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ABSTRACT

The migration of nonlinear frontal jets is examined using an inviscid “reduced gravity” model. Two cases
are considered in detail. The first involves the drift of deep jets situated above a sloping bottom, and the second
addresses the zonal 8-induced migration of meridional jets in the upper ocean. Both kinds of jets are shallower
on their left-hand side looking downstream (in the Northern Hemisphere). For the first case, exact nonlinear
analytical solutions are derived, and for the second, two different methods are used to calculate the approximate
migration speed.

It is found that deep oceanic jets migrate along isobaths (with the shallow ocean on their right-hand side) at
a speed of g'S/ f, (where g’ is the reduced gravity, .S the slope of the bottom, and f, the Coriolis parameter).
This speed is universal in the sense that all jets migrate at the same rate regardless of their details. By contrast,
upper-ocean meridional jets on a 8 plane drift westward at a speed that depends on their structure. Specifically,
it is shown that this drift is the average of the two long planetary wave speeds on either side of the front: namely,
C = —B(R% + R%)/2, where Ry, (R,.) is the deformation radius based on the undisturbed depth east (west)
of the jet; for frontal jets the above formula gives half the long Rossby wave speed.

Both kinds of drift occur even if the jets in question are slanted; that is, it is not necessary that the deep jets
be directly oriented uphill (or downhill) or that the upper-ocean jets be oriented in the north-south direction.
For the drifts to exist, it is sufficient that the deep jets have an uphill (or downhill} component and that the 8-
plane jets have a north-south component. Possible application of this theory to the jet observed during the
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Local Dynamic Experiment, which has been observed to drift westward, is discussed.

1. Introduction

The question of what happens to meridional mid-
ocean jets on a 3 plane or deep jets situated over a
sloping bottom is important because of its direct rel-
evance to jets in the open ocean. One example of such
flows is the midocean jet discovered during the Local
Dynamic Experiment (Shen et al. 1986). This jet was
observed to have a relatively short cross-front length
scale (50-100 km) and an alongfront length scale of
at least 400 km. It was a surface intensified feature,
with flows at 200 m in excess of 30 cm s~! and cross-
front isopycnal depth changes of ~200 m. Last, the
jet appeared to be associated with a considerable mass
transport. These aspects of the Local Dynamics Ex-
periment (LDE) jet suggest that it is an important fea-
ture of the North Atlantic circulation.

Past theoretical models of the LDE jet, and of mid-
ocean jets in general, have examined possible reasons
for their existence, but have confined their analysis to

* Also affiliated: Supercomputer Computations Research Institute.

Corresponding author address: Prof. Doron Nof, Department of
Oceanography 3048, The Florida State University, Tallahassee, FL
32306-3048.

time-independent fixed processes (Dewar 1991; Dewar
and Marshall 1993). An observed feature of the LDE
Jjet, however, was its tendency to move west at a rate
of a few centimeters per second and the reasons for
such migration have received only limited study. The
objective of this paper, therefore, is to examine prop-
agating front models that can, hopefully, be applied to
the LDE observations.

Background

It has been recognized for many years that upper-
ocean features with closed circulation cells (i.e., Rossby
waves or eddies) propagate to the west on a 3 plane
and that similar deep patterns migrate along isobaths.
However, it is not a priori obvious what would be the
case with one-dimensional meridional flows because
the common qualitative explanations for the westward
drift of Rossby waves (e.g., Gill 1982) and eddies (e.g.,
Nof 1983a) do not apply. This is so because both of
these explanations rely on the presence of zonal flows
that are not necessarily present in meridional jets.

A partial answer to the question of the behavior of
meridional S-plane fronts was obtained in a study of
planetary shock waves in Dewar (1987). There it was
argued (using a two-layer model) that steepening,
driven by the nonlinearity in the continuity equation
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in the presence of 8, produced westward migration of
the front. These same planetary shock wave dynamics
accounted for front generation in the steady arrested
fronts model described by Dewar (1991). Although
useful, the above is limited in that the flow was every-
where restricted to being geostrophic, even in the main
body of the jet. A ramification of pure geostrophy,
however, is that the well-known Sverdrup constraint
governs net transport, so that the strong upper-layer
jet flows are accompanied by reverse deep flows that
very nearly cancel the total volume flux. In contrast,
the LDE jet observations suggest that the jet flows were
surface intensified, but in the same southwesterly di-
rection throughout the water column. Furthermore,
transport estimates suggested that the jet was moving
40 Sv of the fluid to the southwest, which is greatly out
of accord with Sverdrup dynamics.

In view of this, it is of interest to examine a broader
class of midocean jets than has previously been con-
sidered and to determine how they respond to the pres-
ence of 8. To do so, we shall look at two inviscid jets—
a heavy deep f-plane jet situated over a sloping bottom
and a light upper-ocean jet on a 8 plane. The deep jet
is examined first (section 2 ) because its analysis is con-
siderably simpler than that of the upper jet. By ex-
amining the flow in a coordinate system traveling with
the jet at its own migration speed, an exact analytical
solution is derived. It shows that the migration is caused
by the gravitational force that forces the jet downbhill.
This force is, in turn, balanced by a Coriolis force that
corresponds to an along-isobath drift.

With the aid of this exact solution for the deep-ocean
jet, we shall then examine upper-ocean jets (section
3). Here, it is impossible to derive an exact analytical
solution. However, by integrating the y-momentum
equation and using a perturbation in ¢, the ratio of the
variation of the Coriolis parameter across a segment
of the jet to the Coriolis parameter at the center, it is
possible to derive an approximate solution for a me-
ridional jet with vanishing thickness on one side. It is
also possible to obtain an approximation to the front
drift speed in the more general cases of (i) differing,
but not necessarily vanishing, thicknesses on each side
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of the front and (ii) nonmeridional fronts. After pre-
senting these analytical solutions, we present a possible
application of the model to the jet observed during the
LDE (section 4). The results are discussed and sum-
marized in section 5.

2. Deep jets over a sloping bottom
a. Formulation

As an idealized formulation of the problem, consider
the jet shown in Fig. 1. The cold homogeneous jet has
a density (p + Ap), depth 4(x, y), and horizontal ve-
locity components u = u(Xx, y) and v = v(x, y). The
infinitely thick fluid above has a density (p) and is
taken to be at rest.

When there is no slope to the bottom (S = 0), the
jet is obviously stationary (C, = 0) and has the familiar
structure:

u= O]

V= (ng)l/Ze—x/Rd’
u= 0]
(2.1b)

h=H(1 —e™*)

where the jets’ potential vorticity [dv/dx + fu1/h. is
uniform (fy/H), H is the undisturbed depth at infinity,
Ry, the deformation radius, equals (g'H)'/?/ fo, g’ is
the “reduced gravity,” (Ap/p)g, and fy is the (uniform)
Coriolis parameter. The above relationships describe
a jet that is in a geostrophic balance in the x direction
(i.e., fov = g'dh/dx) and does not vary in y (i.e., 3/3y
=0).

With the aid of this information, we shall now ex-
amine the more general problem of a jet over a sloping
bottom (i.e., S # 0). To do so, we shall consider a
coordinate system traveling with the jet at its yet un-
known migration speed C,. The origin of the coordi-
nate system is located along the front (A = 0), the x
axis is directed at 90° to the left of the downhill direc-

uphill jet (i.e.,
Jjet occupying the
area x = 0)

(2.1a)
downhill jet (i.e.,

jet occupying the
area x < 0),

D= __(ng)l/Zex/Rd’

H(1 — %)

FIG. la. Three-dimensional view of the reduced-gravity deep-ocean jet under study. The “wavy_”
arrow indicates migration and straight arrows correspond to actual flows. The bottom slope is

defined by S = tanvy.
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FIG. 1b. Schematic diagram of the reduced-gravity deep-ocean jet under study. Thick arrows
denote flow direction and “wavy” arrows denote migration; dashed lines denote isobaths. The
bottom slope corresponds to AH — Sy. The jet is flowing either uphill (left panel) or downhill
(right panel) and migrates along the isobaths (i.e., in a direction perpendicular to the flow direction).

tion, the y axis is pointed uphill, and, as before, the
system rotates uniformly with an angular velocity f,/
2 about the vertical axis.

It is assumed that the translation is steady and that
the shape of the jet does not change in time so that in
our moving coordinate system the motion appears to
be steady. The assumption of permanent form and
structure is plausible, but it is not a priori obvious under
what conditions it is valid and adequate. It will be
demonstrated later, however, that the drift does not
affect the structure of the jet in any way so that the
shape is indeed permanent, and the assumption is ad-
equate for all topographically induced drifts.

The relevant governing equations for the moving
coordinate system (x, y) are obtained by applying the
transformations X = x + C,t and § — y to the familiar
equations in the fixed system (X, ). For the conditions
mentioned above, the transformed equations are

u u 1P
u—+v——foo=—-——
p OX

2.
ax ay (2.2)

av 0 1 6P
— —+ +C)=——-— 2.3
uax+vay Jo(u+ Cy) b3y (2.3)

a d

ax(hu) + 3 (hv) =0, (2.4)
where P is the deviation of the hydrostatic pressure
from the hydrostatic pressure associated with a state
of rest (i.e., a “no jet” state), and fC, is an apparent
Coriolis force resulting from the fact that our coordi-
nate system is moving.

Under these conditions, P can be expressed as

P=glAp[h(x,y)+ Sy —z], (2.5)

where S is the slope of the bottom. Substitution of
(2.5) into (2.2) and (2.3) gives the modified equations,

ou ou doh
— 4 — - =—g — 2.6
“as ”ay Jov i (2.6)
o ov oh
u—+tv—+folut+t Co+g'S/fo)=—-¢—, (27)
ox ay dy
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which are subject to the boundary conditions,

h=0; Y(x,y)=0 (2.8a)
v—=>0; x— too, (2.8b)
where ¢, the transport function, is defined by
oy o
— =vh, — = —uh. 2.
o P uh (2.9)

Condition (2.8a) states that the jet is bounded by a
front (2 = 0) whose structure and shape are not known
in advance but rather must be found as a part of the
problem. Condition (2.8b) reflects the fact that the jet’s
speed decays away from the front; the plus and minus
signs correspond to uphill and downhill jets, respec-
tively. ’

b. Solution

Examination of (2.6)-(2.7) reveals that if C, is set
to be equal to —g'S/fy then the governing shallow-
water equations reduce to the same form that they
would have in the absence of any slope. This implies,
of course, that they admit the exact jet solution dis-
cussed earlier in (2.1). Hence, the exact solution for
our drifting jet is

Ce=—2'SIfo]|

uphill jet (i.e.,

v =(g'H)'2e /R4, =0 o0 >x=0;
—w<y<ow)
h=H(l— e™>/Rdy
(2.10a)
or
Cx = —g,S/f
- g downhill jet (i.e.,
v=—(g'H)2ex/Rd; y=0p 0 <XS< 0;

- <y<ow),

=
il

H( 1 — ex/Rd)
(2.10b)

where 1, v are now the speeds as viewed from the mov-
ing coordinate system.

At this point, the reader may wonder how particles
can move uphill (downhill) without losing (gaining)
energy. This apparent conflict is resolved by examining
the Bernoulli integral in the moving system,

S+ v2) + gh+ g Sy + foeCoy = B(Y). (2.11b)

In this form, the Bernoulli incorporates both the slope
and the drift; since C, = —g'S/ fo, the last two terms
drop out and we recover the usual Bernoulli implying
that the uphill (downhill) motions are offset by the
general drift. This results from the fact that the gravi-
tational force, g’S, is balanced by the Coriolis force
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associated with the drift, f,C,, so that particles are free
to move up and down the slope without losing or gain-
ing energy. Note also that our solution requires, of
course, that at infinity the fluid will actually be moving
at the same rate that the front migrates. In contrast to
the meridional upper-ocean jet that will be later de-
scribed in section 3, the present bottom jet does not
vary in the y direction. Here, the exact solution illus-
trates that, although the slope causes a drift, it has no
influence on the jet’s structure.

It is important to point out that our jet’s general
drift is identical to the migration speed at which isolated
cold eddies drift (Nof 1983b; Mory 1985; Mory et al.
1987). This universal speed, sometimes referred to as
the Nof speed (e.g., Swaters and Flierl 1991), corre-
sponds to an identical balance of forces (gravitational
and Coriolis) and, hence, it is not surprising that the
speeds are also identical.

¢. Slanted jets

We shall now show that the above solution for the
drift (2.10) is also applicable to jets whose orientation
does not coincide with the downhill direction (Fig. 2).
For such jets the governing shallow-water equations
(2.6)-(2.7) are rewritten in the form,

] . 2' S cosa oh

._._..+ —_— - A — g —

“ax TV f"(” AR ) 9%
(2.12)

_0b  _ab N £2'S sina oh

—+D—+ +Crt——|=—g —,

“ox Vo f"(“ A ) & oy
(2.13)

shallow

TOP VIEW

FI1G. 2. The same as Fig. 1 but for a slanted jet, that is, instead of
flowing directly uphill or downbhill, the jet is now flowing at an angle
« (measured from a line parallel to the isobaths to the front), which
is smaller than /2. Cz and C; are the drifts in the X and j directions
of the new tilted (and moving) coordinate system.



NOVEMBER 1993

f/2

NOF AND DEWAR

2317

FIG. 3a. A three-dimensional view of a reduced-gravity upper-ocean jet on a 3 plane.

where the tildes represent the new coordinate system;
that is, @ and ¥ are the velocity components in the
slanted (and traveling) coordinate system (Fig. 2).
Note that for « = 7 /2, (2.12) and (2.13) reduce to
(2.6) and (2.7) as should, of course, be the case.

By setting C; = —(g'S/ fo) cosa and Cz = —(g'S/
fo) sina [which corresponds to C = —(C3 + C%)!/?
= —g'S/fo] we again recover the usual shallow-water
equations on a flat bottom. This indicates that, as in
the a = /2 case (i.e., uphill jet), the jet is not affected
by the drift so that its structure and form are identical
to that described by (2.1). In view of this, we conclude
that all deep jets, regardless of their orientation, migrate
“westward” (i.e., with shallow water to the right) at
the universal speed g'S/ 1.

3. Upper-ocean jets

With the aid of the exact solution for the cold deep
jets over a sloping bottom, we shall now discuss upper-
ocean jets on a (8 plane. Before doing so it is appropriate
to point out that, for the case under discussion, the
analogy between a sloping bottom and 8 is only qual-
itative in nature (i.e., the direction of propagation for
an eddy on a 8 plane and an eddy on a sloping bottom
is expected to be identical but the specific values of the
drifts are expected to be quite different). This is so
because the classical quantitative analogy is due to
conservation of potential vorticity associated with
stretched columns of fluid, which change their depth
as the fluid moves across the slope. In contrast, the
depth of our deep oceanic jets is not directly affected
by the slope. That is to say, the only effect of the slope
is to introduce a gravitational component to the gov-
erning equations so that the classical analogy does not
apply in a quantitative manner.

We present two different approaches to the analysis
of front drift. The first assumes the presence of an es-
sentially meridional jet. This assumption is not nec-
essary for the second approach; however, less detailed
information about the jet structure emerges from the
second approach than the first.

a. First formulation

Consider the northward flowing frontal jet shown in
Fig. 3. As before, we begin by looking at the governing
equations in a moving coordinate system assuming
that, in such a system, the jet appears to be steady,

du

du oh
— v —— =—-g— (3.1
Crwis vay (Jot+By)v=-¢g Ix (3.1)

TOP VIEW

(Ap +p)

CROSS-SECTION

FI1G. 3b. Schematic diagram of the upper-ocean jet under study.
The jet is oriented mainly in the north-south direction and can be
flowing either northward or southward (not shown). Namely, due
to B, it varies slowly with y but rapidly with x so that the deviations
of the front from a pure meridional orientation are ~ R,.
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WP oy (ot ey =g

ox dy ay 3.2)

d ]
ax(hu) + 3 (hv) =0 (3.3)
It is further assumed that the jet is varying slowly
with y and is in a cross-stream geostrophic balance;
that is, the length scale in the y direction, L, is much
greater than the scale in the x direction [which is, of
course, the deformation radius R; = (g'H)'/?/f,] and
v > u so that the flow is mainly northward. Under such
conditions, (3.2) and (3.3) remain unaltered but (3.1)
can be approximated by

oh
o+ Byw=g7.

(3.4)
Note that the slowly varying structure in y was not
present in the bottom jets discussed earlier in section
2 because the sloping bottom had no effect on the jet’s
Jf-plane structure. As expected, when 8 = 0, the equa-
tions possess a solution of a stationary jet whose struc-
ture is identical to that of the flat-bottom jet (2.1a).
For both the fplane case (8 = 0) and the full problem
(B # 0), the boundary conditions are identical to those
of the bottom jet, that is,

T

FIG. 4a. The integration area of the frontal jet shown in Fig. 3.
Section DC is situated well beyond the jet’s decay area (i.e., at least
several deformation radii away from the front). Sections AD and BC
are situated a distance L (much greater than the Rossby radius, Ry,
but much smaller than the radius of the earth, a) away from the x
axis. It is assumed that the meridional flow is geostrophic in cross
sections AD and BC. Also, since the front is drifting, entrainment or
detrainment (i.e., u # 0) is allowed at infinity (x = oo ) even though
v—>0.
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FIG. 4b. The integration area of the meridional nonfrontal jet (up-
per panel). As before, sections DC and EF are situated well beyond
the jet’s decay area (i.e., at least several deformation radii away from
the front). A cross section of the jet’s structure upstream is shown
in the lower panel.

h=0; ¥x,y)=0

v—=>0; x— 0.

(3.5a)
(3.5b)

b. Solution

In this subsection the general solution will be derived.

1) INTEGRATED MOMENTUM EQUATION

To obtain the solution, (3.2) is multiplied by 4 and
integrated over the area shown in Fig. 4, to give

| ff(hu—+hv—)dxdy

+ fsf (fo + By)(u + Cy)hdxdy

+§”i(h2)dxdy=o, (3.6)
2 F ay

which, by using the continuity equation (3.3), can be
reduced to
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ff [%(huv)+%(hvz)]d3€dy
S
- f f (f0+,6y)%dxdy+ f f JoCxhdxdy
S N

E[2 -
+ > f!ay(h )dxdy = 0. (3.7)

Application of Stokes’ theorem to (3.7) gives,

*f huvdy — ‘f (hv?* + g'h?/2)dx
6 ¢

- f f fO%dxdy-ﬁ- f f JoCxhdxdy
s s

a
-8 fsf (55 00— ¥|asdr =0, a3)

where ¢ is the boundary of S and the arrowed circles
indicate counterclockwise integration. Before proceed-
ing, it is recalled that the meridional flow is geostrophic
along AD and BC and that, since the jet is drifting, an
entrainment or detrainment (i.e., u # 0) is allowed as
X —> oo (i.e., along DC). Note, however, that v = 0
as x —> oo because the jet decays away from the front.
Since at least one of the three variables 4, u, and v
vanishes on every portion of the boundary ¢, (3.8) can
be rearranged and written as,

{p [ho? + gh2/2 — (o + By)Wldx

+ fo ff Cyhdxdy + 8 ff vdxdy = 0. (3.9)
s s

We now note that (3.4) can be multiplied by /# and
integrated once in x to give,

(fo+By)¥ =gh*/2+C,

where the integration constant C must be zero because
¥ = 0 where 2 = 0 (i.e., along the front). In view of
(3.10), (3.9) can be approximated by

'is hvidx + f, ff Cihdxdy + 8 ff Ydxdy = 0,

S N

(3.10)

(3.11)

where the first term represents the flow force associated
with the mass flux of the jet, the second is the force
due to the drift, and the third is the flow force due to
B. The scales of the parameters appearing in (3.11) are
as follows: within the core of the jet,

AND DEWAR
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v~ OL(&H)'"1; ¢ ~ O(g'H?/); € ~ O(BRE)
y~OW): x~ O u~0| &™),

whereas outside the jet’s core (i.e., x > R,),
v, u ~ O(BR7), C ~ O(BRY).

This scaling takes into account that the jet is varying
slowly in the y direction and that there could be both
zonal and meridional entrainment of O(8Rd?).

Since v decays to O(SRd?) away from the front, the
first term becomes relatively small (compared to the
other two) as the integration area is increased by in-
creasing R (see Fig. 4). Namely, when R = o0, (3.11)
gives,

fo | [ cenasay+ 8 [ [ yaxay=o |
s S

R — w0,

(3.12)

where the ratio of the neglected integral [i.e., the first
term in (3.11)] to the terms that are kept is ~O(8R,/
fo)(Rg/ L), which is typically 10~ or even smaller.

2) SCALING AND EXPANSIONS

We proceed by scaling C, with BR3, x with Ry, y
with L, A with H, and ¢ with g’ H?/ f,, which together
with (3.12) give

cx ff h*dx*dy* + ff Y*rdx*dy* =0. (3.13)
s* s*

Note that R; < L < a where a is the radius of the earth
[O(fo/8)]. That is to say, L is a length scale in between
the radius of the earth and the deformation. For con-
venience we shall later take L to be the so-called in-
termediate length scale, but this is not really essential.

Next, 2*, ¢*, and C¥ are expanded in a power series

in €= 6L/f09
h¥(x,y,e)=hOx,p) +ehPO(x, y)+ « - -

VHX, 1, ) =0, )+ e D, )+ o0
C¥=CP+CP+ -
(3.14)

where ¢ < 1 since R; < L < a (here, a is the radius of
the earth). Note that the above scaling is consistent
with values found for the LDE jet. Typical values for
this jet are R; ~ 30 km, while L, though not deter-
mined by the observations, might be taken as a few
hundred kilometers, so that e is typically <O(0.1).
Our zeroth-order state (8 =0, 29, ¥ (V) corresponds
to a nondrifting frontal jet on an fplane and, as men-
tioned, the solution for such a jet (with a uniform po-
tential vorticity) is given by (2.1). By substituting
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(3.14) in (3.13) and collecting terms of order unity
[O(€%)] we obtain the first-order approximation,

Ci”=—ff\b‘o)dx*dy*/ffh“”dx*dy*
(3.15)

This relationship shows that, to first order, the drift is
only a function of the zeroth-order jet [i.e., the fplane
solution (2.1)}]. Far away from the front (R = ),
the f~plane solution (2.1) gives #©) = [ and ¢ @ —
1/» so that C{!’ = —1/; and the final dimensional first-
order drift is

C.=—BR%/2. (3.16)

Three comments should be made with regard to our
first-order solution (3.15)—(3.16). First, it is straight-
forward to show that for nonfrontal meridional jets
(i.e., jets whose depth at x < 0 is not zero) the drift
can be obtained by using the integration area shown
in Fig. 4b. By repeating the procedures mentioned ear-
lier and taking the limit as R — oo, one finds _

—Bg'(H, + H) _—B(R + RY)
213 2 ’

(3.16b)

where H, and H_ are the undisturbed depths at
X —> *+o0.

The second comment that should be made with re-
gard to (3.16) is that we have not found the complete
first-order solution, ¢ (", A", This implies that (i) we
cannot say what is the corresponding entrainment or
detrainment at x — oo and (ii) we have not really
proven that our solution is correct because the complete
first-order solution may involve compatibility condi-
tions that could, perhaps, be more restrictive than our
scalings. While this is no doubt a weakness, it is very
difficult—and probably impossible—to overcome be-
cause it is not at all clear that the most general first-
order solution can ever be found analytically.

Third, note that the jet’s y structure does not enter
our first-order computation because of the particular
structure of the integrated momentum equation.
Namely, the integrated momentum states that the first-
order migration speed is only a function of the local
zeroth- (8 = 0) order structure that does not vary
in y.

C=

¢. Second formulation

It is also possible to use a somewhat different ap-
proach to show that (3.16b) is valid not only for me-
ridional jets but also for slanted jets [in which an O(1)
deviation from a purely meridional flow is allowed].
We shall briefly outline the approach here and describe
the details in appendix A. In contrast to the previous
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approach, the present approach will not involve a rig-
orous perturbation scheme; instead, it is based solely
on scaling and integration.

1) GOVERNING EQUATIONS

We consider the shallow water equation in a coor-
dinate frame fixed to the earth:

9
—u+u-Vu+fk><u=-—g’Vh

3.17
3 (3.17a)

% +V-.(hu) =
ot
where boldface indicates vectors and the remaining
notation is standard. We will now examine the con-
straints that (3.17) place on the behavior of a jet in-
clined at an arbitrary angle # with respect to north (see
Fig. 5). Recall that the width of the jet is of the order
of the deformation radius, R;. For convenience, we
assume that the length scales of the water masses on
either side of the front are basin scale [O(f,/8)].

(3.17b)

2) INTEGRATION

We begin by solving (3.17a) for the mass transport,
which yields:

1 g'h? d(hu)/dt
h=—=VX Kk+kX——+ 3.18a
AR 7oy G
where,
F= —d(uvh) —d(vvh) d(uuh) +3d(uvh)
ax a o ’
(3.18b)

Consider now an integration of the continuity equation
(3.17b) over the shaded area S shown in Fig. 5. This
area consists of a simple rectangle enclosing the frontal
jet, and, as mentioned, is characterized by having sides
whose lengths are the intermediate length scale L;.
Upon substitution with (3.18a), the integration yields:

oh J‘ f g'h?
= v &=
fs o dxdy — 7 X ( k)dxdy

(D (2)

ff [kxa(hu)/ét]dxdy

(3)
j( —=F-ndl=0 (3.19)
(4)

where n represents a unit vector pointing outward nor-
mal to the boundary of S (denoted by ¢), and, as be-
fore, the Stokes theorem has been used so that / is an
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FIG. 5. A schematic diagram of a slanted jet. Dashed lines are
contours of constant /4. The quantity H, (H_) denotes the undisturbed
thickness in the far east (west) of the front. The angle # measures
inclination relative to north. ; is any length scale that satisfies R,
< L; < a(where a is the radius of the earth) but, for convenience,
we shall choose it to be the so-called intermediate length scale

foR%/B)'".

integration element along ¢. Note that (3.19) is an
exact statement given the reduced gravity equations.
Integral (2) of (3.19) yields

1 'h2 )
V.=V xX=—k|d4
JIv7(
rh2
=| s=—dy— | 5= 2

f dy f f2 2 dy, (3.20)
where the numbers “1” and “2” denote the bounding
sides of domain S indicated in Fig. 5. In the Appendix,
it is demonstrated that integrals (3) and (4) in (3.19)
are small compared to (1) and (2). The balance of (1)
and (2) then yields

oh _ B8 2 L\
J-&a'xa!y—zfz(H+ HZ)L,[1+O(a)],
(3.21)

where, as mentioned, L, is the intermediate length scale
and a is the radius of the earth. If we now search for
steadily propagating solutions, 64/d¢t = —Ch,, the left-
hand side of (3.21) becomes

ff%dxdy= —Cf hdy + Cf hdy
ot 1 2

~ —C[H, — H_ ]L,[l + O(Rd)]

and we ultimately find our desired propagation rate:
Bg' (H. + H.)

x F P
which is identical to (3.16b).

(1 + O(Ru/a)), (3.22)
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Since the demonstration of the scaling leading to
this result is algebraically tedious, the details are rele-
gated to appendix A.

d. Discussion

The above analysis suggests fronts embedded be-
tween two large-scale water masses possess a 3-driven
propagation tendency whose magnitude is independent
of the detailed structure of the front. Rather, the mi-
gration rate depends only upon the far-field structure
away from the front. This dependence was implicit in
the earlier analysis, where the fact that the integrals are
dominated by these far-field contributions was used to
arrive at (3.16).

Three points should be made about (3.22). First, it
was not necessary here to assume that the front is nearly
meridional and, therefore, it was not necessary to use
an approximation like (3.4). Hence, we argue that the
front propagation rate is largely insensitive to the jet’s
inclination. Second, (3.22) is identical to the reduced
gravity limit of the shock propagation speed found in
Dewar (1987). The analysis presented here, however,
is considerably more general and supports the aptness
of (3.22) for fronts regardless of the dynamics of their
associated jet. [In comparison, the analysis in Dewar
(1987) required the jet to be geostrophic.] Finally, we
emphasize again the fundamental role placed by an-
isotropy in reducing (3.19) to (3.22). In a few words,
the possible behaviors of a thermocline system con-
strained by anisotropy are such as to eliminate virtually
any behavior other than migration at a speed controlled
by S-plane geostrophic dynamics.

4. Application to the LDE jet

The two main components of the LDE experiment
were the long-term moored array and the Intensive
Hydrographic Program. The latter data are of more
interest to the present discussion, and their analysis
with respect to the LDE jet was discussed by Taft et
al. (1986) and Shen et al. (1986). The history of the
jet was that it appeared to form during the middle of
the hydrographic program (between survey 3 and 4)
at the center of the LDE region. The jet was subse-
quently observed until the final survey (survey 7), dur-
ing which time it appeared to drift west at a speed be-
tween 3 and 5 km day™' (3.5 to 5.6 cm s7!). It also
exhibited variability in amplitude and interacted with
eddies, although these aspects of front behavior are not
of central importance here.

A typical amplitude of the front, as measured by the
cross-frontal change in depth of participating isopyc-
nals, was on the order of 200 m. The hydrographic
observations were also used to estimate the jet velocity
field, and their analysis suggested the flows were surface
intensified and caused a southwestward transport of
40 Sverdrups (Sv = 10° m3s™').
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We shall now argue that the previous analysis of jet
drift on a 8 plane yields migration rates of the proper
order to account for the LDE jet drift. To apply
(3.16b), we need (in effect) an estimate of g'. Ques-
tions about applying a reduced gravity model to a con-
tinuously stratified ocean aside, this can essentially be
obtained from the transport estimate. Approximating
the along-jet speed v by geostrophy, the net jet transport
can be expressed as

_[" _ [~ o (gn
d f—kadx".[max(zf )dx

_&

2 py2
2f(H+ H?).

Rewriting (3.16b) yields

__(B8__ T
©= (f (H, —H-))’

which upon use of the above observations yields

2X 107 B em s}

C —
1074s™!

40 X 102 cm’s™!
2 X 10* cm

=4cms .

This compares favorably with the observed LDE jet
drift of 3.5 t0 5.6 cm s/,

In this context it should be pointed out that the
Azores jet, which is also an elongated jet in the open
ocean, seems to be in a quasi-permanent position.
However, our analysis suggests that this jet should
drift toward the western boundary. The apparent dis-
crepancy between these two aspects can be reconciled
by noting that the Azores jet is strongly affected by
the local wind field (e.g., see Stramma and Siedler
1988) as well as a relatively strong mean flow (e.g.,
see Klein and Siedler 1989). These processes are al-
most certainly important in selecting preferred loca-
tions for the Azores jet.

s. Summhry

This article introduces new aspects of nonlinear
frontal jets; it focuses on topographically and S-induced
drifts. Solutions have been constructed under the as-
sumptions that (i) the ocean can be approximated by
two layers, one of which can be taken to be at rest; (ii)
the motion is approximately frictionless and nondif-
fusive; (iii) the jet has a cross-front length scale like
the deformation radius and an alongfront scale that
is considerably greater than this (here assumed to be
the basin scale); and (iv) the jets translate without sig-
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nificant changes in their structure. The behavior of the
jets can be summarized as follows.

1) Jets situated on a sloping bottom (Figs. 1, 2)
translate along the isobaths with shallow water on their
right-hand side (looking downstream in the Northern
Hemisphere) at the universal speed g'S/ fo. The struc-
ture of the drifting jets is identical to the structure that
they have over a flat bottom. All deep jets, regardless
of their orientation, propagate in the same direction at
the above-mentioned rate. .

2) All upper-ocean jets, regardless of their orienta-
tion, propagate westward at the average of the two long
planetary wave speeds appropriate to the two sides of
the front, for example, C = —[B(R%; + RZ%.)/2],
where Ry, (R, ) is the deformation radius east (west)
of the front. If the isopycnal surfaces, this simplifies to
C = —BR%/2, that is, half the long planetary wave
speed. In contrast to deep jets, the structure of upper-
ocean jets on a (3 plane differs at O(BL/ fp) relative to
their structure on an fplane. The detailed structure of
the jets on the § plane is not found in this study, but
it is expected that such jets will vary slowly in the
downstream direction.

3) A fundamental difference between the drift of
our midocean jets and the propagation of planetary
waves is that jets carry mass with them as they prop-
agate, whereas planetary waves are not necessarily as-
sociated with mass transport.

Application of the above theory to the jet observed
during the LDE suggests that 8-induced frontal migra-
tion can indeed account for the order of magnitude of
the LDE jet drift. It is also interesting that jet migration
rate (3.16) appears to be a very general formula and
relatively independent of the jet dynamics.

On the other hand, it is worth making explicit a
consideration present in reduced gravity §-plane dy-
namics that is not characteristic of the deep jet solution,
and that represents a cautionary point regarding the
LDE jet comparison. Specifically, -induced steepening
occurs in reduced gravity models mainly because thin-
ner parts of the fluid move west more slowly than
thicker parts. Therefore, shallow regions west of thick
regions naturally form into fronts. The converse, how-
ever, is not true; thick regions west of shallow regions
disperse in reduced gravity systems. The LDE jet falls
into the latter category, suggesting that the application
of reduced gravity dynamics for these data is perhaps
questionable. On the other hand, the scaling leading
to (3.22) is independent of questions regarding am-
plitude dispersion, and suggest only a bulk movement
of an anisotropic thickness anomaly proportional to
anomaly parameters. Hence, the average movement
of the LDE front might well be related to the 8-plane
dynamics expressed in (3.22), even if all aspects of the
motion are not accounted for in detail. Thus, we suggest
B-induced migration as a possible explanation for the
observed motion of the LDE jet.
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APPENDIX
Scale Analysis of (3.19)
a. Integral (4)

After some manipulation, this integral may be writ-
ten as

1
i }F~ ndl = 7 (vvh),+ + — (vvh),- + (l vvh)2+ - (— vvh)z_ + fl ]% vohdy

f f

f

“L%””hdy‘fl (u;h)x dy+f2(uvfh)x dy 4 (k) (uuh)s-

S f

-+

_(uuh)4+ (uuh)4- (uvh), . (uvh),
f + +J; f dx L—f dx,

Al
7 (A.1)

where 1* and 1~ denote the northern and southern
ends of side 1. Similarly, 3* and 3~ denote the eastern
and western ends of side 3.

The vertices of domain S have all been chosen to
lie in the far field of the front, and are thus found in
the sluggish, basin-scale water masses. To proceed with
our analysis, we recall that in frontal geostrophic sys-
tems, velocity normally scales as foR3%/L. Further-
more, by noting that fo/8 ~ O(a), we see that the
far-field velocities should be scaled as foR%/a, and,

hence,
2 p4 2

(k) ,, o(————f"f”’H‘) = o[ﬂHlRﬁ,L,(ﬁ) ]
a‘fo a

f

(A2)

(where H, is the larger of H, and H_), which is ob-
viously considerably smaller than the result quoted in
(3.21). Other quantities in (A.1), such as

8
J;F (vvh)dy,

involve integrations entirely through large-scale zones,
and thus scale according to

ff(;—lzdxdy+ffV————kxa(hu)/atdxdy—

f 1 f? 2

d(uvh)/d a(uvh)/9 L\
+f3 (uvf)/ ydx_L%dx=o[ﬁH1R§Li(j) ] (AS)

b. Integral (3)

Integral (3) can be rewritten as:

:h2
B en dy +

2
d

R
- oleRs)L;(;z—) (A3)

and are similarly negligible compared to (3.21). Fi-
nally, quantities like

d(uvh)/dx
fl 7Y

scale as

f d(uvh)/dx
1 S

SoRYLH
dy=0( 0 d31 1)

2 L, ’

for similar reasons.

All underlined terms in (A.1) may thus be neglected
relative to integral (2) in (3.19), which thus reduces
to the approximate statement:

8 gh’
> f* 2 dy

ffv.(kxa(hu)/at)dxdyz_ﬁ a(h;)/atdy+L8(};))6ldy+La(h;)/atdx_J;a(h;)/atdx. (A6)

s
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Estimation of (A.6) requires a time scale, and two apply
to the present problem. The less interesting one is
f5!, and is associated with gravity wave activity. We
are interested in the front influence forced by 8, in
which case time scales as (8R;)~!. Thus, the first two
terms in (A.6), which are integrals entirely through
large-scale zones, scale as:

fa(hv)/az SoR%BR4 L)
S afo !

- O[ﬁR,%H.L,(%i)] ,

which is small relative to the retained terms in (A.5).

J‘f oh dxdy + ff (a(hu)/at)ds

dy = O(H]

Bg'

23 e -

where the notation H, has been used for /() east of
the front and H_ for () west of the front.

¢. Cross-jet integrals

Consider some arbitrary property of the front g. This
may be, for example, 4, v, u, or any combination of
these variables. In the vicinity of the front, the gradient
of ¢ occurs dominantly across the front on a scale of
the deformation radius and generally involves the full
order of magnitude of the quantity g. For example, if

q=1u,

where i is the unit normal vector to the front. In con-
trast, the anisotropy of the front insures that tangential
gradients are much smaller, that is,

Vll't=0(fo%),

where t is a tangential unit vector to the front.

Consider then, as an example, the quantity V (huv).
In Cartesian coordinates, this is V(Auv) = (huv)/dxx
+ d(huv)/dyy. Normal and tangent vectors to the front
can be calculated from the gradients of #; that is,

oh any  (=oh oh
ax’ dy dy ’ox

" TwRr YT T v

(A.8)

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 23

Further, given that the far-field length scale a is large
compared to L;, which is the scale over which the in-
tegrals are performed,

B gh’
1 f?r 2
52 h?
—%J[iz ( o)+(€,2) (y—yo)]dy
_ &'Bh*(yo)L, L\
BT [Ho(a)]’

where yy is a central latitude point within S. Gathering
the above, (A.5) is reduced to

Y LT
3 S
— f Y(uvh)/9y dx = O[ﬁHlRﬁL,(%)] , (A7)
Inverting (A.8) yields
ooy (o oh
ox n ady ady ax
e | VA] Y
Therefore,
Y (huv) = [8/dx(huv)oh/dx + 8/8y(huv)8h/8y]
|Vh|
[a/ay(huv)é‘h/aylcv—hT/a)vc(huv)&h/ay] £ (A9)

The weakness of the tangential gradient insures that
d(huv) _ a(huv)a_k i?ﬁ '+0 Ra
dy dx dy/ dx a
_ 29(hun) & [1 + O(R“)] . (A.10)
h

dx dy
where the differential dx/dy is taken along a line of
constant /.

From Fig. 5, it is seen that dx/dy = tand, where 8 is
the angle between 4 contours and true north. Further,
the anisotropy of the front insures us that variations
of 6 are “slow” and occur on the “a” length scale. The
usefulness of the above results [(A._IO) in particular]
comes in evaluating integrals in (A.7) through the front.
Consider, for example,

f d(uvh)/dy dx
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which is one integral to which this analysis applies.
The subscript 3 denotes the side of the integration do-
main on which the integration is performed. According
to the above analysis,

J‘&(uvh)/ay dx = ——l-fa(huv)/axtan()dx

tanf
= = — [(huv);, — (huv)s_],
S
and thus the integral may be equated to far-field terms
whose order of magnitude can be deduced from the
previous scaling. The order of these terms is given by

(A.11)

huv f()Rd L 2
7 O[H‘ foa] ["”‘R“L’( )]

Similar arguments apply to terms in (A.7) such as

”%(a(h;)/at) _ tanﬂf iy

n tanf
S

Time scales in the geostrophic far field behave like
(BR,) ™!, so that the above scale is

tané R3
2 f—(h )dy ~~H.f° 4 8R,L;

o
= o[ﬁH,Rf,L,(%“-)] .

9
5 (ody. (A12)
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This completes the estimation of all the terms in the
equation; collecting all the results (A.7) reduces to
(3.21) as stated earlier.
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