Colliding Message Pair for 53-Step HAS-160*

Florian Mendel

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

Florian.Mendel@iaik.TUGraz.at

Abstract. We present a collision attack on the hash function HAS-160
reduced to 53-steps. The attack has a complexity of about 23° hash com-
putations. The attack is based on the work of Cho et al. presented at
ICISC 2006. In this article, we improve their attack complexity by a
factor of about 22° using a slightly different strategy for message modi-
fication in the first 20 steps of the hash function.

Keywords: cryptanalysis, collision attack, hash functions

1 Introduction

At ICISC 2006, Cho et al. presented a collision attack for HAS-160 reduced to 53
steps. Their attack has a complexity of about 2°° 53-step HAS-160 computations,
which is barely feasible on an ordinary PC in practice. In this article, we show
how to improve their attack by using a slightly different message modification
technique to fulfill the conditions on the state variables in the first 20 steps
of the hash function. With our method, we find a colliding message pair with
a complexity of about 23° 53-step HAS-160 computations. This improves the
attack complexity of the original attack of Cho et al. by a factor of 22, which
makes the attack feasible in practice.

The remainder of this article is structured as follows. A description of the hash
function is given in Section 2. The collision attack of Cho et al. is described in
Section 3. In Section 4, we describe the new improved collision attack. A sample
colliding message pair is given in Section 5. Finally, conclusions are presented in
Section 6.

2 Description of the HAS-160

HAS-160 is an iterative hash function that processes 512-bit input message blocks
and produces a 160-bit hash value. The design of HAS-160 is similar to the
design principles of MD5 and SHA-1. In the following, we briefly describe the
hash function. It basically consists of two parts: message expansion and state
update transformation. A detailed description of the HAS-160 hash function is
given in [1].

* This work is in part supported by the Austrian Science Fund (FWF), project P18138.

Message Expansion. The message expansion of HAS-160 is a permutation of
20 expanded message words w; in each round. The 20 expanded message words
w; used in each round are constructed from the 16 input message words m; as

follows.

[Round 1 Round 2 Round 3 Round 4

wo mo mo mo mo

w15 mis mis mis mis

wie wo D w1 B wa G ws w3z D we G wg D wiz |wiz2 B ws B wia B wy| wr O wa G wiz G ws
wi7| wq O ws D we Dwr | wis G we G ws G ws | wo B wyg B wa G wii | wy D wia B wy O wa
wig| wg G wg G wip B wi1 (w11 O wig G w1 G we|ws G wiz G we B wis|wis B wig D ws B wo
wig | Wiz G wiz G wia O wis|wr B wio G wiz G wo| ws B wi B wig G w3 (w11 S we B w1 B wiz

For the ordering of the expanded message words w; the following permutation
is used:

[stepi [[1]2[3[4][5]6]7]
Round 1{18| 0 2 19| 4
Round 2{|18 9 19|15
Round 3|18 14 19| 0
Round 4|]18 13 19(3

[9]10[11]12]13]14[15[16]17]18[19]20]
16[8 [9 [10[11]17]12[13]14]15
16[11]14] 1[4 |17] 7 [10[13] 0
16[4[13] 6 [15]17| 8|1]10[3
16[15[10[5[0 17[11]6 |1 12

w
| Ul O =

8
5
2
9

O N O D

1
6
14 5

State Update Transformation. The state update transformation of HAS-160
hash function starts from a (fixed) initial value I'V of five 32-bit registers and
updates them in 4 rounds of 20 steps each. Figure 1 shows one step of the state
update transformation of the hash function.

L4 [B [[b [E]
+»(<<s1,) af
e K
(=< 82 »;f]
T
‘ Aivg ‘ Bii; ‘ Cis ‘ Diy; ‘ Eivp ‘

Fig. 1. The step function of HAS-160.

The function f is different in each round: fj is used in the first round, f; is used
in round 2 and round 4, and f5 is used in round 3.

folx,y,2) = (@ Ay) ® (—z A 2)
f1(x,y,z) =xPbydz
folz,y,2) =(xV-z)dy

A step constant K; is added in every step; the constant is different for each
round. For the actual values of the constants we refer to [1]. While rotation
value sy € {10,17,25,30} is different in each round of the hash function, the
rotation value sy is different in each step of a round. The rotation value s; for
each step of a round is given below.

step i[1] 2 [3[4 [5] 6 [7] 8 [9]10]11][12[13[14]15[16]17[18]19]20]
[s1 [p[11]7[15]6]13[8[14]7[12] 9 [11] 8 [15] 6 [12[9 [14] 5 [13]

After the last step of the state update transformation, the initial value and the
output values of the last step are combined, resulting in the final value of one
iteration known as Davies-Meyer hash construction (feed forward). In detail, the
feed forward is a word-wise modular addition of the IV and the output of the
state update transformation. The result is the final hash value or the initial value
for the next message block.

3 The Attack on 53-step HAS-160

In this section, we will briefly describe the attack of Cho et al. on 53-step
HAS-160. A detailed description of the attack is given in [2]. For a good un-
derstanding of our results it is recommended to study it carefully.

The attack is based on recent results in cryptanalysis of hash functions [3,4].
It can be basically described as follows.

1. Find a characteristic for the hash function that holds with high probability
after the first round of the hash function.

2. Find a characteristic (not necessary with high probability) for the first round
of the hash function.

3. Use message modification techniques [3] to fulfill conditions for the charac-
teristic in the first round. This increases the probability of the characteristic.

4. Use random trials to find values for the message bits such that the message
follows the characteristic.

3.1 Characteristic for 53-step HAS-160

Finding a good characteristic is the most difficult part of the attack. In Table 1,
the characteristic which is used by Cho et al. in the collision attack on 53-step

HAS-160 is given. Note that we use the same differential path for our improved
collision-attack in Section 4.

Signed bit differences [3] are used to describe the differential path for 53-step
HAS-160. To improve readability, only the differences in the expanded message
words and state variable A for each step are given. Note that the differences of
the state variables B,C, D, E are defined by the differences in state variable A.

Table 1. Characteristic for 53-step HAS-160 (cf. [2]).

step AA Aw
1 —32 32
2 11, 12
3 18,...,21,—22
1 1,...,16,—17 .
5 7,8,—-9,18,—-19,32 32
6 3,—4,17, —20, —21, 22 32
7 —14,...,-17,18,22,29
) 4,10, 11 .
9 13,-15,16,18,—19, 30, 31, —32 32
10 —10, —11,12, —17, —24, 25 .
11 —1,2,-13,...,—15, 16,28, —32 32
12 —8,9, 17, 21, 22, 26 32
13 8,10, 11, —12, 26,27, —28
14 ~10,17,18, 19,28, .. .,30, —31
15 11,...,14, 15, 16,20, —23,26, 27 .
16 |3,5,6, -7, —11, 12, 13, —20, 21, —22, —31, 32| 32

—
-

11,18, —20, —26,27
1,5,18,20,22, 27

4,13,30 .

—4,11 32

11 .

30 32

32

—_
o ¢]

—_
Ne)

[N}
o

[\V]
—_

[N]
N

[\]
w

15
-15

o
g

[\]
ot

[\]
(=2}

32

N
BN

[\]
(09]

N
NeJ

32

w
o

w
—_

w

3.2 Set of Sufficient Conditions

In order to guarantee that the message follows the characteristic given in Table 1,
a set of conditions on the state variables have to be fulfilled. In Table 2, the set
of sufficient conditions for the first 25 steps of the hash function is given.

Table 2. A set of sufficient conditions on A; for the differential path given in Table 1,
where ‘a’ denotes a condition A;; = A;—1,j, ‘b’ denotes a condition A;; # Ai—1j,
‘c’ denotes a condition A;; # Ai—1,j+7, ‘d’ denotes a condition A;; = Ai_1,j-10,
‘e’ denotes a condition A; ; = A;_1 17, and ‘f’ denotes a condition A; ; # Ai_1 j—17.

. condition on bits .
state variable 39-95 0417 16-9 8-1 F#conditions
Aq - ———— 110- 1--——- aa 7
Ao 0100---1 ——-—===—= ———- 100a 01---1-- 12
As 1100aaa0 aal0000- ------ 10 10aaalaa 25
Ay 11000-11 --10---1 00000000 00000000 26
As 01110111 00110100 00100111 00-11--- 28
Ag 0--00111 110111-0 0000001- 00a010-0 27
Az 1010101- --0-1001 1111--10 ——————- 1 19
Asg 100-0000 1-1a0--- -111-011 alaalall 25
Ag 100-0101 10-0010- 0110---- -11-0-00 22
Ao --000-10 10a01-01 1-1-0110 000010-- 24
A 12100010 -1001-10 01110001 01---001 27
Ao 1-1--100 10011111 1---0000 1-0--110 23
Ais 00--1001 11-00000 1---1001 0Oal110-11 25
Aig 010001-0 --101100 0--a101- --111a00 24
Aqs ---11101 -1000-10 11000001 01100a00 27
Aqg 01010111 00101--0 1--01110 010010-1 27
Az 111--011 01011-00 00-10110 0--10--1 24
Aqg 01--00-- -00-0-00 11-1--11 ---00b-0 18
Aqg --0----- ---d-¢c—- -0-0-1-- -——-0-—- 7
Asg ----0-b- ---b---- --——-0-- -——f1--—- 6
Aot --f-0--- ---———- -f-a-0-- -——————- 5
A22 -—1--—— - e——=—= ———————— ———————— 2
A23 ____f ____________ e—————— ——-—————= 2
Aoy --b----- -——=—--= 0= === 2
Aoy |- e - 1--—- - 1

3.3 Finding a Colliding Message Pair

In order to find a colliding message pair, we have to find a message, that fulfills
all the conditions given in Table 2. In total there are 434 conditions on the

state variables. Therefore, the probability that a random message follows the
characteristic can be estimated by 27434,

However, the probability can be improved by using message modification
techniques. The main idea of message modification is to use the degrees of free-
dom one has in the choice of the message words to fulfill conditions on the
state variables. This improves the probability of the characteristic. It is clear
that the number of conditions that can not be fulfilled by message modification
techniques determine the final attack complexity.

In [2], Cho et al. describe an algorithm for finding a colliding message pair for
53-step HAS-160. The algorithm has a complexity of about 2°° 53-step HAS-160
computations. It can be summarized as follows:

1. Use basic message modification techniques to fulfill all conditions on state
variables A1, ..., A1g. This determines the message words mq, m1, ms, ms,
ma, ms ,Mg, My and the values for mg®mgo®mi19®m11 and moPm13PM14P
mys. This adds only small additional cost to the attack complexity. Only 10
steps of HAS-160 have to be computed to determine all these message words.

2. At step 11, the dependent expanded message word wig = mg@my1 Hme Hmg
is already fixed by the first step of the attack. Since there are 27 conditions
on Aj; in step 11, we may fulfill them with a probability of 2727. Hence, we
have to repeat step 1 of the attack about 227 times to find message words
satisfying all conditions in steps 1-11.

Finishing this step of the attack has a complexity of about 227 - 11 step
computations of HAS-160.

3. Use again basic message modification techniques to fulfill all conditions on
Aqo, Aqz, A14. This determines the message words mg, mg, mi1g. Since these
message words can be chosen freely, this adds only small additional cost (3
step computations of HAS-160) to the attack complexity.

4. At step 15 and 16, the dependent words m1; and my @ ms @ mg @ my are
already fixed by the previous steps of the attack. Since there are 27427 = 54
conditions on A;5 and A1 we may fulfill these conditions with a probability
of 2754, Since there are about 224 possible choices for mg, mg, mig in the
third step of the attack (see Table 2), step 3 of the attack can only be
repeated 22* times. Hence, the whole attack has to be repeated about 23°
times to find message words following the characteristic in steps 1-16.
Finishing this step of the attack has a complexity of about 239-(227.11+224.5)
step computations of HAS-160. This is approximately about 2°° 53-step
HAS-160 computations.

5. To fulfill the conditions on Aj7, A1g, A1g basic message modification tech-
niques are used again. This determines the message words mqis, m13, M14.
Since these values can be chosen freely, this adds only small additional cost
(3 step computations of HAS-160) to the attack complexity.

6. After step 19, all the message words has been determined. Since there are
still 18 conditions on Asgg, ..., Ass (see Table 2), we may satisfy the with
probability of 2718, Therefore, step 5 of the attack has to be repeated about
2'8 times to fulfill all the conditions in steps 20-25. This adds negligible cost
to the final attack complexity.

With this method a collision can be found in 53-step HAS-160 with a complexity
of about 2°° 53-step HAS-160 computations. For a detail of the description of
the attack we refer to [2].

4 Improved Collision Attack

In this section, we show how the attack complexity can be reduced to 23°. In
the attack, we use the differential path of Cho et al. given in Section 3. To
improve the attack complexity, we use a slightly modified strategy for message
modification in the first 16 steps of the hash function. The main idea of our new
method is to reduce the complexity of the collision search algorithm in steps
1-16. Therefore, we use the fact that an additional (first) message block can be
used to generate an arbitrary IV (for the second block). This additional degree
of freedom we use to reduce the complexity of the attack. The attack can be
summarized as follows.

1. Choose arbitrary values for Ay, Az, Ay, A5, Ag satisfying all conditions.

2. Apply message modification techniques to steps 7-15. This determines the
message words my, ms, Mg, M7, Mg, Mg, M1g, M11 and the value for mo@Em, P
mo @ mg. At step 16, the dependent words my, ms, mg, my are already used.
Since there are 27 conditions at that step (see Table 2), we may satisfy all
the conditions from step 7 up to step 16 with a probability of 2727. Hence,
we have to compute about 227 - 10 steps of HAS-160 to find message words
that follow the characteristic from step 7 to 16.

3. Repeat step 2 of the attack about 27 times to get about 27 different values
for mg @ mg P migEm11 and save them in a list L. We will need these values
in the next step of the attack.

Finishing this step of the attack has a complexity of about 27 - 227 - 10 step
computations of HAS-160. This is equivalent to about 2316 53-step HAS-160
computations.

4. Use an arbitrary (first) message block to get a suitable IV (for the second
block). Note that we have to calculate on average 2 IV, since 1 condition
on the I'V has to be fulfilled to guarantee that the characteristic holds in the
following steps.

Calculate A; (for all values in L) and check if the 7 conditions on A; are
satisfied. Since there are 7 conditions on Aj, we always expect to meet the
conditions after trying all 27 values in the list L.

Once we have determined A1, this also determines mqg, m1, mo, m3 and mi2®
mi3 ® mig B mqs. Since mg ® my G mo G mg has already been fixed in the
second step of the attack, this step of the attack succeeds with probability
2732,

Hence, we have to repeat this step of the attack about 232 times to find
message words following the characteristic in steps 1-16.

Finishing this step of the attack has a complexity of about 232 (27 +5+53-2)
step computations of HAS-160. This is approximately 2342 53-step HAS-160
computations.

5. Do steps 17 to 25 as described in the original attack (see Section 3). The
complexity of these steps can be neglected for the final attack complexity.

Hence, we can find a colliding message pair for 53-step HAS-160 with a complex-
ity of about 2316 4 2342 ~ 235 53 step HAS-160 computations. Note that the
complexity of the attack can be slightly improved by increasing the size of the
list L. A colliding message pair for 53-step HAS-160 is given in the next section.

5 A Colliding Message for 53-step HAS-160

Applying our improved collision attack, we can construct a collision with a com-
plexity of about 23° 53-step HAS-160 computations. The colliding message pair
is given in Table 3. Note that hg is the initial value, h; is the intermediate hash
value after the first block, and hy is the final hash value after the second block.

Table 3. A colliding message pair for HAS-160.

[ho [67452301 EFCDAB89 98BADCFE 10325476 C3D2E1FO0 |

34338ECF ED111A03 EB2EE891 763594E3 96080160 4558A929 EC731044 B7BADDOB
BC637C76 B21FA220 47493D4D B2AEAB79 A68354CF 5833D227 46DE18D7 FOFFS5F3B

’ M,

[h1 [40D4B34F F1185C20 ADE02611 9B666ATE 34769338 |

4E8F4717 DBE79F84 89DSFE81 04B34CA7 01EA3C40 A364A502 059F6AB9 22774031
9F3E80CE D647A926 1F61242A A1E224AB 901A5AEE 1BCEEEB1 EDEAA891 31BDFF9A
4E8F4717 DBE79F84 89DSFE81 84B34CA7 01EA3C40 A364A502 859F6AB9 22774031
1F3ESOCE D647A926 1F61242A A1E224AB 901ASAEE 1BCEEEB1 EDEAA891 B1BDFF9A
00000000 00000000 00000000 80000000 00000000 00000000 80000000 00000000
80000000 00000000 00000000 00000000 00000000 00000000 00000000 80000000

[ha [96D30020 DA815BDF DF265AB5 819CDE2E 5B887F3E |
| h} [96D30020 DA815BDF DF265AB5 819CDE2E 5B887F3E |

My

My

AM

fily

6 Conclusion

In this article, we presented an improved collision attack on 53-step HAS-160
and an actual colliding message pair. Our new improved attack has a complexity
of about 23 53-step HAS-160 computations. In the attack, we used a slightly
modified strategy to do message modification in HAS-160. With this method,
we can improve the previous attack by a factor of 22°, which makes the attack
feasible in practice.

However, it still remains an topic of further research if the attack of Cho et al.
on 53-step HAS-160 can be extended to the full HAS-160 hash function. This is

work in progress.

Acknowledgment

The author would like to thank Aaram Yun for fruitful discussions on this article.

References

1. Telecommunications Technology Association. Hash Function Standard Part 2: Hash
Function Algorithm Standard (HAS-160), TTAS.KO-12.0011/R1, December 2000.

2. Hong-Su Cho, Sangwoo Park, Soo Hak Sung, and Aaram Yun. Collision Search
Attack for 53-Step HAS-160. Accepted for Information Security and Cryptology -
ICISC 2006, 9th International Conference, Busan, Korea, November 30 - Decem-
ber 1, 2006, to appear in LNCS 4296. Springer 2006.

3. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005: 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005. Proceedings, volume 3494 of LNCS,
pages 19-35. Springer, 2005.

4. Xjaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-
1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 14-
18, 2005, Proceedings, volume 3621 of LNC'S, pages 17-36. Springer, 2005.

