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ABSTRACT

In this paper, the effects of bottom and interfacial friction on localized baroclinic instability are discussed in
the weakly nonlinear, long-wave limit. Using a quasigeostrophic two-layer model in which the lower layer is
assumed to be deep, we have derived a coupled evolution equation set that consists of a KdV-type equation for
the upper layer and a linear long-wave equation for the lower layer. A perturbation theory reveals that there
are multiple equilibria in this system, where baroclinic energy conversion and frictional dissipation are in
balance; the flow is not forced externally, and multiplicity here refers to the presence or absence of solitary
waves propagating steadily on a zonal flow. Further, direct numerical calculations show a rich variety of behavior
of solitary waves, including steady, periodic, and complicated interacting evolutions. For a two-layer model to
have multiple steady or oscillatory states, both bottom and interfacial friction should be included because if
one of these vanishes, friction destabilizes rather than damps the otherwise neutral waves. The localized baroclinic
instability is highly suggestive of the dynamics of the Kuroshio large meander.

1. Intreduction

Coherent and localized structures in atmospheric
and oceanic currents, such as atmospheric blocking
and large oceanic meanders, have a significant impact
on regional climate and fisheries because they persist
beyond the periods associated with synoptic-scale vari-
ability. It has been pointed out that baroclinic processes
are important for some of these localized phenomena.
An example, which is associated with the ocean, is the
formation of the Kuroshio large meander. It is well
known that the Kuroshio current shows bimodality in
its path, which is either a straight path or a large mean-
der. Both of these paths can persist stably for a few
years off the southwest coast of Japan, but transitions
occur rather quickly (within a few months). In a nu-
merical experiment with a two-layer model, Yoon and
Yasuda (1987) have shown that there are multiple
equilibria, and the transition occurs through baroclinic
processes rather than barotropic processes. Further,
they have shown that a solitary disturbance develops
into a large meander only when the initial disturbance
is large enough. As for atmospheric blocking phenom-
ena, observations have pointed out that baroclinic pro-
cesses are important for the formation stage through
the local interaction between a synoptic-scale cyclone
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and a planetary-scale wave (e.g., Nakamura and Wal-
lace 1990), and even for the fully developed stage in
some cases ( e.g., Hartman and Ghan 1980; Mak 1991,
for Atlantic blocking ridges).

Most past studies of baroclinic instability have as-
sumed that the disturbance has a sinusoidal structure
on a zonally uniform current and the amplitude of the
wave train grows with time. Without doubt, these
studies have illuminated basic physical processes of
baroclinic instability. However, since instability occurs
over the whole domain for these models, they are not
directly applicable to localized phenomena such as the
formation of the Kuroshio large meander and atmo-
spheric blocking. From this point of view, localized
baroclinic instability problems have been attracting a
lot of interest in recent years. One approach is to solve
for the linear localized normal modes by assuming that
the basic flow is stable except for a limited area wherein
the necessary condition for baroclinic instability is lo-
cally satisfied (Pedlosky 1989, 1992; Samelson and
Pedlosky 1990). Our approach is different. We will
consider the evolution of finite amplitude disturbances
that are localized initially; even though the basic flow
may be stable to infinitesimal disturbances, finite-am-
plitude solitary waves can be baroclinically unstable
locally due to their nonlinearity. The effects of nonlin-
earity are explained in detail later in this section.

Some linear theories have considered the evolution
of an initial localized disturbance, with the intent to
find out whether instability is absolute or convective
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(e.g., Merkine 1977). The absolute instability means
that the disturbance grows and spreads faster than it
propagates away from the source, so that at any given
point, the disturbance grows with time. On the other
hand, in the case of convective instability, the distur-
bance propagates away more quickly than it spreads,
so that the response will vanish from any location after
a long enough time. However, in the long-wave limit
of weak dispersion, the concept of absolute or convec-
tive instability may be useful only while the behavior
of localized disturbances is governed by linear dynam-
ics. If the disturbances grow and have finite amplitude,
the behavior becomes markedly different as described
below from that of linear wave dynamics, particularly
due to the dependence of the phase speed on amplitude.
Recently, Kubokawa (1988, 1989) and Mitsudera
and Grimshaw (199 1a, henceforth referred to as MG)
investigated a weakly nonlinear, long-wave theory of
baroclinically unstable solitary waves. They used a two-
layer model, which consists of a thin upper layer and
deep lower layer. They then obtained an evolution
equation of the Korteweg-de Vries (KdV) type for the
upper-layer motion, with an extra term that represents
the coupling with the lower layer, while the lower layer
motion is described by a linear long-wave equation
(because the motion there is weak ), which in turn cou-
ples with the upper layer [cf. (2.17) in this paper with-
out friction terms]. It is found that the coupled equa-
tions have a steadily propagating solitary wave solution
of the form
a 1/2
A =asech2(§) (x — ct), (1.1)
where a is the amplitude and c is the phase speed of
the coupled solitary wave. An important property of
finite-amplitude solitary waves is that the phase speed
¢ depends on the amplitude a. In Fig. 1a, we display
a typical ¢ in terms of

I'=A-2a, (1.2)

where A is the linear long-wave phase speed in the up-
per layer in the absence of any coupling between the
two layers. Note that I" then represents the phase speed
of solitary waves in the upper layer without any cou-
pling (see, e.g., MG). Figure la indicates that there
are two distinct modes as I' = *o0. One has a phase
speed proportional to T, so that this represents an up-
per-layer wave mode. The other has a phase speed in-
dependent of T', and hence this represents the lower-
layer wave mode. However, if the phase speeds of these
~modes come into close proximity, resonance occurs
between the two modes; if the signs of the potential
vorticity gradients in the two layers are opposite (i.e.
Charney-Stern necessary condition for instability),

there is no steady propagation in the range
I''<IT<T,. (1.3)

In fact, localized baroclinic instability occurs there.
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FIG. la. Phase speed, c, of a steadily propagating solitary wave in
a nonfrictional two-layer model when a basic current has the unstable
configuration. The profile of the basic current and parameters is given
by (3.13) and (3.14). In this case, I'; = 0.05 and T'; = 1.35. The
labels “U” and “L” denote upper- and lower-layer branches.

In Fig. 1b we display the behavior of an unstable
solitary wave, where I'; = 1.35 and A = 1.6. The initial
amplitude is a = 0.2 so that ( 1.3) is satisfied. Note that
if a < 0.12, then T is outside of the range of instability
(1.3); this implies that the basic current is unstable
only where solitary waves, whose amplitudes are larger
than a critical value, exist. The solitary wave grows
initially, with decreasing phase speed as the amplitude
increases. Such dependence of phase speed on ampli-
tude is one of the marked differences from the linear
wave. Note that I" decreases as g increases as well. Thus,
the solitary wave in the upper layer is stabilized when
it grows sufficiently so that I' < I';, and propagates
neutrally thereafter. But note that as the wave stabilizes,
a second solitary wave is generated that also grows and
stabilizes because the phase speed of the linear wave
in the lower layer is unchanged so that it remains in
the unstable range.

The previous studies of Kubokawa and MG assumed
that there is no friction. Clearly, friction is an important
factor for the nonlinear wave evolution. For a periodic
wave train case, for example, Pedlosky and Frensen
(1980) have shown that in the presence of Ekman fric-
tion, a finite-amplitude baroclinic wave exhibits a rich
variety of behavior including steady, periodic, and
chaotic evolution. In this paper, in contrast to the work
of Pedlosky and Frenzen (1980), we will investigate
the effects of bottom and interfacial friction on the
finite-amplitude /ocalized baroclinic waves. In partic-
ular, one of our aims is to find whether there are mul-
tiple equilibria where conversion of energy due to
baroclinic process and frictional dissipation are in bal-
ance. Note that the flow is not forced externally, and
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FiG 1b. The evolution of an unstable solitary wave in the nonfrictional case (r, = ry = 0) obta@ned
by integrating (2.17) directly, where X and T are variables indicating longshore position and time,

respectively.

multiplicity here refers to the presence or absence of
solitary waves propagating steadily on a zonal flow for
a given set of parameters. For this purpose we have
derived equations similar to Kubokawa (1989) and
MG in section 2, but here we include bottom and in-
terfacial Ekman friction. In nondimensional and scaled
form they are given by (2.17a-c).
In section 3 we present a linear stability analysis with
bottom and interfacial friction. Although we assume
a sinusoidal wave train in section 3, the analysis is
found to be useful for the understanding of the non-
linear behavior of localized disturbances. In particular,
we have found that if either bottom friction alone or
interfacial friction alone is included, the system may
be destabilized in a range where it is neutral otherwise.
This somewhat puzzling feature was first found by
Holopainen (1961) for a two-layer model (although
he considered only bottom friction), and our analysis
has shown that this is consistent in the long-wave limit.
In the Appendix, we discuss this destabilizing effect of
friction from the viewpoint of energetics of the non-
linear equation (2.17). In section 4 we present an an-
alytical solution of the localized instability, assuming
that both of the coupling and frictional terms are weak

compared with the KdV terms describing temporal
evolution, nonlinearity, and dispersion. We thus ob-
tained a perturbed KdV equation for the upper-layer
motion, which we have solved approximately using
perturbation theory (Karpman and Maslov 1978; Kaup
and Newell 1978; Grimshaw and Mitsudera 1992). The
main purpose in the section is to find multiple equi-
libria where baroclinic energy conversion and frictional
dissipation are in balance. In section 5, we present var-
ious numerical results without restrictions in parameter
values, calculated by using a pseudospectral method
similar to that developed by Fornberg and Whitham
(1978). Results are summarized and some applications
are discussed in section 6. A list of symbols is given in
Table 1 for convenience.

2. Formulation

We consider a channel filled with a two-layer fluid
with average depths H, , and densities p, ; situated on
a 3 plane. Here the subscripts 1 and 2 are associated
with the upper and lower layers, respectively. The dif-
ference in density between the upper and lower layers
is assumed to be small; that is, Ap (= p> — p;) < ps.
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TABLE 1. List of symbols.

The primes denote nondimensional variables, and the asterisks denote variables either scaling with ¢ or expanded in powers of .
Rescaled variables (without * or ') are defined in (2.16). Subscripts 1 and 2 denote variables of upper and lower layers, respectively.

A* A
A?’ AK
AI.B
a* a

ai"
B,, B
b

c* ¢

> 1

Ly

_L’
Pl
0\
QT,Z; QI.Z
qn

Ro

p

r¥, n
r

s

T*

Ty

TS

Uy

U,

Uy, U,

ups, v
U, Us, Ux

ta,

8,8% 8
X

o

da, 6c'V, &S, etc.
€

Mn

Yoy

K*

A

-+

¥
u*

Form of waves in the upper layer.

Solitary wave solution; (2.15a), (4.4a).

Vertical eddy viscosities of the interface (denoted by /) and bottom (B) (dimensional).

Amplitudes of solitary waves.

Amplitudes for steady propagation, where a, > a_.

Amplitude corrections for steady propagation derived in the perturbation method. In this case, steady amplitudes
are expressed as a, = a® + y"2a{,

Form of waves in the lower layer. -

Parameter representing lower-layer potential vorticity gradient; (3.6d).

Phase speeds of waves.

Phase speeds of U and L modes.

Correction to the phase speed in v'/; (4.7).

Defined in (3.6f). .

Ekman numbers for the interface (/) and bottom (B).

Typical Coriolis parameter (dimensional).

Typical depth (=H,) (dimensional).

Undisturbed upper- and lower-layer thicknesses (dimensional).

Integral of the upper-layer potential vorticity; (2.13g).

Baroclinic coupling term for amplitude; (4.5¢), (4.10a).

Baroclinic coupling term for phase speed; (4.5d), (4.10b).

Wavenumber for sinusoidal waves.

Half-widths of solitary waves.

Typical horizontal length scale, taken to the Rossby radius (dimensional).

Position of the offshore boundary.

Quasigeostrophic pressure.

Ambient potential vorticities.

Ambient potential vorticities to the lowest order in .

Phase speed of the nth mode of the lower-layer wave if there is not any coupling.

Rossby number.

Coefficient for friction when r; = yr,.

Coeflicients for interfacial friction; (2.13f), (2.16).

Coefficient for bottom friction; (2.16).

Time-dependent phase difference between the upper- and lower-layer motions multiplied by /.

Time scaling with €%, (2.6).

Time scale of baroclinic growth (dimensional).

Time scale of the evolution of solitary waves (dimensional).

Typical speed of the upper-layer mean current (dimensional).

Upper-layer mean current.

Upper-layer mean current of the leading order in ¢, whose speeds at the coastal and offshore boundaries are zero;
(2.9).

Corrections to the upper-layer mean current; (2.9).

Lower-layer mean current.

Longshore coordinates.

Cross-channel coordinates.

Linear long-wave phase speed of the upper layer; (2.13b), (2.16).

Phase speed of the solitary wave in the upper layer if there is no coupling between the two layers; (1.2).

Margins of instability in I'; I'; < T,.

Function of « defined by (4.14b). Baroclinic conversion is given by Iy = —a?bQ(a)/2r, when steady.

Function of S defined by (4.27d), which is related to Jg.

Function of S defined by (4.27¢), which is related to /5.

c¢M/r, as defined by (4.14c).

Values of « for steady propagation.

Parameter for the planetary beta effect.

Function of « defined by (4.17b).

Ekman layer thickness (dimensional).

Perturbation from their equilibrium.

Parameter characterizing long waves (<1).

Cross-channel structure of the lower-layer waves.

Ratio of the thicknesses of the upper and lower layers.

Coupling coefficient between the two layers; (2.13e).

cy — ¢z in (3.8d).

Branch points on the A-Rieman surface; (3.8e).

Dispersive coefficient; (2.13d).

Nonlinear coefficient; (2.13c).
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TABLE 1. (Continued)

The primes denote nondimensional variables, and the asterisks denote variables either scaling with e or expanded in powers of e. Rescaled
variables (without * or ') are defined in (2.16). Subscripts 1 and 2 denote variables of upper and lower layers, respectively.

v, Uy Factors of the interfacial friction influencing the lower-layer motion.
vE, v Scaled Ekman numbers of the interface.

vE, vp Scaled Ekman numbers of the bottom.

o* Cross-channel structure of the upper-layer waves.

¥ Streamfunction of the upper layer.

vh Streamfunction of the lower layer.

VAR Streamfunction of the lower layer to the leading order in e.

p Parameter related to frictional dissipation; p = Q(a) determines steady solutions; (4.20a).
I Ratio of upper- and lower-layer densities.

T Time scaling with v'/%; (4.1).

6 Phase of the solitary wave.

We shall use a nondimensional coordinate system given We suppose that p), is the -nondimensional geo-

in Fig. 2, based on a length scale Lg; a depth scale H,
(= H,), which is typical for the upper layer; a time
scale Ly/ Uy, where U, is a typical mean current speed

strophic pressure scaled by p; » foLoUs. Here, the prime
denotes nondimensional variables. We then separate
the mean current from the perturbed field such that

in the upper layer; and a typical Coriolis parameter f;.
For the horizontal length scale Ly we use the internal
Rossby radius of deformation [(Ap/p2)gHo1'?/ 1f6l,
where g is the acceleration due to gravity.

0
D12 = f Ul(9)dy + ¥ha. (2.1)
y

Thus the perturbations ¥} , satisfy

172
p — VAl —¢h), (2.2a)
t o

i) i) E
(— + Uj ;)[v%p', — (W =D+ T, VA — (P — ) + Qe = —
X R

a a ' X ! ! ’ ' !
(a—t, + Uy a—x,)[Vz\Vz — ¥ (¥h — o)+ J(¥h, VYL — ¥ (¥h — o)) + Qb dax
/El/2 ,YIEI/Z
= - 128 g+ Tl w2y - g, (22b)
Ro Ro
where
I]y' = B, - Ully’y’ + U,l - 127 (2'20)
Qayr = B — Uy + ¥ (Us — 0Uy), (2.2d)
J(a, b) = ayby — a, by (2.2e)
Here, ¢ = p,/p> and B’ is the meridional gradient of vy
the Coriolis parameter scaled by Uy L2, and v is the Hq
depth ratio between the two layers, 4
H,
= 2.
7 (2.3a)
Ha

Note that from (2.2b), we see that v measures the
strength of the coupling between the upper and the
lower layers. The Rossby number, Ro, is

WLy

Ro y
Jo

(2.3b)

F1G. 2. Nomenclature and coordinate system.
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while E; j are the interfacial and bottom Ekman num-
bers such that

__ s
2 foH (2))01.2 ’

where 4; and Ap are vertical eddy viscosities at the
interface and bottom, respectively. The terms in
(2.2a,b) multiplied by E}/2/Ro represent interfacial
friction, which tends to reduce the vorticity difference
between the two layers, or it tends to damp internal
(baroclinic) motion. Bottom friction is represented by
the term multiplied by E¥?/Ro in (2.2b), which re-
duces vorticity of the barotropic motion. We suppose
that the channel boundaries are placed at y' = 0 and
—L'. Thus the boundary conditions become

12 =05

E; s (2.3¢)

at y'=0,—-L" (2.4)
If the offshore boundary at y' = —L' is removed, the
boundary conditions are changed to ¥/, < co as y' —
—oo. If 8" = 0 (or more accurately, Q',,» = 0 as
y' = 0), then ¥’ = 0 as y' = —o0, and hence the
boundary conditions are basically unchanged. If g’
# 0, however, radiation of energy due to Rossby waves
may occur. This could also cause significant damping
effects; some discussion is given in section 6. Retaining
the offshore boundary removes this radiational damp-
ing, and hence we will focus on the effects of friction
alone.

In this paper we study the weakly nonlinear evolu-
tion of long waves. Thus, we rescale the longshore vari-
able x' and introduce a new variable such that

X* = ¢ex/, (2.5)
where e is a small parameter. Here, the asterisk denotes
variables either scaling with ¢, or expanded in powers
of e. In physical terms, ¢! measures the wavelength
with respect to the internal Rossby radius of defor-
mation. Further, for simplicity, we will suppose that
v’ is small, which implies that the lower layer is much
deeper than the upper layer. Thus, we put v’ = g2y*.
This means from (2.2b) that the coupling between the
two layers is weak. Furthermore, we retain 0%, (2.2d)
to be the same order as the coupling term, and therefore
we replace 8’ and U’ with ¢28* and £2U> , respectively.
Oceanic relevance of this scaling is discussed in section
6. In this situation, the lower-layer wave has a phase
velocity of O(e2); therefore, baroclinic instability oc-
curs if the upper-layer wave has a phase speed of O(&?)
(e.g., see MG). Thus, we define a slow time scale such
that

T* = ¢3¢, (2.6)
Further, we assume that the time scale due to interfacial
and bottom friction is measured by (2.6), so that we
replace E}'2/Ro and E¥?/Ro with ¢’v] and ev 5, re-
spectively.
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Suppose that there is a mode in the upper layer whose
phase speed ¢’ is O(e?). Then, we may expand ¢/ , as
follows:

Yh o= e AXX*, T*)p*(y') + eyl +
Yh=cyi+ ..o,

where ¢* represents cross-channel structure, which
satisfy the following eigenvalue problem where the ei-
genvalue is zero:

ce e, (2.72)
(2.7b)

Uk — Uy d* =0, (2.82)
¢*=0, at y' =0,—L". (2.8b)

Equations (2.8a,b) show that if U (0) = Uj(—L")
= 0, ¢* may be proportional to U’. Thus we may
suppose here that U’ (0), U (—L') are O(e?), so that
we rewrite U)(y') as

Uy = UY() + 200 (), (2.9)

1 )
where U |,~0-1- = 0, and vl | ,+=0-1 # 0. Hence
we obtain

o* = UT()),
Q’lky’ = U’lk - U’lky’y“

(2.10a)
(2.10b)

Substituting (2.7a,b) into (2.2a), we find for the up-
per-layer motion that

U (W F e — Phe) + Q5 e + M* =0, (2.112)
where

M* = (@3 = ¢*)AF + [(@U1})y = ¢35 UL")
+(B* — Uz )¢p*14%

+ (¢Fyyd* — ¢F T, )A%A R

+ UT ¢*A %n son xon

+ ¥ Ixs + v A*p %, (2.11b)
The boundary conditions for z,!/(,”* are
=0, at y=0,—-L. (2.1lc)
Thus, (2.11a-c) can be solved when
0
f M*dy' = 0. (2.12)
—-L’

Considering (2.10a), (2.11b), and (2.12), we obtain
an evolution equation for the upper-layer motion as
follows:

— (AT + A*AR) + X AFAS + N ANy xe

0
+ k* f UTYixdy —rfA* =0, (2.13a)
_L/
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where
0
reax = —[UT U100 ~ f_L,(ﬂ* — U)UTdy,
(2.13b)
I*p* = —[UF1%, (2.13¢c)
0
I*\% =f Ut2dy,, (2.13d)
—L’
I*c* =1, (2.13e)
I*r¥=—vut1%, (2.13f)
where

0
I* = [QT]9L'=L, Utdy —[UF1%.. (2.13g)

For the lower-layer motion, substituting (2.7a,b) and
(2.10a) into (2.2b) yields

d
(575 + v

* % * * _
+ Y p¥2, — yY*¥ov A¥UY,, = 0,

5 (W + oy A UT) + O, b

(2.14a)

Y3 =0 at y =0,-L"

Thus, we have obtained an evolution equation of the
KdV type for the upper-layer motion and a linear
equation for the lower-layer motion. This is a conse-
quence of the assumption that the lower layer is much
deeper than the upper layer, so that the lower-layer
motion is much weaker than the upper-layer motion.
Similar coupled equations without the frictional terms
have been derived by Kubokawa (1988, 1989) and
MG, and some features of the solutions were described
in the Introduction. On the other hand, (2.13a) without
the coupling term has been extensively studied by using
perturbation methods, either based on the inverse scat-
tering transform (e.g., Karpman and Maslov 1978;
Kaup and Newell 1978) or with multiscale methods
(e.g., Grimshaw 1979; Kodama and Albowitz 1981;
Grimshaw and Mitsudera 1992). It has been found
that a solitary wave amplitude varies in a manner con-
sistent with energetic considerations but that the soli-
tary wave cannot conserve mass by itself, and a shelf
forms behind the solitary wave to satisfy mass conser-
vation. In this paper, however, we will not go into de-
tails on this aspect and instead will concentrate on the
behavior of a solitary wave itself, that is, the evolution
of its amplitude and phase speed.

Here, we shall assume that 7* in (2.13g) is positive.
This is the case for a jetlike current ﬂowmg in the pos-
itive direction (U > 0 for —L' < 3’ < 0) because in
(2.13g), U,y (0)<0and U,y (—=L")> 0. The param-
eter A* (2.13b) represents a linear, long-wave phase
speed in the absence of any coupling between the two

(2.14b)
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layers, nonlinearity and dispersion. From (2.13b), A*
is caused by the O(e?) velocity U f”* at the coast, the
bottom mean current U3, and the g* effect. For ex-
ample, if 8* and U3 are set to zero, A* is positive if
U (1”* 1s positive for a jetlike current. Note that baro-
clinic instability occurs in a certain range of A*. The
parameter A} (2.13d) is the dispersive coeficient,
which is always positive as I'* is positive. The coefficient
rT (2.13f) represents the interfacial friction, which is
positive since [ U7, 1%,/ < 0. The parameter u* (2.13c)
is the nonlinear coefficient. Note that u* = 0 if the
basic flow UT is symmetric. In the present study, we
assume an asymmetric basic flow so that p* is not zero.
In this case u* is negative (positive) if the shear at y’
=0 (y' = —L') is stronger. The sign of p¢* is important
because it determines the polarity of solitary waves. In
fact, the KdV equation (2.13a) without the coupling
and frictional terms has a solution of the form

A* = g* sech?/*(X* — ¢*T*), (2.15a)

where

A¥ — c* = y*q*/3 = 4\j[*?.  (2.15b)
Here a* is the amplitude and c¢* is the speed. From
(2.15b) and noting that A} > 0, a*u* > 0 is necessary
to form the solitary disturbance in the form (2.15a).
Therefore, the polarity of the solitary disturbance is
positive (negative) if u* is positive (negative). This
suggests that only a cyclonic eddy would form in an
eastward oceanic current with a northern boundary,
such as Kuroshio, because u* < 0 (i.e., U}"yf ~ 0 as
y = —o0).

Before proceeding further, we shall rescale (2.13)
and (2.14) for convenience. We put

T=X\T* X=X¥* A=—A*
. 6N
o * *
¢=6A_2:2¢/2, A=—A§'Z’ UI=K*Ula (216)
(n _ — 2
Ul }\d s UZ >\3: 6 )\:1"
_ e ) S
’Y—K*A:’ r X VJ—}\:, r, =K -

The rescaled equations are thus
—(Ar + AAyx) + 6 AAx + Axxx

0
+ f Uyxdy —nd =0, (2.17a)
~L

a
(2402

7]
3T )(1//yv+‘YAU1)+ Oy

+ yray,, — yvri AUy, = 0, (2.17b)
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W(0) = ¥y(—L) =0, (2.17¢)

where
Q2 = B — Uy — vV, (2.17d)
v=—1/[U}}1%. (2.17¢)

Here, and in what follows, we drop the primes from
y' and L’ for neatness. Note that » is positive.

3. Linear stability in the presence of friction

Before considering the nonlinear problem and the
multiple equilibria of (2.17), we will discuss the sta-
bility properties of the linearized version of (2.17).
There are two important relations between the linear
and nonlinear analyses. First, as mentioned in the In-
troduction, bottom and interfacial friction can desta-
bilize rather than damp the otherwise neutral waves.
Holopainen (1961) found this phenomenon by con-
sidering bottom friction alone. Here, we include both
bottom and interfacial friction, and will show that this
conclusion is also consistent in the long-wave limit, if
the magnitudes of bottom and interfacial friction are
considerably different. As shown later in sections 4 and
5, this effect is also seen in the nonlinear evolution of
solitary waves. Second, the marginal values of the non-
linear instability band, T'; ; in (1.3) (see also Fig. 1a),
approximate to those obtained by the linear stability
analysis if both bottom and interfacial friction are
small. Hence, from linear analyses we may evaluate
amplitudes of solitary waves at marginal stability, using
the formulas T';, = A — 2a (1.2) for a given A.

Now, to solve (2.17) we expand y such that

V= Z B.(X, TYU; — g.)na(¥),

n=1

(3.1

where 7,(y) satisfies the following eigenvalue problem
where g, is the eigenvalue: '

[(UZ - Qn)l'n]yy + Q2y77n =0,
7,=0 at y=0,—-L.

(3.2a)
(3.2b)

The orthogonality condition is

0
f Ooynmdy =0 for n#m, (3.3a)
—-L

and 7, is normalized by

0
f nady = 1.
-L

" Substituting (3.1) into (2.17a) without the nonlinear
and dispersive terms for the upper-layer motion, and
into (2.17b), and applying the orthogonality condition
(3.3a) for the lower-layer motion, yields

(3.3b)
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—(Ar+ AAdx) —nAd+ > By

n=1

0
X fL(Uz = g)nUidy =0, (3.4a)
0
—(Bur + gnBux + yr2By) f_L Qzynandy
0
+ v f_L (A7 + U Ax)Unndy

0
— yur, 4 f Uiyyindy = 0, (3.4b)
-L

respectively. First, we would like to discuss the quali-
tative features of (3.4). Especially, we wish to retain v
and r; ; as O( 1) parameters. For this reason we assume
that only a single mode (n = N, say) in the lower layer
couples strongly with an upper-layer wave; normally,
the lowest mode (i.e., N = 1) couples most strongly.
Thus we put

¥ =~ By(U; — gn)nn.

Further, we assume that U, is a constant for simplicity.
Later in this section, we will present numerical cal-
culations of the eigenvalue problem (2.17) where the
nonlinear and dispersive terms are omitted. The results
show that the truncation (3.5) is relevant with N = 1
for a jetlike upper-layer mean flow. Thus, we consider
the following equation here:

(3.5)

—(Ar+ AAdyx) —nA + By =0, (3.6a)
vb
—(Br+ + yrB) +
(Br + gnBx + yr2B) Us — an
X (AT+ U2AX + V’r,A) = 0, (36b)
where
B = dNBN, (36C)
0
b= di / [ cumiay
=—di(gn— Uy)7", (3.6d)
0 0
U=V fz. UlyynNd.V/f_L Unndy, (3.6€)
and
0
av=[ (- aUmdy. 60
Note that vy, like », is positive.
Now, let us find a solution of the form
A Ao ik(X—cT)
= A=), 3.7
(B) (Bo)e GD
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Although we are using a sinusoidal disturbance here,
we will find that the analysis is very useful for inter-
preting the behavior of a solitary disturbance. Substi-
tuting (3.7) into (3.6a,b) we may obtain the speed ¢
as follows:

c=2(cute) £ (=)', (38)

where
cU=A+qN7_bU2~%, (3.8b)
CLZQN_%’:Z, (3.8¢c)
A=cy—c, (3.8d)
N = —4by| 1 +m(””r‘ —yn)|. (3.8¢)

We consider here the behavior of ¢ as A varies. As
|[A] = oo (i.e., A = o), ¢ represents two distinct
modes—cy and c¢;. In this situation the motion is
concentrated on the upper (lower) layer for the wave
represented by cy (c.). We shall call the wave with
cy the U mode, and the wave with ¢; the L mode.
As |Re(A)| — 0, that is, when the phase speed of
the U mode and L mode are almost coincident, the
behavior of ¢, with varying A, depends on the sign

CIITOR
TASAANNNY

S

b>0

Re (1)

\

FI1G. 3. Loci of A on the upper Riemann surface as A varies when
the basic current has a stable configuration [i.e., b > 0, where b is
defined in (3.6d)]. Shaded lines are branch cuts where VA2 — A3 is
real. The dashed line indicates that the locus of A in case 2 passes
onto the lower Riemann surface as A varies.
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b G Cr case 2
———— —~ e ————
7 — J— A
b ———

FIG. 4. Schematic plots of ¢ as A varies when b > 0 and U, > 0;
¢, and ¢; represent Re(c) and Im(c): (a) case 1 and (b) case 2.

of b. In fact, if r; = r, = 0, we can see from (3.8)
that the system is stable for all A for positive b, while
there is instability for |A| < 2(—bv)!/? for negative
b. Note here that for negative b, Q,, must be negative
somewhere [see (3.6d)], which is the well-known
necessary condition for baroclinic instability.

Let us examine the cases for positive b first. From
(3.8a) we obtain two branch points on the A-Riemann
surface— A = *A,. Further, we insert branch cuts
where Re(VA? — A3) = 0, and define the upper Rie-
mann surface by Re(VA? — A§) > 0. As shown in Fig.
3 there are typically two cases in the behavior of X as
A varies, depending on the relative magnitude between
Im(A) and Im(Ay). Without loss of generality we can
assume that Im(A) <0 (i.e., yr; <ry)aswell as Im( o)
< 0 [i.e., yry < vnry, where we note that b > 0 implies
that gy < U, from (3.6d)]; we see that this assumption
corresponds to the situation of Fig. 3. Suppose
Re(VA2—23) > 0 as A - —oo. In case 1 where
[Im(A)] < |Im(Ag)|, Aremains on the upper Riemann
surface as A — oo, and therefore, Re(VA% — \3) is
always positive. In case 2, however, A passes onto the
lower Riemann surface, so that Re( ﬁz — M3) becomes
negative as A — oo. Noting that Re(\) is negative
(positive) as A = —oo (00 ), we obtain

-\, as A— —o

VA2 = N3 ~< [\ (case 1) (3.9)
as A— .
— X (case 2),
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Therefore, ¢ asymptotically becomes
( CrLs CU) >

c~ {(cu, c) (case 1)

(cp, cy) (case 2),

as A—> —w

(3.10)
as A—>

>

and hence, for case 1, the exchange of modes occurs
in the vicinity of Re(\) = 0, while the exchange does
not occur for case 2. Recall that Re(A) = 0 occurs
when the real phase speed of U and L modes are coin-
cident, that is, when gy = A + vb(gy — U,)™". To seek
the behavior of ¢ near Re(A) = 0, we assume |vpr,
— 1| < 1in A3 (3.8e) for simplicity. Then the growth
rate at Re(\) = 0 becomes

Im(c) = — j,;];(r, + vr;) (case 1) (3.11a)

1
% [(ri +vr2)

+ V(r, — yr2)?* — 4k®yb] (case 2). (3.11b)

Thus, Im(c¢) is always negative if b > 0. In Fig. 4 we
display schematic plots for the two cases for U, > 0.
Features expressed in Fig. 4 are common for linearly
coupled damped oscillators (Grimshaw and Allen
1982) and have been found for coastally trapped waves
(Mitsudera and Hanawa 1989).

If b < 0, there is instability for the nonfrictional case
as mentioned before. To consider the frictional cases
we display the loci of \ as A varies in Fig. 5 for negative
b. There are also two cases as A — oo, depending on
the relative magnitudes of Im(A) and Im(Xp). In the
vicinity of Re(A) = 0, the growth rate is written as
(3.11b) for both cases if b < 0, and there is instability
if the second term on the right-hand side of (3.11b) is

Im (A)

b<O

Z2]
22
Z7]
22
%2
tH
zz
Z%
Z2
Z%
Z2
Zz
Z%
Z7
%7
22
23

Re (1)

NS
O
o
174
@
N

S
AR
AANRANANNSNANNE

F1G. 5. Loci of A on the upper Riemann surface as A varies when
the basic current has an unstable configuration (i.e., b <0).
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3/ \f
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b Cr Ci case 2
— 7
_____ N —— \
// \
A e —— o ~ A

FIG. 6. Schematic plots of ¢ as A varies when b < 0 and U, = 0:
(a) case 1 and (b) case 2.

larger than the first term or when —k2b > yrir,. In
particular, if the frictional coefficients are small, there
is always instability near Re(A) = 0 since

Im(c¢) =~ +V—vb, at Re(A)=0. (3.12)

Recall that ¢ behaves as in (3.10) asymptotically as
|A] = co. Thus we may describe the schematic be-
havior of ¢ in terms of A for U, = 0 as in Fig. 6. Note
that if either r, > O and r, # 0or r, > 0 and r; # 0,
then either Im(c;) or Im(cy) is zero, so that one of
Im(¢) in (3.8a) approaches zero smoothly as |A| —
oo . Therefore, the range of instability in terms of A
may become infinite. Recall here that when r; = r,
= (), the instability range is restricted to [Re(A(A))|
< 2(=by)""? from (3.8b). Therefore, if either only
bottom friction or only interfacial friction is included,
the system is destabilized in a range where it is stable
otherwise. This result agrees with that obtained by
Holopainen (1961), who found a widening of the in-
stability range in wavenumber when bottom friction
is included.

In Fig. 7, we display instability diagrams for typical
cases of negative b. To calculate these eigenvalues, we
used a channel with L = 2, or in the dimensional term,
the channel is twice as wide as the Rossby radius of
deformation. The current profile was given by

Ur=—(r+2) (sinZy+ Lsin
p= Tt sin 5y + g sinwy |,

for —2<y<0. (3.13)

Note that from the definition (2.16), the amplitude of
the basic current is fixed. This is an asymmetric jet
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F1G. 7. Numerical examples of ¢, for typical cases when b < 0. Parameter values are (3.13) and (3.14); (a) r; = yr, = 0. Dashed-dotted
line indicates ¢ = A, which is drawn for comparison purposes only; (b) r,/k = yr2/k = 0.1. (¢) ri/k = 0.1, yry/k = 0. (d) i /k = 0, yr/k

=0.1.

with the velocity maximum at y = —0.79. Recall that
the upper-layer wave has a phase speed equal to zero
to the lowest order in ¢ for the velocity profile (3.13)
because U;(0) = U;(—L) = 0 [see (2.10a)]. For the
depth ratio parameter, we used

'y=70(1r+i), (3.14a)
T
where
Yo = 2.5, (3.14b)
and
=10, U,=0. (3.14¢c,d)

Here, v is chosen so that yU, is O(1) and vU; > 8
somewhere in the channel. Using a shooting method
(e.g., Drazin and Reid 1981), we directly solved the
eigenvalue problem (2.17a—c) with the solution of the
form (3.7) being substituted, but with the nonlinear
and the dispersive terms omitted. For the numerical
solutions, we did not assume any truncation. Note that
if U, is a constant, the following numerical results are
directly applicable by replacing ¢ and A by ¢ — U, and
A — U,, respectively.

Figure 7a shows the case where r; = r, = 0. The
system is unstable for 0.05 < A < 1.35, which is con-
sistent with the results obtained by Kubokawa (1989)
and MG. Note that the phase speed of the U mode is
smaller than A as |A| — oo. This is consistent with
¢y (3.8b) because the second term on the right-hand
side of (3.8b) is always smaller than zero [see (3.6d)].

Figure 7b shows the case where r;/k = yr,/k = 0.1.
In this case Im{A) = 0 from (3.8b-d), so that we can
expect the case 1 behavior of Fig. 6. Indeed, the real
part of the phase speed indicates that there is an ex-
change of modes between the U mode and the L mode
as A varies. Intersection of Im(c¢) between the two
modes occurs as A = oo (or —oo) because Im(\?
~ A3) =0only when | A| = 0. In this case the bottom
and interfacial friction are quite small, and therefore,
the instability range is 0.05 < A < 1.35 again.

Figure 7¢ represents the case when r;/k = 0.1 and
r, = 0; only interfacial friction is considered. This shows
the case 2 behavior of Fig. 6. Since yr, = 0 in this case,
we can see the widening of the instability range in terms
of A as expected by the analytical solution (3.8). In
fact, the system is apparently unstable for all |A].

Figure 7d shows the case when r; = 0 and yr/k
= (.1, that is, only bottom friction is included. Com-
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paring with the inviscid case, bottom friction widens
the instability range, but in this case the system is un-
stable only for A > 0, while the system is stable oth-
erwise. In fact, if we substitute r, = 0 and U, = 0 into
(3.8), we obtain

c=0,(1+2})
q

N

i‘)’fz

CIN‘T, at A=0. (3.15a)

This indicates that the instability range does not extend
toward A = —oo beyond A = 0 if only bottom friction
is included. The eigenvalue ¢ = 0 is interesting because
it implies a stationary solution without growth or decay
even though baroclinic energy conversion and frictional
dissipation are included. In fact, if we substitute r, = 0,
U,=0,A=0,and (3.7) with ¢ = O into (3.6a,b), then

By =0, gyBx+ ynB =0, (3.15b)
and hence, the solution is B = 0. Therefore, the upper-
layer motion is not affected by bottom friction, and
there is no coupling between the two layers because B
=0.

Before concluding this section we examine the case
of v!/2 < 1 as this is the limit we shall take to study
the weakly nonlinear theory in the next section. We
define

A=gy+y'PA0, (3.16)
and replace r; with v'/%r,, and yr, with v'/2r,. The
motivation of the scaling for , is that we wish the effect
of bottom friction to be comparable with that of in-
terfacial friction. Then (3.8) reduces to O(y'/?)

(@)} ; 1/2

i
c=gqy+vy'? _2—__56(’.1 + 1) i’YT\/)\—ZL_)\g,
(3.17a)
where
A=AD— ik Y (ry — 1), (3.17pb)
N = —~4b (3.17¢)

. When b > 0, there are the two cases for the asymptotic
behavior in .c as A" varies, as in (3.10). If » < 0,
however, there is only the case 2 behavior because the
branch points are placed on the real axis of the A-Rie-
mann surface. If r, /k = r,/k < 1, (3.17a~c) show that

AN =~ £2(=b)'/2,

Im(c)=0 at (3.18)

Thus, the inviscid result obtained by MG, in which r;
= ~r, = ( is a priori assumed, is recovered. Further, if
either r, > O0and r, # 0 or r, > 0 and r, # 0, then
Im(c) = 0 as A" = oo, so that the widening of the
instability range due to differential friction between
bottom and interface is also obtained even when
v 1/2 < 1.
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4. Baroclinic solitary wave in the presence of friction
and multiple equilibria

In this section we will examine the evolution of an
unstable solitary wave assuming v'/? < 1 in (2.17a—c).
In this case, the coupling between the two layers is weak,
that is, O(y'/?), and hence if friction is weak, (2.17)
may reduce to a perturbed KdV equation as formulated
in section 4a. The main purpose of this section is to dem-
onstrate that there are multiple equilibria where baroclinic
energy conversion and frictional dissipation are in balance
by using a perturbation theory for KdV-type equations.
This is discussed in section 4b, and the stability of the
equilibria is examined in 4c.

a. Perturbation theory of a single solitary wave

We first introduce a time scale that is appropriate
for the amplitude evolution due to weak baroclinic in-

stability as follows:
T =~'2T. (4.1)

Further, as we did in the end of section 3, we replace
r, and yr, with v '/%r; and v '/?r,, respectively, so that
the time scale due to interfacial and bottom friction is
comparable to that due to baroclinic instability. Fur-
ther, we expand y in powers of v !/2 so that

=0 pag L
Then we obtain, to O(y'/?),
~(Ar+ Ady) + 644y + Axxx — v'*r 4

(4.2)

0
+172 J‘_L UwX'dy =0, (43)

for the upper-layer motion. Hence, the leading-order
part of (4.3) gives the KdV equation, which has a sol-
itary wave solution of the form A;(8, 7) where

A, = a(r) sech?l6, (4.4a)
where
T
=X~ L c(7)dT’, (4.4b)
a =2 (4.4¢)

In (4.4b), c is a function of 7 because ¢ depends on
the amplitude of the solitary wave, which changes ow-
ing to baroclinic instability and friction whose time
scale is 7. Note that ¢ in this section is real, so that ¢
describes only the phase speed of the solitary wave.
The growth rate is described by da/dr. To solve (4.3)
we appeal to perturbation theory (for instance, see
Karpman and Maslov 1978; Kaup and Newell 1978;
or Grimshaw and Mitsudera 1992). We may obtain a
solution of the form

A=A+ 04,
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where 64 is the correction to the solitary wave solution
of O(y!/?), which arises due to the weak perturbation
term in the KdV equation (4.3). The analysis is quite
involved and we will not give details here, but the result
may be simply described to O(y!/?) as follows:

da 4
Pl Ig—gr,a, (4.5a)
c=A-2a+ 7‘/2(JB - ;—‘1) . (4.5b)
where
) 1]
I = f (f ¢‘°)U1dy) sech?zdz, (4.5¢)
1 w 0

Jg = —3f f vOU dy) L(z)dz, (4.5d)

4[ —ou -L P
L(z) = zsech?z + tanhz + tanh?z, (4.5¢)
z=10. (4.5f)

Equation (4.5a) represents amplitude evolution, where
the first term of the right-hand side describes amplifi-
cation due to baroclinic instability, while the second
term describes dissipation due to interfacial friction.
Equation (4.5a) may be obtained directly by consid-
ering energy conservation or the upper layer. On the
other hand, (4.5b) represents the phase speed of the
solitary wave to O(y !/2), where Jp represents the cou-
pling between the upper- and lower-layer motions. Note
that (4.5b) reduces to T" (1.2) if there is no coupling
between the two layers and no interfacial friction (i.e.,
v!/2 > 0). We do not present 64 here, as it is not
necessary for the following discussion.

Here we suppose that a U mode solitary wave is
almost resonant with the L mode. Then we may expand
cas

c=gv+yPc+ ..., (4.7)

where we recall that gy is the phase speed of the L
mode, that is, Re(c;) as in (3.8¢). Then we obtain

YO =d7'B(U; — qn)nw, (4.8)

as the lowest-order solution, where B is the amplitude
of the lower-layer motion and ny satisfies the eigenvalue
problem (3.2a,b). The next-order equation becomes,
after applying the compatibility condition,

BT - C“)Bg - bAsg + rzB =0. (4.9)

Since 0 (4.4b) is the reference frame moving with the
solitary wave, ¢! in (4.9) may depend on . Substi-
tuting (4.8) into (4.5¢,d), Iz and Jg reduce to

Ig =f By sech?zdz, (4.10a)

1 ®
Jg = 4—1§f ByL(z)dz. (4.10b)
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Finally we may obtain the phase speed relationship to
O(~!'/?) from (4.5b) and (4.7), such that

an + v 2 = A—2a+'y”2(J3—;—ll)- (4.11)

Equation (4.11) implies that @ may vary only O(y!/?)
from the phase speed corresponding to exact resonance,
which occurs when a = a‘©, where

24 = A — gy. (4.12a)

Thus, we may define the deviation of the amplitude
from a'® to be a'!’ where

4.
3l (4.12b)

We have obtained a set of equations (4.5a), (4.9),
(4.10a,b), and (4.12a,b) to describe the evolution of
a single solitary wave. Note that since a/® > 0 it follows
from (1.3) that A > I'. But the width of the linear
instability zone with respect to A is only O(7y!/?) since
we are considering only the case v < | here. Hence we
shall suppose that the system is linearly stable here,
and so A > T',.

200 = —¢ 4 (J,, - ﬂ) .

b. Steady propagation—multiple equilibria

Here, we shall investigate steady propagation of a
solitary wave, where a and ¢ are constants and d/dr
= (. Then, from (4.9), we obtain the lower-layer mo-
tion as follows:

b br, [? )
- Z(T)Aso - C(:fz f Asa'e(”/c(l))w—g de’. (4.13)

Bg =
Equation (4.13) indicates that B is in phase with 4 if
r, = 0. In this case, Iz = 0 from (4.10a), so that there
is no baroclinic energy conversion. Thus, in order to
maintain steady propagation, r; = 0 is necessary from
(4.5a). This is the nonfrictional case, and such steady
propagation is seen in Fig. 1b after the upper-layer sol-
itary wave changes the direction. However, if r, > 0,
B is no longer in phase with A, and thus, Iz # 0. That
is, in order to propagate steadily, baroclinic energy
conversion is required to balance the effects of bottom
and interfacial friction.
Substituting (4.13) into (4.10a) we obtain

2p
In= -2 o), (4.142)
2"2
where
L= ,
Q((I) = __Zf [J. (SCChZZ,)zle(l/a)(Z_z )dZ/
[24 ~ao +oo
X sech?zdz, (4.14b)
a=cV/r, (4.14¢)
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where =+ as o £ 0. Note that U a) = Q(—a). Asymp-
totic expressions of Q as &« = oo and a — 0 may be
obtained by integrating the inside of the parenthesis
[ ]of(4.14b) by parts, so that

4
Q(a)~§+-°- as a—> oo (4.152)
and
16 64 ,
N a) T 21a + -+ as a—=>0. (4.15b)

In Fig. 8 we display Q, which was obtained by inte-
grating (4.14) numerically. It shows that Q has the
maximum value 16/i5 at « = 0 as in (4.15a) and de-
creases monotonically as |«| increases.

Further, we substitute (4.13) into (4.10b) and find

bl
Jp=—X(a), (4.17a)
27'2
where
2
X(a) =~
o
1 [~ z ,
+?£w [f (sech?z’),.e"/*==2)gz" [ (z)dz.
(4.17b)
Asymptotic expressions for X(«) are
2
X(a)~3——2+ -+« a a—>o (4.18a)
a 3a
and
1
X(a)~1—2+8?a+--- as a—>0. (4.18b)

Note that for r; = r, = 0, which implies that o = o0,
(4.12b) and (4.18a) yield
2a“)=—c(”+—%. (4.19)
. c
This is the linear solution (3.17a) but with A" replaced

by —2a'?. In fact, if we assume nonfrictional steady
propagation a priori, Kubokawa and MG have shown

9_
1.0 15

1 1
-2.0 [o] 20 40 «

-4.0

Fi1G. 8. Plot of Q as a function of «.
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that the phase speed of a coupled solitary wave cor-
responds directly to the linear one where A is replaced
by I' = A — 2a. Noting that —2a‘" is the O(y'/?)-
term of T, (4.19) recovers the result of Kubokawa and
MG, and hence, the perturbation theory developed here
reproduces this coupling effect correctly.

Now we may obtain equilibria in terms of the am-

~ plitude. From (4.3), (4.4a), and (4.9) we first realize

that @ = 0 and B = 0 are trivial solutions. Next, as-
suming a ¥ 0, we define

_ 8r1r2
3ab ’

Then we may see from (4.14a) that (4.5a) (without
a,) has solutions if

p= (4.20a)

o= UNa) (4.20b)

is satisfied. Since 0 < Q < 16/;5 (see Fig. 8), we have
two equilibria when
16

O0<p=<—

o (4.21)

If p < 0 or p > 16/15, there is no steady state except for
a = 0. If p = 0, there are two solutions if 7, = r, = 0,
while if either of r; or r, is not zero, there are no steady
solutions within the range where the perturbation the-
ory with v'/2 < 1 is valid [see (4.23) below]. Note
that p = 0 when b = 0. Therefore, multiple equilibria
is realized only when b < 0, that is, when the basic
current has an unstable configuration. In this case,
therefore, weak bottom friction and weak interfacial
friction tend to cause the multiple equilibria. In con-
trast, if b > 0, the solitary wave has only one equilib-
rium where the amplitude of the solitary wave is zero.

We have so far obtained o from (4.20b), which in
turn gives ¢!V from (4.14c). The amplitude variation
is then obtained by (4.12b). If we suppose that the two
solutions for (4.20b) are a = *a,, the equilibrium with
the larger amplitude a${" (the smaller amplitude
a'V) is represented by — a, (a,).

For further understanding, we display a schematic
plot of the bifurcation diagram in Fig. 9, where

a. = a® + 52,

When r;, r» < 1 and ¢ = O(1), which implies «
> 1, we obtain, from (4.15a) and (4.20a),
r

M =—p=. (4.22)
n
Thus, using (4.12) and (4.19a), and again considering

ri, r» < 1, we obtain multiple equilibria such that

280 = im[(ﬂ)l/z ¥ (2)”2]. (4.23)

r r
Therefore,

al” = x(~b)""> when r, =r, (4.24a)
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FI1G. 9. Schematic plots of the bifurcation diagram. Solid lines with
a = a,, 0 denote stable branches, while a dashed line with a = a_
denotes an unstable branch.

while
al - +oo0  when either

ri=>0 onlyor rn,—>0 only. (4.24b)

Equation (4.24a) is identical to (3.17a) if —2a‘"
is replaced with A", as expected by the discussion
below (4.19).

When r, r; increases, which implies that p increases,
then |a| decreases as seen in Fig. 8. When p equals
16/15, there is a single solution, & = 0 (or ¢!’ = 0). Just
below this point, we obtain from (4.12) and (4.18b)

8bl rl T 5rl

-1 2
RTINS 1(”4 )+0(°‘)

2a (l)

(4.25a)

so that we confirm there are two solutions for p
< 16/15. If ryr, further increases, (4.20b) no longer has
solutions.

¢. Time dependent solution and stability of equilibria

Next, we shall investigate the evolution of a solitary
wave with time. From (4.9) we obtain the lower-layer
motion as follows:

B=b f e_’Z(T"')As,;(B + f V(") dr, T’)dT’.
0 ’

T

(4.26)
Substituting (4.26) into (4.10a) and (4.10b) we obtain
b )
Ip=—5 ) e a()I(S)dr, (4.27a)
0
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Jp= 8—[;3 | e g2 () (S)dT,  (4.27b)
where
I(S) = —f_: (sech’z).. sech?(z + S)dz, (4.27¢)
B(S) = ﬁ; L..sech®(z + S)dz, (4.27d)
and
S(r, 7y =17) f cD("ydr". (4.27¢)

We note here II(S) = II(—S), II(0) = 16/15, I1 - O
as § = oo, and $(0) = 16/;5, $(0) > 0as S — o0.In
general, (4.27a,b) show that Iz and Jp are complicated
functionals of a. But note that whenever II(S) > 0, I
Z 0 according to b = 0, and hence from (4.5a) the
amplitude of the solitary wave decreases with time
whenever b > 0, while the solitary wave can be unstable
if b < 0, depending on the relative magnitudes of I
and 4/3r,a on the right-hand side of (4.5a). Consider-
ing the unstable case (b < 0) we can now anticipate
that when II(S) < 0, solitary waves will stabilize. In
fact, I1(.S) is positive for 0 < | S| < 1.072 and negative
for 1.072 < | S| < o. Therefore, solitary waves are
stabilized for sufficiently large amplitudes even when
there is no friction, as seen in Fig. 1b.

Friction determines the asymptotic behavior of the
solitary wave as 7 — co. We first supposec there is an
asymptotic solution ¢ = a,, and ¢ = ¢, as 7 = 0.
Then we obtain, from (4.27¢),

S—=lc (r— 1), (4.28)
as 7 — oo. Thus, Iz becomes
2 <<}
Ig~— bi {lce (7 — 7'))e™ X" d7'
2 Jo
= zlc(l)f (e di
ba*
=—-—Na). (4.29a)
2r;
Similarly, J; becomes
Jp ~ %l Bl (7 — 7))e !
bl
_Z_rzx(a) (4.29b)

Since (4.29a) and (4.29b) are identical to (4.14a) and
(4.17a), respectively, a asymptotically approaches a,,,
which is either a,, a_, or 0.

To determine which equilibrium value a approaches,
we need to investigate the stability of these equilibria.
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FIG. 10. Example of multiple equilibria from different initial amplitude, a(0), obtained by numerical
integration of (2.17) with (3.13) and (3.14). The other parameters are A = 1.6, r, = yr, = 0.1; (a) a(0)

= 0.5, and (b) a(0) = 0.4.

First we consider a.. We perturb a and ¢! such
that @ > g + da and ¢’ = ¢V + 8¢, but here we
note that from (4.11) the perturbation in a is only
O(y'25¢"). Thus, the dominant term in (4.5a) is
due to dc'V, so that

3
—da = 3l + O(y'72),

= (4.30a)

where

ba® (= P 1
olg = — N II'(S)e ™1 ~7758ds' + O(y'/?),
0

(4.30b)
58 = oc V(7 — 1), (4.30c)

and here II' denotes the derivative. Thus we obtain

2
oy~ — L (bi)ac“m'(a) (4.31a)
r\2r
ol
= 5o 6. (4.31b)

Equation (4.31b) indicates that the system is quasi-
steady as 1 — oo, at least for v'/2 < 1, even though
we have included the B, term in the lower-layer equa-
tion (4.9). Hence we have, from (4.5a) and (4.30a),

i} olp

G o 't}
3 éa 30 éct’. (4.32)
Next, from (4.5b) we obtain
260 = —6¢™D + 8J5 + O(y'/?).  (4.33)

Here, noting that variation in Jj is due to c'"’ alone
to the lowest order, we obtain

2

! X' (a)dctV.

6]3“"2"—%

(4.34)

However, from the steady solution (4.12b) we obtain

da" b?
m =—1+ = X(a).

2 2r3

(4.35)
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FIG. 10. (Continued)

Substituting (4.34) and (4.35) into (4.33) we finally
obtain
da'h

6a“) ~ 56(_1) 56‘(]). (4.36)
This again indicates that the system is quasi steady.
Now, from (4.31), (4.32), and (4.36), and noting that
generally da/da‘"’ < 0, we obtain that the system is
stable if Q'(a) > 0, while unstable if @’ < 0. Therefore,

from Fig. 9, — e, («,) is stable (unstable), but since
—a, (o) represents a, (a-), we have finally found that

® a. is stable,
e g_ is unstable.

This conclusion can possibly be reversed if r, is suffi-
ciently small and r; simultaneously sufficiently large
so that for some small range of values of o, da/da?
> (); however, we shall assume this does not occur here.

To determine the stability of a = 0 we appeal to the
linearized theory and recall from the discussion at the
end of section 4a that here the linearized system is
stable. Hence we conclude that a = 0 is stable, at least
forv'/? « 1.

d. Brief summary

In summary we have obtained two stable equilibria,
a = a., 0, and an unstable equilibrium, g = a_ when
b <0and p(4.20a) lies between 0 and 16/15. Therefore,
a solitary wave with g > a_ approaches asymptotically
a,, while one with g < g_ decays to zero. In particular,
if a_ < a < a,, baroclinic energy conversion exceeds
frictional dissipation, so that localized baroclinic in-
stability occurs. Figure 9 summarizes the result of this
section, where the stable branches (i.e., a = a,, 0) are
denoted by solid lines, and the unstable branch (i.e.,
a = a-) by a dashed line. From (4.24b), a{"’ > + o
when either ry, = 0and r, # 0, 0or r, > 0and r;, # 0.
Therefore, we have found that differential friction be-
tween the bottom and the interface destabilizes solitary
waves as well. This is because friction tends to produce
phase difference between the two layers [e.g., see
(4.13)], which then induce baroclinic energy conver-
sion. Hence if either friction term vanishes, the energy
conversion cannot be balanced, leading to instability.
This result is consistent with that of the linear stability
analysis discussed in section 3.

To reiterate the conclusion in this section is valid
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for v!/2 < 1 and a'” = O(1). Further, we considered
coupling only with a single lower-layer mode. In section
5, we will discuss the results of direct numerical inte-
grations of (2.17), which is free from the above restric-
tions. Finally, note that in the Appendix we discuss
the energetics of the instability processes discussed here.

5. Numerical results

To investigate the evolution of solitary waves and
the multiple equilibria free of the restrictions of the
perturbation theory of section 4, we performed nu-
merical integrations of (2.17) directly using a pseu-
dospectral method (i.e., obtaining X derivatives using
Fourier transform) similar to that developed by Forn-
berg and Whitham (1978). In the lower layer, we used
a finite-difference scheme in the y coordinate with the
number of grids being 21. Note that only a single cross-
channel mode is generated. The channel width is L
= 2. The upper current U, (), the depth ratio v, me-
ridional gradient of Coriolis parameter 8, and the lower
current U, are the same as (3.13) and (3.14a-d), re-
spectively, in the figures to be displayed. Calculations
are performed in the domain 0 < X < 128, where a
damping layer is put in 0 < X < 24 so that the calcu-
lations are not affected by the periodic condition of
the pseudospectral method. Note that upstream is
X — —oo here. In all cases the lower-layer plots are for
¥(y = —1). We shall describe the behavior of solitary
waves in three cases separately, where r; = yr, # 0
(Case 1), n 0, n # 0 (Case 2), and ny
# 0, r, = 0 (Case 3), since the behavior is greatly dif-
ferent for these cases.

a. Casel:r=r;=~r;

In this subsection, both bottom friction and inter-
facial friction are included. Further, we assume r,
= yr, = r because this is a typical situation where both
types of friction are considered. The nonfrictional case
is a special case of this assumption.

In Figs. 10a and 10b we display an example of mul-
tiple equilibria attained by different initial conditions.
For both these cases, A = 1.6 and r; = yr, = 0.1. Figure
10a shows that if a(0) = 0.5, where a(0) denotes a at
T = 0, the solitary wave in the upper layer grows ini-
tially and shows an oscillatory behavior. However, it
attains a steady state as 7 = oo, with a =~ 0.8(=A/2)
and propagates steadily downstream. This is the large
amplitude state, and hence, a; =~ 0.8 in this system.
From Fig. 10a baroclinic energy conversion is evident
because the lower-layer motion has a depression up-
stream and an elevation downstream with respect to
the upper-layer solitary wave when it becomes steady.
This is the desirable phase relation for localized baro-
clinic instability to occur [see (Ala)]. On the other
hand, if a(0) = 0.4, baroclinic instability does not occur
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as shown in Fig. 10b, and hence the solitary wave de-
cays to zero, which is the other steady state of this sys-
tem. Hence, for r; = yr, = 0.1, we have obtained two
stable steady states where ¢ ~ 0.8 and g = 0, and an
unstable equilibrium somewhere between a = 0.4 and
0.5. This is consistent with the perturbation analytical
solution discussed in section 4.

In Fig. 11, we display a bifurcation diagram of a
with respect to r = r; = yr,. The rest of the parameter
values are the same as those for Figs. 10a and 10b.
Since A = 1.6, the system is stable for infinitesimal
disturbances (i.e., linearly stable) if r = 0 (see Fig. 7a).
Hence, there is a correspondence with the perturbation
study in section 4, and features are similar to those in
Fig. 9, in general. That is, there are three equilibria, a
= a. and 0, for 0 < r < 0.18, while there is one equi-
librium, a = 0, for r > 0.18. For 0 < r < 0.18, a_ is
always unstable, so that a solitary disturbance grows if
a, > a > a-, and decays if a < a_. Further, a = 0 is
the steady equilibrium that is stable for all rif A = 1.6.

However, contrary to the results in section 4 where
v17? < 1, direct numerical calculations show that a.
is not always stable if r is small enough, but the solitary
wave shows an oscillatory behavior as 7'— oo . In this
case the amplitude is oscillating about a, ~ 0.8. We
display an example in Fig. 12a where a(0) = 0.4 and
r = 0.05. A solitary wave grows due to baroclinic in-
stability when it propagates downstream, while it de-

10F o u} O O 000 AAA
a Val
A
//
o o A
//
— o) AN
0.5 /
a /‘/A
//
o,
/A/ A
*
///
O.1F A
1 |
0 0.1 0.2
r

FiG. 11. Bifurcation diagram obtained by numerical integration
of (2.17). Solid line indicates the stable branches, a, and 0, while
dashed line indicates the unstable equilibrium, a_. Dashed-dotted
line indicates the part of a, where the solitary wave shows oscillatory
behavior. Symbols indicate initial amplitudes, where each symbol
means a different final state as follows. O: steady propagation with
a = a,; A: a = 0; 0: oscillation about 4. ; *: continuous generation
of upper-layer solitary waves.
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cays when it propagates upstream due to friction. It
changes direction when the amplitude passes a = a,
=~ 0.8. Lower-layer waves are successively generated
when the upper-layer solitary wave propagates down-
stream, which in turn provides strong coupling between
the two layers so that the solitary wave grows. However,
the lower-layer waves do not change direction because
they are linear waves, and therefore, the coupling be-

comes weaker after the upper-layer solitary wave
changes direction. Finally the lower-layer waves decay
due to friction. The oscillatory behavior may be more
clearly seen in phase diagrams. We display a phase dia-
gram in terms of the amplitude and its time derivative
in Fig. 12b, where the initial amplitude is a(0) = 0.75.
This indicates that the equilibrium a, = 0.8 is unstable
for r = 0.05 because the cycle grows with time. But
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F1G. 13. As in Fig. 10 except for r; = yr, = 0.02 and a(0) = 0.2.

finally it reaches a quasi-steady cycle where the trajec-
tory is concentrated. The behavior is similar to that
caused by a Hopf bifurcation.

When r, and vr, further decrease, baroclinic insta-
bility dominates frictional dissipation. Therefore, the
upper-layer solitary waves are generated upstream
continuously from the unstable region and show com-
plicated behavior because of wave-wave interactions.
An example is shown in Fig. 13, where r = 0.02 and
a(0) = 0.2. The behavior of this case is similar to that
of inviscid cases such as that in Fig. 1b, although the
upper-layer waves decay weakly due to friction.

If the system is linearly unstable for r = 0, the equi-
librium a = 0 could be unstable for small r. To test
this hypothesis, we performed numerical calculations
with A = 1.0, which is certainly in the linearly unstable
range if r = 0 (see Fig. 7a). The consequent bifurcation
diagram is displayed in Fig. 14. It shows that charac-
teristics are similar to Fig. 11 in general; for example,
a, =~ 0.5 exists for r < 0.17. Note that even if r is small,
a solitary wave with sufficiently small amplitude is
likely to be stable. Therefore, a = 0 is likely to be a
stable branch for r > 0 even when A is in the linearly
unstable range for r = 0. For example, the solitary wave
with a = 0.01 is stable for r = 0.02. The analysis in

section 4 is suggestive of this character, although it is
valid only for v /2 < 1. That is, p (4.20a) increases as
a decreases, so that if a becomes sufficiently small, p
goes out of range of instability for any r # 0. In fact,
if a < 1, the linear stability analysis in section 3 may
be appropriate. If we use an initial disturbance of the
form (4.4a), energy is concentrated on very small
wavenumbers k if g is small because the half-width /
is proportional to a /2. Therefore, r/k is, on average,
large for such initial disturbance. From the linear anal-
ysis in section 3 [e.g., see (3.8)], the growth rate Im(kc)
is negative and finite as k — 0, so that frictional effects
can be large even if r itself is small.

b. Case2:r;=0andr, # 0

Here we consider cases in which only bottom friction
is included. The corresponding linear stability diagram
is Fig. 7d. In Fig. 15, we display an example where r;
=0, yr» = 0.1, and A = 1.6. The solitary wave grows
and turns direction at @ =~ 0.8 as in the previous cases.
As T — oo, however, the upper-layer solitary wave
becomes stationary; that is, ¢ = 0 and ar — 0. There-
fore, there is a stable equilibrium a, in this situation.
This is seemingly contradicting to the result of section
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FiG. 14. The bifurcation diagram for A = 1.0. The parameter
values are (3.13) and (3.14), and the meanings of symbols are the
same as Fig. 11.

4, which suggests that there is no steady state if r, = 0
and r, # 0 because a''’ (4.23) - *oo. But they are
not contradictory at all, because the equilibrium at
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¢ = 0 is out of the range of validity of the perturbation
theory, which assumes vy '/?2 < 1. Actually, having a
stationary solution corresponds directly to the char-
acteristics of the linear stability of this system such that
¢, = ¢; = 0 at A = 0 (see Fig. 7d). Further, the lower-
layer motion accompanied by the solitary wave dis-
appears as T — oo. This is consistent with the linear
stability result in section 3 [see (3.15b)]. Therefore,
the upper-layer motions are not affected by bottom
friction as 7 —> oo, so that the stationary state can be
achieved when U, = 0. Further, a, is exactly A/2 for
this stationary solitary wave because ¢ = 0, r; = 0, and
Js = 0 in (4.5b). Note that as the wave stabilizes and
becomes stationary a second unstable wave is generated
that also grows and stabilizes.

In Fig. 16, we display a strong bottom-friction case
where yr, = 1.0 and r; = 0. The initial amplitude a(0)
= 0.1 and the rest of parameters are the same as those
for Fig. 15. We have found that even though bottom
friction is strong, the solitary wave is destabilized. This
is seemingly puzzling, but is indeed expected by the
discussion in section 4. That is, from (4.24b), the mar-
gin of instability a{!’ - *oo for any value of bottom
friction as long as interfacial friction is absent, and
hence, instability occurs for even strong bottom fric-
tion. Further, it is noteworthy that the disturbance with
a(0) = 0.1 is destabilized. Since in the nonfrictional
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FIG. 15. As in Fig. 10 except for r, = 0, yr, = 0.1, and a(0) = 0.4.
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case, a solitary wave with a = 0.1 is stable (see Fig.
11), this confirms the widening of the instability range
due to bottom friction as discussed in section 4. This
1s also consistent with the result of the linear instability
analysis in section 3. We further performed a numerical
calculation for a(0) = 0.05 and it also shows instability.
In conjunction with the linear analysis, which indicates
that the system is unstable for A = +oo, a = 0 is likely
to be an unstable branch and hence, there is probably
only one stable equilibrium if interfacial friction is ab-
sent. This is because r, causes phase shift between the
upper- and lower-layer motions [see (4.13)], which in
turn causes baroclinic energy conversion; hence, if r,
= (, the balance (4.15) with da/dr = 0 is achieved
only if lower-layer motions vanish, which occurs when
¢ = 0. In other words, both interfacial and bottom fric-
tion are necessary in order to obtain fwo stable equi-
libria.

c. Case3:ri#F0andr, =0

Finally, we discuss the case where only interfacial
friction is present. Figure 17 shows an example in which
A =16, r = 0.05 vr, = 0, and a(0) = 0.4. In this
case, the lower-layer motion is strongly unstable (e.g.,
compare with Fig. 14), generating upper-layer solitary
waves continuously. Hence, there is no steady single

64 .0 80.9 96 .9

X

112.0 128.9

1 =0, yr, = 1.0, and a(0) = 0.1.

solitary wave, as suggested by the perturbation theory
in section 4. The upper-layer solitary wave, propagating
upstream, decays as indicated by linear analysis (Fig.
7¢) but shows complicated behavior due to wave-wave
interactions.

6. Summary and discussions

In this paper we have described a weakly nonlinear
theory of localized baroclinic instability where bottom
and interfacial friction are included. Our main aim has
been to show that there are multiple equilibria for sol-
itary waves, where energy conversion due to baroclinic
processes and frictional dissipation are in balance. We
use a two-layer model, which consists of a thin upper
layer and a deep lower layer; although the lower layer
is deep, it is not stagnant, and hence, baroclinic insta-
bility can occur. Considering the weakly nonlinear,
long-wave limit, we have shown that an evolution
equation of the KdV type (2.17a) describes the upper-
layer motion, with additional terms describing the
coupling between the two layers, and interfacial fric-
tion. The lower-layer motion is described by a linear
long-wave equation (2.17b,c) including bottom and
interfacial friction, which is in turn coupled with the
upper layer.
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FIG. 17. As in Fig. 10 except for r; = 0.05, yr, = 0, and a(0) = 0.4.

Before investigating the weakly nonlinear problem,
we first solved a linear eigenvalue problem including
bottom and interfacial friction, omitting the nonlinear
and dispersive terms from the upper-layer equation
[e.g., see (3.4)]. The results are summarized in Fig. 4
for b (3.5d) > 0, and in Fig. 6 for b < 0, where b
represents the sign of the lower-layer potential vorticity
gradient; a negative b indicates that the signs of the
potential vorticity gradient of the two layers are op-
posite, and hence the basic current may be baroclini-
cally unstable. Further, some typical cases of the ei-
genvalue problem are calculated numerically, and the
results are displayed in Figs. 7a-d. An interesting con-
sequence is that when the mean current has an unstable
configuration (i.e., b < 0), differential friction between
bottom and interface may enhance instability in a range
where the system is stable for nonfrictional cases. This
somewhat puzzling feature of the two-layer model was
first found by Holopainen (1961) with bottom friction.
Our study has proved that it persists into the long-wave
limit. Further, we discussed this feature for the nonlin-
ear case using energetic equations in the Appendix.
This destabilizing effect of friction is most evident when
either bottom or interfacial friction vanishes (see Figs.
7¢,d, comparing with Fig. 7a).

The evolution of nonlinear, localized disturbances
was then investigated analytically (section 4) and nu-

merically (section 5). It has been found that there are
multiple equilibria where baroclinic energy conversion
and frictional dissipation are in balance. The multiple
equilibria occurs when b < 0, and when r,r, is less than
the critical value defined by (4.19a) and (4.20), where
ri and r, are the (scaled ) interfacial and bottom friction
coeflicients, respectively. If this criterion is satisfied,
there are typically three equilibria for small but nonzero
r; and r,. In terms of the solitary wave amplitude, a,
we obtained a = a,, a-, and O as the equilibria, where
a, > a_ > 0. The equilibrium a = q_ is unstable, and
hence, a solitary wave with a > a_ attains the large
amplitude state @ = a, as T — oo, while a solitary
wave with a < a_ decays to zero. In particular, if a.,
> a > a_, baroclinic energy conversion exceeds fric-
tional dissipation, and thus, localized instability occurs.
But @, may also be unstable if friction is small enough;
in this case, an upper-layer solitary wave shows oscil-
latory behavior, where the amplitude is oscillating
about a = a;.

If only bottom friction is included (r, = 0, and r,
> 0), the system is unstable for any r; even if r, is large.
Further, a = 0 is likely to be unstable. This is because
r, causes a phase difference between the upper- and
lower-layer motions [e.g. (4.13)], which in turn en-
hances baroclinic conversion; hence the solitary wave
is unstable except when the lower-layer motion van-
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ishes. Therefore, there is only the one stable equilib-
rium, 4., in which the upper-layer wave has exactly
zero phase speed (if the lower-layer current is absent).
On the other hand, if only interfacial friction is in-
cluded, solitary waves are continuously generated in
the unstable region, and hence, there is no steady state.
Therefore, in order to obtain multiple stable equilibria
(i.e., a = 0, a,) in a two-layer model, neither bottom
friction nor interfacial friction should be zero.

One possible application of this study is to the be-
havior of the Kuroshio Current off the south coast of
Japan. It is well known that the Kuroshio has two major
paths; one is the straight path and the other is the large
meander. Both of these paths are very stable, persisting
for a few years, but transition from the straight paths
to the large meander occurs rather quickly, that is,
within three or four months. This indicates multiple
equilibria of the Kuroshio system. Further, preceding
the formation of the large meander, a “small meander”
is generated off the coast of Kyushu (the westernmost
part of Japan). It has been suggested from observations
that if a small meander has sufficient amplitude and it
can propagate eastward, the small meander grows lo-
cally and develops into a “large meander” upstream
of the Izu Ridge, accompanying a stationary cyclonic
eddy (e.g., Shoji 1972). Further, in a numerical ex-
periment of the large meander using a two-layer model,
Yoon and Yasuda (1987) have demonstrated that a
solitary disturbance grows baroclinically if the initial
amplitude is larger than a certain critical value. The
present model consistently describes the above features
of observations and experiments as follows:

e We have obtained two stable states, a = a, and 0,
which can correspond to the large meander and the
straight path, respectively. Further, when the solitary
wave attains the large amplitude state, it becomes al-
most stationary in our model if we set U, = 0. (Of
course, topography will play a crucial role in the be-
havior of large stationary meanders.)

e A solitary disturbance grows and develops into
large amplitude state if the initial disturbance has an
amplitude a > a- and if it propagates downstream. It
decays otherwise. Hence, small meanders that develop
into large meanders are rare, even though we frequently
observe the small meanders off Kyushu, especially in
winter (e.g., Sekine and Toba 1981).

¢ From the sign of the nonlinear coefficient (2.13c),
(2.15b) implies that in dimensional terms only a cy-
clonic solitary wave may form in this system, which
also corresponds to the formation of the cyclonic eddy
on the large meander.

Although our model is highly idealized, evaluation of
typical values may be useful. If we assume H; = 700
m H, =3500m, g =2 X 102ms™>, f =17
X 107357, Uy = 1.0 m s™!, and if we use the mean
current profile (3.13) and the scaled depth ratio
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(3.14a,b), then ¢? = 1/3, Ly = 53 km, and A\ = 0.23.
To evaluate ¢, we recall that the relation between the
scaled and the dimensional depth ratios is given by
H,/H, = %6 'k*\} v, from (2.16), where ¢ = 1 for
the Boussinesq approximation. Note that with these
typical values and with the dimensional value of 3, 2
X 107" m™!'s™!, B is about 0.05, which is a small
value. Hence, the scaling of the potential vorticity gra-
dients in section 2 is relevant for strong currents such
as Kuroshio.

Now we evaluate time scales. Since a character-
istic time scale for a KdV solitary wave is T
=¢3LoUg'\5~", we then obtain T, ~ 13.9 days. For
the particular mean current profile and the depth ratio,
the time scale of baroclinic growth, T, is longer than
T; (see Fig. 1b), where the unit time corresponds to
T,), that is, typically 75 ~ 100 days. Therefore, T
corresponds well with the transition time of three to
four months from observations. On the other hand, a
barotropic decay time may be evaluated from fo6g/
2(H, + H;), where 0g is the bottom Ekman layer
thickness. If we adopt 6g = 10 m, the typical time scale

"is about 130 days. A corresponding baroclinic decay

time is ambiguous, but it should be longer than the
barotropic decay time. A data analysis of Sekine et al.
(1984) suggested that the spindown time of the cyclonic
eddy on the large meander is about one year. Therefore,
the time scale of baroclinic energy conversion is com-
parable to, but apparently exceeds, frictional dissipa-
tion. We conclude that the condition for baroclinic
instability and multiple equilibria, such as (4.21), can
be satisfied in practice.

One of the main results of this paper is that both
bottom and interfacial friction are necessary for a two-
layer model to have multiple stable equilibria (although
a, may be unstable and show oscillatory behavior) be-
cause otherwise friction is destabilizing rather than sta-
bilizing. However, the cause of interfacial friction is
somewhat unclear, especially for oceanic phenomena.
An important factor is radiation due to Rossby waves
toward the ocean interior. Kubokawa (1989) consid-
ered it by introducing radiation in the lower layer, but
for the upper layer he derived a KdV-type equation,
so that radiative damping is not included there. He
found that solitary waves are generated one after an-
other, which tend to be stationary due to the lower-
layer radiation. This is comparable to our result of the
case of bottom friction only. If radiative damping is

‘included in the upper-layer motion, then it may be

described by an evolution equation of the Benjamin—
Davis-Acrivos type (e.g., see Mitsudera and Grimshaw
1991b). Another factor to be noted is the possibility
of continuous stratification in the lower layer because,
in conjunction with the 8 effect, this permits trans-
mission of energy downward, where it can be dissipated
by bottom friction. As for baroclinic instability prob-
lems, bottom friction destabilizes the otherwise neutral
Eady modes where 8 = 0 (e.g., Williams and Robinson
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1974), whereas it invariably stabilizes Charney modes
where 8 # 0 (e.g., Card and Barcilon 1982). Both these
effects are important, and further investigation is
needed.

Discussions developed here may be suggestive of the
dynamics of blocking phenomena in the atmosphere
as well. Recent observations suggest that blocking is a
local phenomenon rather than a global one, and hence
substantial modeling efforts have been made to explore
barotropic solitary waves (e.g., Haines and Malanotte-
Rizzoli 1991, and references therein). However, baro-
clinic processes may play important roles during the
formation stage of blocks (e.g., Nakamura and Wallace
1990). Further, some blocking ridges show baroclinic
features even during the fully developed stage. For ex-
ample, Hartman and Ghan (1980) have shown that
the temperature maximum of the long-lived Atlantic
blocking ridges shifts westward from the center of the
ridges, and hence there is net heat transport to the
north. As for the Southern Hemisphere, Baines ( 1983)
suggested that baroclinic instability is the most prom-
ising mechanism to form blocking in the Australian
region where blocking events occur most frequently.
Although the mechanism of blocking may be more
complicated, and may involve barotropic processes
such as barotropic instability and an eddy-straining
mechanism (e.g., Mak 1991), the present model of
localized baroclinic instability may shed light on the
basic dynamics of blocking phenomena, in particular
during their formation stage.

There is no doubt that forcing due to topographic
features plays a crucial role in the evolution of localized
phenomena such as atmospheric blocking and the Ku-
roshio large meander, especially influencing its sta-
tionary nature. Hence, a lot of studies have been carried
out on these subjects. In the context of localized forcing,
Warn and Brasnett (1983) have shown that a localized
topography may capture a solitary disturbance prop-
agating on a stable current if bottom friction is present.
Yamagata and Umatani ( 1987) applied the mechanism
to the bimodality of the Kuroshio paths. However, in-
teraction between baroclinic currents and localized to-
pography in the presence of friction has yet to be in-
vestigated. Finally, there is also a need to develop nu-
merical and laboratory models that can examine the
range of validity or robustness of the KdV dynamics,
which assumes small amplitude and weak dispersion.
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APPENDIX
Energetic Considerations

Here we examine the energetics of the instability
processes investigated in section 4. First, to obtain an
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energy equation we multiply (2.17b) by 4 and integrate
with respect to X over —oo < X < oo to get

i © X foo B
’(aT+ 2r,)f 347dX + | PxddX =0, (Ala)

where

0
= J;L YU dy. (Alb)

Note that the second term in (Ala) shows that for
upper-layer instability there must be a phase difference
between the layers, with the phase of the lower layer
farther downstream than that of the upper layer. To
obtain a corresponding equation for the lower layer we
first define ¥ and F by

(56—T+ U, 8_8)? + 'yrz)\I/ ¥, (A2a)
and
(—a— + Uy — 9 + yrz)F = yA(yrU, + vriUyyy).
oT oxX
(A2b)

Then we can integrate (2.17b) with respect to 7', mul-
tiply by ¥, and integrate with respect to y over —L
< y < 0 and with respect to X over —o0 < X < o0 10
get

o d
% f PyAdX + (—
. or

+ 2772) f Jdx
=—'yf AGdX, (A3a)
where
_ 0
= Ef sz‘I’%\’dy—f FYydy, (A3b)
-L -L
and

0
G= J‘_L \IIX('yr2U1 + vrlUlyy)dy. (A3C)

Combining (Ala) and (A3a) we get the energy equa-
tion

(—+2r1)f SA%dX + v~ ‘(6—6T+2r2)
xf JdX = —f AGdX. (A4)

In the absence of friction (i.e., r; = r, = 0) it reduces
to the result obtained by MG, which shows that for J
< 0 there is instability. Here, in the absence of friction
F =G =0, and so J < 0 is possible only if ,, <0
somewhere, which is the well-known necessary con-
dition for baroclinic instability. Here interest is in the
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role of the frictional terms, and we see from (A3a-c)
and (A4) that frictional terms first modify the time-
derivative term on the left-hand side of (A4) in an
obvious way; second, they alter the definition of J; and
third, they introduce a term on the right-hand side of
(A4). Of these, the most important is the term involv-
ing G. Note that for the jetlike flows considered here
U, > 0 and U,,, < 0 so that interfacial friction (rep-
resented by r; ) and bottom friction (represented by r,)
act in opposite senses.

In general, the sign of the right-hand side of (A4)
cannot easily be determined, and hence to make pro-
gress we resort to perturbation theory. As in the pre-
ceding parts of this section we assume that v < 1, but
first we consider nonresonant coupling between the
layers. In this situation the slow time variable is

=T, (A5)

in place of (4.1), and we replace r, with vyr; so that
bottom and interfacial frictional terms are comparable
with time scales in sympathy with 7. With these scalings
Fis O(v?) and it turns out that its contribution to J
(A3b) can be neglected.

Let us first consider the U mode, for which we can
write

A=AC + 44D+ ..o
¢=7¢(0)+ e,
Then A9 satisfies the uncoupled equation. Further,
J=y2JO 4 .. (A7a)

(A6a)
(A6b)

where

0
JO =% f 0, ¥$7dX, (A7b)
~L
and, to leading order, the energy equation (A4) be-
comes

i} <1
—_ — 4(0)2
(6T+27‘|)J\_m2/4 dx

a [}
+ 7(— + 2r2) f JOdx
or —0

=y f AOGO4Y, (A8a)

-0

where
0
GO = fL \I/(,\('))(rzUl + vriUy,y)dy.  (A8D)

Thus, to leading order, the energy density is dominated
by the upper-layer solution, and we can neglect the
term involving J® on the left-hand side of (A8a), as
well as the right-hand side. Hence to leading order the
upper-layer solution is stable. However, we can ex-
amine these neglected terms to determine whether or
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not their tendency is to destabilize the upper-layer mo-
tion. First we consider the term involving J® on the
left-hand side of (A8a) and note that if 0,, < 0, this
term is destabilizing if 7, > r;. Next, to estimate the
sign of the right-hand side of (A8a), we suppose that

VO =3 BAX, THU; — g)na(¥),  (A9)

n=1

where 75,(y) satisfies the eigenvalue problem (3.2a,b).
For simplicity we suppose that U, is a constant. Then
substituting (A6a,b) and (A9) into (2.17b,c), and as-
suming that 4@ is a solitary wave of speed c, it is
readily shown that

v =y O, - ¢, (A10a)
and
0
(U —¢) f Ulnndy
= L (0)
B, = 5 A™.  (A10b)
(gn — ) f_L Qxymidy
Then we find that
fm A4OGO gy = foo A‘O’de[ % (Us — q,) Gn] ,
T - n=1 (qn - C)
(Alla)

where

0 0
[f QZyW%dy:IGn = f Ulnndy
—~L —-L

0 0
X (rz J‘_L Um,,dy + vry J:L U;yyn,,dy) . (Allb)

Since we can expect O, (U, — ¢g,) > 0, while U; > 0
and U,,, < O for jetlike flows, it follows that the right-
hand side of (A8a) is destabilizing if », > r, and ¢
> g,, or if r; > r, and ¢ > g,. In both cases we again
see that friction can be destabilizing.

Next we consider the L mode, for which

A =A(0) + ,YA(I) + ... s (Al2a)
‘[/= ¢(0)+‘Y¢(1)+ e (Alzb)

where ¥ (*) is again given by (A9). However, now the
¥ 9 is uncoupled from 4%, and hence we are free to
select a single mode, say » = N. To leading order, the
energy equation is

9 1 02
(2 42) [ 1aomax

a o)
+ 7*'(5— + 2r2) f JOdXx
T -0

=—f A9YG%dx, (Al3a)
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where
0
JO = % (LL szn%vdy)B,zv, (A13b)

and

0

G = BNf nn(ynU, +vriUyy,)dy.  (Al3c)
L

Thus, to leading order, the energy density is dominated
by the lower-layer solution and is positive or negative
according as 0>, > 0 or < 0. It follows that the term
involving the upper-layer motion on the left-hand side
of (A13a) is destabilizing if r, » r, and Q,, < 0. To
estimate the sign of the right-hand side of (A13a) we
must find A©, which is given by

~(A = gn)AD + 3402 + 45}
0
+ BNU_L (U2 - qN)UmNdy] =0. (Al4)

Using the linear, nondispersive limit, we finally esti-
mate that

JW A‘O’G(O)dX=J‘m B%VdX[(UZ_QN)GIjI’
T - A—gy

(Al5)

where G| is given by (A11b). It follows that the right-
hand side of (A13a) is destabilizing if r, > r, and A
< gy, or if r; > r, and A > gy. Again we see that
friction can be destabilizing.

Finally we reexamine the resonant case discussed in
detail in the previous subsections. Now the slow time
variable is (4.1), ¢ is given by (4.2), and 4 = A4,
+ O(v'/?), where A, is the solitary wave solution given
by (4.4a-c). To leading order, the energy equation (A4)
becomes

a <1
2is f La
(67 rl) _sz adx

d 1 =1
+ = — | ZBgx=—12
(87'+2r2)b _szd vy 21y

J‘_ UlyynNdy

XVt (A16)

0
f Umdy
-L

Here, we recall that ¢ (9 is given by (4.8), b is defined
by (3.6d), and I is given by (4.5¢). Note that now
the upper and lower layers contribute equally to the
energy density. It is interesting to note here that (Ala)
gives, to leading order,

a oo
(—+2r1)f 1A?a’X=2[IB. (A17)
or —o 2
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Evaluating the integral on the left-hand side, we find
that (A17) gives (4.5a). Also (A3a) gives, to leading
order,

9

(i + 2r2) f Yprax + obin, = 0. (A18)
or o 2

Eliminating /5 gives (A16) with the right-hand side
replaced with zero, which is, of course, the correct result
to O(1). Thus we see that (A16) gives an O(y!/?)
correction term to the perturbation theory of the pre-
vious three subsections. We conclude, for instance, that
if b > 0, so that the solitary wave is stable to leading
order, the right-hand side of (A16) is destabilizing if
r» > r;. However, when b < 0 it is difficult to draw
general conclusions from (A16) since the sign of the
energy density on the left-hand side of (A16) is not
known a priori. However, we should note here that the
second perturbation equation (4.5b) is not included
in the set (A16), (A17), or (A18) but is obtained as
an O(v'/?) correction term from the energy equation
(Ala), where (A17) is the leading-order term (see
Grimshaw and Mitsudera 1992).
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