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ABSTRACT

The auvthors describe a self-sustaining baroclinic inertial oscillation whose energy source rests in a uniform
horizontal temperature gradient. This energy is released through the agency of a stratification-dependent mixing
law that is meant to crudely model the occurrence of enhanced mixing when the stratification weakens. The
mixing is chosen to be negligible over most of the cycle and large only when the stratification is small.

Sustained inertial oscillations are shown to be the natural end state of the instability of possible steady
solutions when the decrease of the mixing rate with temperature exceeds a critical value. If the variation of the
mixing rate with temperature is abrupt, a finite-amplitude oscillation is sustained, although a possible steady

solution is linearly stable.

1. Introduction

In the course of some numerical experiments carried
out by one of us on a model of an oceanic surface layer
with a horizontal density gradient, it was noticed that
self-excited inertial oscillations could occur. Qualita-
tively, the oscillation can be related to the model’s pa-
rameterization of mixing in the following way. In the
numerical model, which has many layers in the vertical,
the layers respond to the presence of an imposed baro-
clinic pressure gradient with a geostrophic adjustment
process. Although the whole layer is initially supposed
to be vertically well mixed, the subsequent adjustment
in the presence of the horizontal temperature gradient
increases the stratification. During adjustment, the ac-
companying inertial oscillation causes an overshoot of
the possible geostrophically balanced state, and the
stratification becomes so weak that vertical mixing is
enhanced, quenching the motion. The system thus
finds itself again in an unbalanced state and proceeds
to restart the adjustment process reactivating the in-
ertial oscillation. The cycle was observed to repeat in-
definitely.
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Our purpose in this paper is 1o examine a very simple
model of a self-sustained inertial oscillation with a
qualitative similarity to the more complicated model
of the original numerical experiment. Our method is
to construct a system with as few working parts as pos-
sible, which yet reproduces the phenomenon of self-
excited oscillations. The central mechanism of our
model is a simple stratification-dependent mixing law.
We show below that if the mixing increases with de-
creasing stratification, self-sustained oscillations can
result spontaneously.

In section 2, we describe the physical model and
discuss the possible steady states. An energy argument
is described that demonstrates that sustained oscilla-
tions about this steady solution are possible with a
mixing coefficient that decreases with increasing strat-
ification. In section 3, we discuss the instability of the
steady solution that results when a “soft” mixing law
is used, that is, one in which the dissipation smoothly
decreases with stratification. Although less relevant
than the “hard” mixing law of the subsequent section
(for which the dissipation is an abrupt function of tem-
perature), the “soft” law has important advantages of
analytical tractability and usefully demonstrates the
instability of the steady solution. Section 4 describes
the “hard” mixing scenario in which the mixing sud-
denly increases when a minimum stratification thresh-
old is passed. Numerical and analytical evidence is
presented for the existence of persistent self-excited os-
cillations.

In all cases, the ultimate energy source for the motion
rests in the imposed baroclinic pressure gradient, which,
in turn, is a consequence of a large-scale temperature
gradient in the surface layer, It is the temperature de-
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pendence of the mixing that allows this steady forcing
to become tapped for the sustained inertial oscillations.

2. The model

Our goal is to provide the simplest model to describe
the generation of inertial oscillations seen in the pre-
viously noted numerical experiments. The heart of the
mechanism is the quenching of the baroclinic velocity
by vertical mixing for weak or unstable stratification.
It seemed to us then that a two-layer model was the
maximum permissible simplification containing that
process. Therefore, consider a model of the oceanic
surface layer partitioned into two layers of equal depth
#h (see Fig. 1) in which there is a preexisting large-scale
horizontal temperature variation. Each layer then has
initially the same temperature, and the two-layer model
is the minimum resolution of the baroclinic structure
that subsequently develops. We take the large-scale
temperature gradient, in the x direction, to be constant;
for example,

aT
—=—B 2.
=B (2.1)
from which, with the hydrostatic approximation,
o
pie poagBz, (2.2)

where « is the coefficient of thermal expansion and pq
is the mean density, and where z is measured from the
interface between the two layers. In deriving (2.2) from
(2.1), we have assumed that there is no vertically av-
eraged pressure gradient; that is, we are concentrating
on the baroclinic response of the fluid. To simplify
matters further, we also assume that the velocities in
each layer are z independent and respond to the ver-
tically averaged pressure gradient. In the upper layer

this yields
ap\ _ h
< 6x> = —poagB 2

E U,V T=-Bx+6

* ——
h -y, -v T=-Bx-8

'

FIG. 1. The two-layer model in which the inertial oscillations take
place. A large-scale, spatially variable temperature field, T = — Bx,
exists in both layers. The subsequent baroclinic pressure gradient
drives a purely baroclinic velocity field (u, v) and (—u, —v) in each
layer. The temperature perturbation is produced by the motion in §
(—0) in the upper (lower) layer. These fields are spatially constant.
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while in the lower layer the pressure gradient is equal
but of opposite sign. The application of this horizon-
tally uniform pressure gradient will give rise to veloc-
ities (u, v) and temperature anomaly 6 in the upper
layer that are also horizontally uniform in space and
equal and opposite to those produced in the lower layer.
We further suppose that momentum and temperature
are dissipated by simple Rayleigh friction and New-
tonian cooling proportional to the velocity differences
between the two layers. Although the coefficients of
friction and cooling could be distinct, indeed there is
a conceptual advantage in keeping track of which dis-
sipation mechanism is important; for mathematical
simplicity we take them to be equal.

Under these simplifications the velocity and tem-
perature anomalies satisfy

du h

P poagB'z' — Au,

dv

Ft— + fu = —Av,

d
7? —uB = —A0, (2.3a,b,c)

where fis the Coriolis parameter and 4 is the mixing
coeflicient. Note that the vertical stratification of the
two-layer model is proportional to 6.

It is convenient to introduce as scales for time, ve-
locity, and temperature, ', poagBh/2f, and poagB>h/
212, respectively. In terms of these scales, the nondi-
mensional equations of motion are

—@——v—1~au

dt ’

i1—7+u——av

dt ’

do

— —u=—af. 2.

a u a (2.4a,b,c)

Our interest is in the case where the mixing coeffi-
cient a is a function of the stratification 6. In all cases,
we expect the mixing to decrease if the stratification is
enhanced. We consider two “laws” of mixing. The first
is the “soft” or smooth law

—m 8

a=aue ™, (2.5)

@n which a(6) decreases smoothly as the stratification
increases. The second case is the “hard” or abrupt law

ap, 0>46.,
a =
ac,

6 <4,
where a. > ay, so that the mixing parameter suddenly
increases when 8 falls below the critical value 6.. In
place of (2.6), its analytical equivalent will on occasion
be used,

(2.6)
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a = {(an + a;) + (a, — a.) tanhmy(6 — 6,) },

1
2
(2.7)

where m; is large. This latter form is convenient for
numerical calculation.
Steady solutions of (2.4a,b,c) can be found as

I A
)
Uo T a3 (2.8a,b)
where
ao = a(bo). (2.9)

If a were constant, or if a(8) satisfies the “soft” law,
a little thought shows that only a single simultaneous
solution of (2.8a) and (2.5) is possible. If a(#) is given
by (2.7), however, three steady solutions are possible
as demonstrated in Fig. 2. If a, or 6, are too small, only
one steady solution exists as indicated by the intersec-
tion of the curves in the figure. If the discontinuous
“hard” law (2.6) is used, the third, intermediate, so-
lution is undefined, that is, nonexistent.

Our interest lies in both the linear stability of the
steady solutions and the dynamics of finite-amplitude
sustained oscillations, that is, the possibility of limit
cycles.

In the latter case, it is helpful to introduce v, as the
departure of v from its geostrophic value; that is,

(2.10)

since the inertial oscillations to be described are oscil-
lations about the geostrophic value. Thus, the complete
ageostrophic velocity (u, v,) satisfies

v=—1+7v,

51—11 -V, = —au

dl a b4

dv,

@ +u=—-a(v,— 1). (2.11a,b)

An energy equation for the ageostrophic motion may
be found as

dw+v7) _

2 2
—a(vg + u*) + av,,
dt 2 (a ) a

(2.12)

and we note that the sign of the final term in (2.12) is
a priori indeterminant.
At the same time, following (2.8a),

_ 8=1+4,, (2.13)
so that 4, satisfies
ds,

-d_t-'— u=-—a(l +46,). (2.14)
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FiG. 2. The dashed curve represents the steady solution for 8 versus
the dissipation coefficient a(8) (for the case k = a). Curves (a) and
(b) represent two mixing laws. In each case, there is low (high) dis-
sipation at high (low) stratification, 6. In case (a) there are three
possible steady solutions. In case (b) there is only one.

Adding (2.11b) and (2.14) yields

ﬁ (8, +v,) = —av, — ab,. (2.15)
dt

Now suppose we inquire as to whether a sustained
oscillation of the ageostrophic velocity is possible. A
numerical example demonstrating that such a limit cy-
cle solution can exist is shown in Fig. 3 for the case
where a is given by (2.7) with g, = 0.1, g, = 0.15, and
My = 100.

If (2.12) is averaged over a period of the oscillation,
it follows that

a(v? + u?) = av,, (2.16)

where an overbar denotes an average over a cycle of
the oscillation. As shown in the figure, v, has, very
nearly, a zero average itself so that the equality (2.16)
would be impossible if a(f) were constant unless v,
=u=0.

A similar average of (2.15) yields

av, = —ab,. (2.17)

Since a(6,), we may use the mean value theorem
to write

— — 9 —
ab, = a(0,)0, + 5% (8,)62, (2.18)
where 6, is a temperature within the range of the os-
cillation of the temperature over a cycle. If 8, (as 7,)
is essentially zero, it follows from (2.16), (2.17), and
(2.18) that a necessary condition for the sustained os-
ciliation to occur is that

da

—(,E(B*)<0. (2.19)

That is, for at least some part of the temperature (strat-
ification ) experienced by the fluid during the oscillation
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F1G. 3. The sustained inertial oscillation for the case a;, = 0.0‘1, a.
= 1.5, T, = 0.15, and m;, = 100. Time is scaled with f~'. The oscil-
lation period is very nearly 27/ f.

the mixing coefficient must decrease with increasing
stratification. Otherwise, the oscillations will decay and
the solution will inexorably converge to the steady so-
lution (2.8). In the next sections we examine in detail
the nature of the instability of the steady solutions and
the resulting finite-amplitude oscillations.

3. “Soft” instability

In this section, we describe the instability of the
steady solutions (2.8) when (2.5) applies. In all cases
of interest, ag = a(6) turns out to be small. This sug-
gests that an analytical approach might be helpful in
illuminating the basic instability that stimulates the
self-sustained oscillation. This factor, plus the simple
analytical representation of a(#) provided by the special
form of (2.5), provides the major motivation for se-
lecting an otherwise artificial mixing rule.

To describe the stability of the steady solution, each
variable is written as a sum of the steady solution, (2.6),
plus a perturbation denoted by a prime; that is,

v =10+ v,

u=u+ u,

0=100+86. (3.1)
The equations for the prime variables are
u' o’
5 = Vlaluwo + ') — aouo] — a0 ——,
ov’ o’
o =~ ¥la(vo +v') = agol — a0,
a0’ a0’
5~ Wlalbo +0") — aofo] — a5
(3.2a,b,c)

where we have also introduced the slow development
time

T = apt
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so that each variable is explicitly a function of ¢
and 7. Thus, d/dt in (2.3) is transformed to (3/4dt)
+ [ao(d/97)].
The perturbations are now expanded in an asymp-
totic series in do; that is,
v'=v,tauw,+ - -,

which when used in (3.2) yields a sequence of problems
for each order in ay.
At O(1),
auy
ot
an
at
a0,
ot

_Ul=0,

+u1=0,

—u =0, (3.3a,b,c)

with solutions
u; = Asin(t — ¢),
v; = A cos(t — ¢),
0, = —Acos(t— ¢)=-v,, (3.4ab,c)

where the amplitude 4 and the phase ¢ of the inertial
oscillation described by (3.4) are functions of the slow
time 7.

Since

a = gge ™70 = g e’ (3.5)
the next order problem yields
u, ou, - —_
_— = e —_ 1 — me’y _ 8
o v, P + uo( e )— ue
81)2 v, ’ ’
— = 1 1 - —m 6 - —m.o‘
Py 3 + (1 —e™™") —vie

(3.6a,b)

Using the fact that u, is O(a,) and hence negligible,
it follows that (3.6) may be rewritten:
62'02 i) .
Fra +v,=2 Fw [Asin(t — ¢)] + mvoAd
X sin(t — ¢p)e ™% + 24 sin(t — ¢p)e ™

+ m, A% cos(t — ¢) sin(¢t — ¢)e ™. (3.7)
There are forcing terms on the right-hand side of
(3.7) that have the period of the inertial oscillation
shared by the solutions of the homogeneous form of
(3.7). Eliminating such resonant terms (which would
otherwise invalidate the asymptotic expansion for the
pertubation ) yields an evolution equation for 4.
Consider the case of incipient instability of the steady
solutions so that 4 is small. In that case, ¢ can be shown
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to be constant and A satisfies

or 2

Amplitude growth on the long time scale is therefore

predicted only if

a—A+(1—ﬁ1—'),«1=0.

(3.8)
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Figure 4 shows v(#) as calculated from (2.2) for m,
= 1.5, 1.9, 2.0, 2.1, 2.2, and 2.5. For m; < 2, the am-

plitude of the inertial oscillation decreases with time.

At these values, the solution will eventually decay to

the steady solution. For m; = 2, the oscillation main-

tains itself at its initial amplitude with no perceptible
growth or decay. For m, > 2, the inertial oscillation

(= —o o> (3.9)
-0.95 —a -0.96

! | | -0.98

v -1.00 -1.00
1.02
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d

has an amplitude that grows with time in agreement
with the prediction of (3.8). The oscillations are locally
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FIG. 4. The evolution of a small disturbance in the case of the “soft” instability a,, = 0.2. In (a) m, = 1.5, (b) m; = 1.9,
(¢) my =2, (d) (2.1), (e) (2.2), and (f) (2.5). The transition to instability occurs clearly at m, = 2.
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(in time) inertial oscillations. The period is 27 (27 /f
in dimensional units), and the relation between u and
v as shown in the phase plane is exactly what is expected
of inertial motion. The growth is clearly due to the
temperature dependence of the dissipation parameter
as determined by the criterion (3.9).

The oscillation amplitude will continue to grow until
its amplitude eventually equilibrates. Figure 5 shows
the oscillation out to ¢ = 500, that is, for about 80
inertial periods. The amplitude has equilibrated to a
value of A = 0.376 for m;, = 2.2.

For

m
A 2 1<1,
expansion of the exponentials on the right-hand side
of (3.7) yields the following nonlinear equation for the
amplitude 4:

(3.10)

2
94 _ 4+ poy, (3.11)
or 8
This yields an equilibrated amplitude, 4., such that
A 1/2
Ae=(8 ) ~ (24)'/2, (3.12)

since m; ~ 2 for small A. We find that the prediction
of (3.12) is accurate to about 15%. Thus, for m; = 2.2,
for which A = 0.1 (and thus A!/2 ~ 0.3—not terribly
small), (3.12) yields A, of 0.447, while, as shown in
Fig. 5, the numerical result is an amplitude equilibra-
tion at the smaller value 4 = 0.376.

This analysis of the “soft” instability in which a(8)
is a smooth function of @ illustrates the possibility of
the self-excited oscillations. In the next section, the case
closer to our original qualitative discussion is described,
in which a(#) is given by the abrupt (or “hard”) laws
(2.6) or (2.7).

0 100

FIG. 5. The eventual equilibration of the amplitude
of the soft instability for the case a,, = 1, m; = 2.2.
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4. “Hard” instability

The physical process outlined in the Introduction
for the sustained inertial oscillations in the presence of
steady forcing has the nature of a relaxation oscillation.
That is, when the stratification is weak or vanishing,
we expect mixing to annihilate the momentum in the
baroclinic oscillation. Then, as the mixing itself dis-
appears, the cycle restarts as the layer once again at-
tempts to adjust geostrophically to the large-scale
mixing.

The abrupt or “hard” laws of (2.6) or (2.7) partially
capture this behavior. However, as formulated, they
possess one important deficiency.

Once a solution enters the high-friction parameter
region, it will be permanently captured by the steady
solution (2.8) and will remain there since the steady
solution for gy > 1 will be stable. In the more complex,
conceptual model, this steady solution capture is
avoided by supposing that ¢ is also a function of shear
and vanishes as the shear vanishes. Here we are trying
to avoid such a complex and, indeed, arbitrary speci-
fication of the mixing coefficient. Clearly, our simple
dynamics hardly justifies an elaborate mixing law. In-
stead, a,, a., and 6. 1n (2.6) and (2.7) will be chosen
so that the low-stratification steady solution is generally
not available to the system. That is, we will choose
a(#) to look like curve (b) in Fig. 2 rather than curve
(a). This places an upper bound on g, and 6.. We also
choose a critical stratification, 6., which is positive but
not large enough to provide the low-temperature cap-
ture that would be occasioned by the parameters of
curve (a) in Fig. 2.

As an example, Fig. 6 shows the sustained oscillation
that occurs when 6. = 0.15, a, = 0.01, and a. = 1.5,
and the continuous law (2.7) is used. Each cycle is very
nearly a pure inertial cycle with period 27 /f. In Fig.
6a, we show the time history of v. Figures 6b and 6¢
show 6 and v versus u, respectively. The crosses in Fig.
6¢c show the position of the virtual steady solutions
(2.8a,b) where aq varies with time since # varies with
t over the cycle. Note that the limit cycle in the u, v
plane avoids the low-stratification limit of the virtual
center at a = a..

To emphasize the point that the persistence of the
oscillation is due entirely to the presence of the high
dissipation experienced by the fluid when 6 < 6., we
present in Fig. 7 the result of the same calculation when
a. = a, = 0.01, so that the dissipation is uniform and
small. The inertial oscillations are clearly spiraling into
the steady solution at v ~ —1, u ~ 0. The inference
we draw is that the cycle is sustained by the continuing
suppression of the velocity by dissipation, once per cy-
cle, which allows the imposed pressure gradient to
knock the system loose for another attempt at geo-
strophic adjustment. This process somewhat reminds
us of the elegant escapement mechanism of a well-
constructed grandfather pendulum clock. Our Coriolis
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F1G. 6. The limit cycle for the “hard” dissipation law, a. = 1.5, a, = 0.01, T, = 1.5. Panel (a) v versus ¢,
(b) v versus u—the crosses show the positions of the virtual equilibrium solutions during the cycle, (c) 8
versus %, and (d) 8 and a(#@) versus ¢.
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FIG. 7. As in Fig. 6 but for constant small dissipation; that is, a. = a, = 0.01.
The solution is spiraling in to capture at the geostrophic steady solution.

VOLUME 23



AUGUST 1993 PEDLOSKY A
escapement mechanism, however, is so particular that
a detailed comparison would most likely only further
strain the reader’s credulity or patience while adding
little to a dynamical understanding of the process.

The amplitude of the oscillation may be estimated
in the case where the oscillation has the simple form
of Fig. 6 as follows.

As Fig. 6d shows, a is essentially zero unless § < 4,
and is constant and equal to a. in the brief interval
when 8 < 6,. For the oscillation in Fig. 6 we have, very
nearly,

v, = U cOSt,
0 =1 — uy cost,
U = Uy CoSt,

so that the energy integral over the cycle becomes
auj = av,. (4.1)
However,
a =~ 2tea,,

where t; is the half-interval of time for which § < 6.,
while

av, = upa cost = 2a, sinty, 4.2)
and where ¢, is determined by the condition
Ug costy = 1 — 4,. (4.3)
a
0 T T T T T
051 ]
V10 E
A5 .
. 1 1 1 1 1
2'00 5 10 15 20 25 30
t
b
2.0 T T T
1.5 1
0 1.0} 1
05 1
0 1 i 1
-1.0 -0.5 0 0.5 1.0
u
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It follows that
(4.4)

For the parameters of Fig. 6, this yields ¢, = 0.475 and
Uy = 0.96, in excellent agreement with the numerical
result of Fig. 6.

As 6, is increased, the curve (b) in Fig. 2 will ap-
proach the dashed curve representing the steady so-
lution. Before the curves meet, the self-sustained os-
cillation changes its structure. Figure 8 shows the os-
cillation for 6. = 0.33. For this value of 8., there is no
low-temperature equilibrium solution, but the distance
of curve (b) from the steady solution is small. Now
the phase plane of v versus u or 8 versus u has a strange,
cracked-egg shape with an indentation near the extreme
low-temperature limit of the virtual solution in the (v,
u) plane. During that portion of each oscillation in
which the trajectory in the (u, v) plane approaches the
extreme virtual solution (where the eggshell is cracked)
both v and u change very slowly. This leads to a sig-
nificant increase in the period of the oscillation.
Whereas the oscillation in Fig. 6 has a period of very
nearly 2x/ f, the period of the oscillation in Fig. 8 is
longer and very nearly 9/f.

5. Discussion

We have demonstrated a rather curious process
whereby a steady, large-scale temperature gradient can

0
05 ]
V10 -
1.5 n
R 1 1 1
2'(-)1 0 -05 0 0.5 1.0
u
d
2.0 T T T T T
1.5 3
a,01.01 g
05} k
0 ! L I ) 1 \/
0 5 10 15 20 25 30
t

FIG. 8. As in Fig. 6 but for T, = 0.33.
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FIG. 9. As in Fig. 6 except that (d) shows the excursion of fluid elements in the x direction.

maintain permanent inertial oscillations in the face of
continuous dissipation. At the heart of the process is
the system’s inability to reach a geostrophic equilibrium
due to variations of the dissipation over the cycle of
the response. The increase of dissipation with decreas-
ing stratification leads to a perpetual process of dis-
equilibrium, and each attempt to reach adjustment
plunges the system into an oscillation about its putative
equilibrium.

The energetics of this system is interesting. Close
attention to the asymmetry of the v, u phase plane in
either Fig. 6 or Fig. 8 shows that it is not symmetric.
There 1is, instead, a net migration of fluid elements
down the pressure gradient as shown in Fig. 9d, which

delivers sufficient energy to the system to maintain the
limit cycles against dissipation.

At this point, we certainly do not present observa-
tional evidence to substantiate the relevance of the
process in the ocean. We rather think of the dynamics
discussed here as primarily illustrative of a robustly
simple way in which mixing can pump energy from
steady forcing fields into inertial oscillations.
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