heat flux in this case is

—w8 = @, P(z)/7, (51)

and the net heat flux from the surroundings to the
mixed layer is

_ k‘yT,u
""‘d‘_ .

The same qualitative remarks made above for case I
apply here as well.

Let us consider the estimates provided by the above
theory for a particular example. Suppose we consider
amixed layer having a depth of 40 m, subject to a wind
speed U, = 10 ms™!, so uy ~ 1 cm s~'; and a tem-
perature variation from the surface to the base of the
mixed layer of 7, = 0.5 K. The latter yields a value
of Ap/p of about 10™* when a coefficient of thermal
expansion 8 ~ 2 X 107* is used. Then, S
= Ri(gd/u%) X 10™* ~ 400R2. Suppose a, and 7,

(52)

are negligible compared to a; and v;, and suppose a;
= (0.24. The destabilizing parameter

d oU%
=R —
R *u, 9z

(0),

on using (9).

Various estimates give R, between 5 and 50, with a
reasonable value being 15. In this case, v > g, so that
case I is appropriate. Instability obtains in this case
when

R> R, ~ 120 + 22V,

where we have used the values for the example to eval-
uate R.. This may be written
6 U S u* u*

== + .
—=2(0)> 120 arE M0

Replacing the wave field by a monochromatic wave
train gives

— 2
. 2¢°w,

where ¢ is the wave slope measure (wave amplitude
times wavenumber, or 7 times the wave height divided
by wavelength ), and w is the wave frequency. The latter
may be estimated as g/ U,, in which case the stability
condition is on the wave slope, € > 0.06, where we have
inserted the numerical values (including R, = 15) for
the example. The critical wavenumber in this case is
k. =~ 0.13, which is very small.

In the case S = 0 (corresponding to 7 = 0), a rep-
etition of the above procedure leads to the stability
condition € > 0.62Vu, /d ~ 0.01 on again using R,
= 15. Thus, only very weak waves are required, and
so typical wind-generated seas are expected to be sub-
stantially supercritical in the absence of stabilizing
temperature gradients. For this example, we find k, =
1.1 from the small-a theory when S = 0, and this agrees
very well with the numerical prediction from the partial
differential equations of linear stability theory.

As Sincreases, the length of the marginally unstable
mode (“windrow” spacing) increases. Small temper-
ature differences over the mixed layer can result in large
values of S for a mixed layer that is tens of meters deep.
In this case, the nominal windrow spacing calculated
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in this way increases with the one-quarter root of S,
and the siope of the surface waves needed to cause
instability increases with the square root.

7. Summary

We have considered the Craik-Leibovich theory for
Langmuir circulations and have introduced new
boundary conditions to account for the transmission
of stress at the top and bottom of the mixed layer.
These are mixed boundary conditions involving pa-
rameters that are small in many cases of oceanographic
interest; we have denoted these parameters by «, and
oy at the top and bottom of the mixed layer, respec-
tively. We have also introduced mixed boundary con-
ditions for the temperature, with similar small param-
eters, vy, and v;. In section 2 we described the derivation
and the physical basis for these boundary conditions
and estimated values for the parameters «,, oy, v:, Ys.
With these new boundary conditions we have exam-
ined the linear stability of the basic state of structureless
equilibrium.

Previous treatments of the Craik-Leibovich theory
using the CSM, where a constant stress is assumed at
the top and bottom of the mixed layer (equivalent to
setting &, = ap = 0 in the present work), had the
unfortunate property that the first motions to become
unstable were of infinite wavelength. By taking a pos-
itive value for ¢ = o, + a3, we have made finite the
wavelength of the first unstable motions. Further, for
small values of «, k, oc a'/*, where k, is the critical
wavenumber to which the first instability arises as R
increases through R.. We expect that the neglect of
ap is less appropriate in modeling the stress transmis-
sion than the neglect of a,—however, each of these
parameters plays the same mathematical role in fixing
a finite horizontal length scale for the motions. Indeed,
to leading order o, and «; occur in the expression for
the linear growth rate only as the sum «o; + a;. We
have analyzed the problem in the physically realistic
limit as o = 0 by expanding the solution as a power
series in k. The results of this analysis are described
in section 4.

Such an expansion indicates that, according to the
values of parameters related to the temperature field,
there are three cases for the linear stability problem.
The first (1) applies when the parameter v = v, + v,
is not small and is analogous to the problem of Ray-
leigh-Bénard convection between poorly conducting
boundaries. In this case the convective motions for R
just above R, are steady. The other two possibilities
[HI(S) and II(H)] have not previously been examined
in either this, or in analogous, problems. These two
cases apply for small values of the parameter v; that
is, when the temperature boundary condition is almost
constant flux. Case II(S) applies when the basic state
has a slight density stratification, while case II(H) ap-
plies for larger values of the stratification parameter,
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S. The former, like case I, produces steady convective
motions, although with greater temperature variations
than 1. The latter yields oscillatory convection. Decid-
ing which case applies for given values of the param-
eters is a nontrivial matter. In section 4e we described
a way to estimate the appropriate case, which is valid
in the physically interesting limits as «, ¥ — 0. We
have not explored the interactions between the different
modes of instability when the parameters are near the
boundary between cases II(S) and II(H).

The new boundary conditions on the stress success-
fully overcome the previous problem of infinite-wave-
length motions predicted at onset by the CSM. When
a = 0 and R > Ry, the mode with the greatest linear
growth rate has finite wavelength [oc (R — Ro)™'/?],
but nonlinear simulations (Chapman and Proctor
1980) indicate that in spite of this, motions cascade to
the largest horizontal scale available. For the present
model, the largest horizontal scales are stabilized, and
we therefore anticipate a nonlinear cascade only up to
some finite cell wavelength, comparable to that of the
linearly most unstable mode.

In section 5 we gave the nonlinear partial differential
equation governing the steady motions just above onset
for cases I and II(S). In each case the equation takes
the same form, but with different coefficients. It governs
only the perturbation, u, to the wind-directed velocity;
the temperature field and the streamfunction can be
constructed from u and its derivatives. We defer a de-
scription of the solutions to this nonlinear partial dif-
ferential equation to a later date.

The small-k expansion, applied for physically plau-
sible values of parameters for the Langmuir circulation
problem, yields a critical wavenumber k. ~ 1. Al-
though this value might seem inconsistent with an
analysis that assumes k to be small, we find a posteriori
agreement with a solution of the full linear stability
problem obtained from (19). For example, at the end
of the previous section we deduced a value k. = 1.1
for an unstratified basic state with @, = 0 and ap
= (.24. The solution of the full stability problem, mak-
ing no assumption about the size of k, yields k. = 1.02,
which differs from the small-k result by less than 10%.
Other features of the solution, not just the critical
wavenumber, are in equally good agreement.
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APPENDIX
Algebraic Details
a. Calculation of the growth rate: Case I

For the purpose of the linear-stability calculation we
may take 4y = 1. Then at O(k!) in the linearization
of (19),
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D4‘0l = _RO,

subject to the boundary conditions DZ\I/I =y;=00n
z = 0, —1. The solution is

V1 = —Ro(z%/24 + z3/12 — z/24).

At O(k?) the value of ¢, is determined from a solv-
ability condition on the equation for u,. We have

— 03 +Dzu2 =1+ '¢/1,

subject to the boundary conditions Du, = Qonz =0,
—1. Integrating this equation with respect to z and ap-
plying the boundary conditions on u, gives

‘(o
—0y = f (1 + y1)dz = 1 — Ro/120.
-1
We choose Ry = 120 (Nield 1967) so that the growth
rate is of order k*; that is, o, = 0. Then
u = —2%/6 — 2%/2 + 52316 + z%/2 — 1/56,

agd we have chosen the constant of integration so that
JZ, wadz = 0.
The leading-order temperature perturbation satisfies
TD 262 = l//1 s
subject to the boundary conditions D8, — 6, = 0 on
z=—1and D8, + v,0, = 0 on z = 0. The solution is
z° z

=252 (et D(vz— 1)
6 2 6 2(vevs + )

We note that for this solution to exist we require the
assumption made previously, that v > 0.
The equation for ys,

D*3 = 2D*; — Roty — R, + SB,,

6 5

(33)

can be solved subject to the boundary conditions that
D3 = 3 =0 on z = 0, —1. The expression for 3 is
quite lengthy and is omitted here. ‘

At O(k*) we obtain o4 from a solvability condition
applied to the equation for u4:

—0s + D%us = uy + ¥, (54)
subject to the boundary conditions
Duy=-a, on z=0, Dus=a, on z=-—1.

Integrating (54) across the depth of the layer gives

_ [ 1091 + S\ 691y + 2077y + 5544
5544 665280(vys + v+ vp) |’

and hence (28).
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b. Calculation of the growth rate: Case II(S)
Solving (29) and (30) foi #, and 6, we find

= —2%/6 —23/2+523/6 + 22/2 — 1/56 + u},
70, = —2%/6 —23/2 + 523)6 + z2/2 — 1/56 + 705.

Here, u5 and 65 are constants of integration. We may
set one (but not both) of these quantities to zero, and
choose u5 = 0.

The equation for y; is again (53), subject to the
same boundary conditions as given below (53). As be-
fore, we omit the lengthy expression for y3.

At O(k*) we find the governing equations for #4 and
4 to be

oatty — Duy = —u; — ¥,
0'400 - TD204 = _1'02 - ¢3.

Integrating both equations across the layer and applying
the boundary conditions, that Duy = —a, on z = 0,
Dus=a,onz=—1,D8,=0o0nz=0,—1, we find
the two conditions

-1 —-72 O4
(—1/1 —r(1 + z))(afz)

_(1091/5544 — R,/120 + «
1091/5544 — R,/ 120

We note that the matrix has determinant 7 — 2(1
— 7), which is nonzero (in fact, negative) by our orig-
inal assumption of a steady bifurcation, so a unique
solution of this equation exists. In particular,

2(r-1)\ R, 1091
(H . )"“_ a(l+2)+ 150~ 554a°

and hence (33).

¢. Calculation of the growth rate: Case II(H)

In case II(H), where (1 — 7)2 > 7, the basic state
becomes unstable to oscillatory convection. An analysis
similar to those presented above yields ¢ = o, * ig;,
where to O(k*)

4 R - RH

=— =4 —k?
T T2 T 40

4

{Z(1 — 7)(31 — 5307)

11088
+ (1 + 7)[5307 + 1091]}, (55)
and
[~ (R—=Rpg)
2 1) T\ T RH),»
g =wk‘+w { 240 k

4

11088

+%(1+2)+
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X [r(r + 1)(5307 + 1091) — 2Z7(1 ~ 1)

X (4997 + 1621) — 312 2%7(7 — 1)2]] .
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