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ABSTRACT

With the help of fractal geometry used to model the intermittency of energy input from wind to wave
components, the theoretical spectra of the equilibrium range in wind-generated gravity waves proposed by

Phillips are refined.

On account of the intermittency, it is proven that the classical frequency spectral exponent 4 must be replaced
by 4 + (2 — D), where D is the informational entropy dimension of the support subset, upon which the energy
input from the wind to the gravity waves in the equilibrium range is concentrated. To a first approximation, it
is found that D =~ 1.88 and 4 + (2 — D) = 4.12. The variation of the Toba constant is found to be proportional
to (u2/gLlo) /2, where Ly is the wavelength of the longest wave component in the equilibrium range, that
is, the lower limit wavenumber above which the processes of energy input from wind, spectral flux divergence,
and loss by breaking are all significant and proportional. The refined wavenumber spectrum is less sensitive to

wind strength than the original.

1. Introduction

With reference to the high wavenumber (and fre-
quency ) regime of wind-generated gravity waves, Phil-
lips (1958), from the consideration of a limiting con-
figuration of surface waves, showed that an equilibrium
range may exist that is independent of wind stress. He
derived upper-limit spectral asymptotes in the gravity
wave range of

Y(k) o f(O)k™* (1.1)
for the wavenumber spectrum and
®(o) oc g%° (1.2)

for the frequency spectrum from dimensional consid-
eration, where 6 is the angle between the wind and the
wavenumber k. Data collected mainly in the 1960s
seems to support the relation (1.2), [e.g., summarized
in the work of Hess et al. (1969)].

Subsequent reliable measurements, including the
first measurements by Toba (1973), however, lend
support to the forms

Y(k) = B cosPOu, g/ *k71? (1.3)

for the wavenumber spectrum in the equilibrium range,
and

®(o) = ot go™ (1.4)

Corresponding author address: Dr. Zheng Shen, Institute of Physical
Oceanography, Ocean University of Qingdao, Qingdao, People’s Re-
public of China, 266003,

© 1993 American Meteorological Society

for the frequency spectrum, where p = 1/2, u, is the
wind friction velocity, « is the Toba constant, and 8
is the numerical coeflicient in the wavenumber spec-
trum. Kitaigorodskii (1983) arrived at (1.3) and (1.4)
theoretically from dynamical considerations. More re-
cently, Phillips (1985) reexamined the nature of the
equilibrium range based on dynamical insights into
wave-wave interactions, energy input from the wind,
and wavebreaking. He arrived at Eq. (1.3) and Eq.
(1.4) with the assumption that all of these three pro-
cesses are important in the equilibrium range. The work
of Phillips is significant in that the derivation of Eq.
(1.3)and Eq. (1.4) is based on the concept of an equi-
librium instead of that of saturation, which underlied
his dertvation of Eq. (1.1) and Eq. (1.2) in 1958. The
validity of Eq. (1.3) and Eq. (1.4) (for fetch-limited
conditions) may be considered as established at the
present stage of development of ocean wave theory.
As indicated by Phillips (1985), there are still some
discrepancies between the measurements and the spec-
tra (1.3) and (1.4). Where the frequency spectrum
(1.3) is concerned, the value « is of persistent uncer-
tainty and the spectral exponent value 4 is also not
exact. For example, in the spectra series of Kawai.et
al. (1977) the mean exponent and standard deviation
are 4.13 % 0.2. From the measurement results of Mit-
suyasu (1980), Kawai et al. (1977), Forristall (1981),
and Tang and Shemdin (1983), we can conclude that
the Toba constant, «, is not likely to be a true universal
constant but rather a variable, and the value of the
frequency spectral exponent is between 4 and 5 rather
than 4 exactly, which implies that the wavenumber
spectral exponent will have a value between 7/2 and
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4, The problem is to understand the mechanics and to
determine analytically the properties of such variability
in observed equilibrium spectra.

Theoretical results about the fractal geometry of
wind-generated gravity wave surfaces, such as Baren-
blatt and Leykin (1981), Glazman (1986), Glazman
and Weichman (1989), and Stiassnie et al. (1991),
suggest that when the Hausdorff dimension of wave
surface strictly exceeds 2, the equilibrium spectra
should be functions of the nondimensional fetch and
the wave surface fractal codimension, u. One of the
necessary conditions for 4 > 0 is that the wind fetch
should be long enough so that the inverse cascade and
direct cascade could be developed. The results are ap-
plicable only for sufficient long fetch conditions. Ex-
perimental studies that relate the variability of the
equilibrium spectra to the directionality of the waves,
the wave breaking of longer wave components, Doppler
shifting, wind drift, and ambient current were presented
systematically by Banner (1990a) and Banner et al.
(1989). Their findings challenged the correctness of
the equilibrium range model formulated by Phillips

1985).
( In this paper, the variability of the equilibrium spec-
tra related to the intermittency of the turbulent energy
input from wind is studied. The motive is based on
two facts: first, the wind energy input is a principal
forcing term in the equilibrium range; and second, the
energy dissipation intermittency is a universal feature
in high Reynolds number turbulent flows. We want to
know whether or not the intermittency can be seen
explicitly in the equilibrium spectra. We intend to take
advantage of the results, developed since 1970, of the
fractal geometry and its applications to approach the
dissipation intermittency in turbulent wind flows in
order to place the description of the wind wave spectra
in the equilibrium range on a firmer theoretical basis.
In doing so, we are led to a refined formula for the
degree of saturation (see Phillips 1985) and then to
refinements of the wind wave spectra in the equilibrium
range of Phillips (1985). A formula describing the
variation of the Toba constant is also obtained. Our
results seem to support the equilibrium range model
formulated by Phillips (1985), in which the predicted
mechanics may be considered as the most essential one.

2. Intermittency and fractal structure of the rate of
energy input from wind
a. Background
The two-dimensional wavenumber spectrum is given
by '
v(k) = (27()‘2f < {(x){(x +r)> exp(irk)dr,
(2.1)

which is the Fourier transform of the instantaneous
spatial covariance of the surface displacement ¢. Our
study is limited to the equilibrium range
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ko < k < ky, (2.2)

where ko is the wavenumber lower limit, which is
somewhat larger than g/ ¢, (¢, the phase velocity of the
dominant waves), and k, is the upper limit, which is
much less than (g/7)'/? and less than g/u2 (T being
the ratio of surface tension to water density, and u,
the wind friction velocity); see Phillips (1985).

The dynamics of the wave field in the equilibrium
range is expressed by the balance of the action spectral
density, defined as

N(k) = f ¥(k),

1/2
= (f) V(k).

The gravity wave dispersion relationship (o2 = gk) has
been applied in arriving at the latter form.

Phillips (1985) demonstrated that when k is re-
stricted to the equilibrium range (2.2), the wave com-
ponents will approach a state of statistical equilibrium
(rather than saturation) determined by a balance
among the net gain of the spectral action density
through resonant wave~wave interactions, the rate of
spectral input from the wind, and the loss by wave
breaking, that is

(2.3)

-~V T(k)+S,—D=0. (2.4)
After introducing the degree of saturation 4
B(k) = k*y(k) = g7 '?k*/?N(k), (2.5)

and using dynamical insights into wave-wave inter-
action, energy input from the wind and wave breaking
based on developments since his first model (1958),
Phillips (1985) demonstrated

=V T(k) = gk~*B*(k), (2.6)
u 2
S, =m cosZ”0gk‘4(?*) B(k), (2.7)
and
D = gk™ f( B(k)), (2.8)

where B(k) is a dimensionless function and p, m are
two universal constants. With the assumption in the
equilibrium range that the processes of energy input
from wind, spectral flux divergence, and loss by break-
ing are all of importance, Phillips (1985) showed that
for wavenumber k well inside the equilibrium range
(2.2), all the three quantities in Eq. (2.4) must be pro-
portional. If we represent this proportionality as

S _m
-V T(k) g%’
where 3 is some constant, we ﬁnd, on substituting (2.6)

and (2.7) in (2.9), that the degree of saturation is given
by

(2.9)
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B(k) = 8 cos%(%’i) . (2.10)
The wavenumber spectrum (1.3) was obtained from
relations (2.10) and (2.5).

1t is worthy of note that the spectral energy input
from wind (2.7) is an extremely important term that
determines the expression of the degree of saturation
B(k), which in turn determines the exact form of the
wavenumber spectrum (k).

b. Intermittency of the mean wind stress

In the equilibrium range, the phase velocity ¢ of each
wave component ‘is less than 10u,, so the matched
layer is inside the viscous sublayer (e.g., see Phillips
1977), where the turbulent wind flow is highly rota-
tional. Accordingly, the stretching of vortex filaments
implies that the small-scale turbulent fluctuations are
constantly intermittent there. This implies that the in-
tensity of the wind stress acting upon each wave com-
ponent in the equilibrium range is distributed in a
nonuniform manner over the water surface. Hence, an
intermittency in the air turbulence will be transformed
to the water surface.

As demonstrated in Eq. (2.4) of Phillips, the energy
input from wind is one of the three terms that maintains
the equilibrium range of the wind waves. Its impor-
tance, especially in higher frequencies, has been con-
firmed experimentally by many authors, such as Schule
etal. (1971), Mitsuyasu and Honda (1982) and Plant
(1982). If the intensity of the mean wind stress is con-
siderably intermittent on the air-water interface, the
wave components at higher frequencies will also be
considerably intermittent and will result in a spatially
inhomogeneous distribution instead of being almost
uniform (which is the basic hypothesis in the wind
wave theory referred to above).
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The inhomogeneity of the wave components at
higher frequencies can be tested by the wavelet trans-
form method. The wavelet transform 7'¢ of a function
¢ with respect to the wavelet g is a function over the
half-plane H parameterized by (7, a), 7, c ER, a > 0:

T¢(r, a) =$fg_(—t;—7)§'(1)dt. (2.11)

The wavelet g(eL? N L') satisfies the following ad-
missible condition:

d
[ 18222 < o

where g(w) is the Fourier transform of g.

It has been shown that the transform (2.11) can be
inverted for a large class of functions. This transfor-
mation is a sort of mathematical microscope whose
magnification is 1/a, whose position is 7, and whose
optics is given by the choice of the specific wavelet, g.
For more details we refer to Daubechies (1988a,b).

We shall consider restrictions of 7'{(7, a) to a fixed
discrete value of the scale parameter. A restriction
T¢(7, ;) (a; fixed) is called a voice.

Figure 1 shows the wavelet transforms of a wind
wave elevation dataset measured by a capacitance wave
gauge suspended from an oil platform located at
39°15'N, 119°50'E, in the Bohai Sea, which is semi-
closed. The measured water surface displacement an-
alyzed is shown at the bottom of this figure. Respec-
tively, seven of the real parts of the voices are shown
in the upper part of this figure. Numbering from bot-
tom to top, the normalized angular frequencies of voice
a/ oo { 0g being the peak frequency) are correspondingly
1,2,8/3,3,10/3, 4, and 5.

The intermittency and inhomogeneity of the wave
components at higher frequencies are evident in Fig.
1. This fact permits us to conclude that the mean wind

(2.12)
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FIG. 1. The wavelet transforms of the observed wind wave elevation.
The analyzing wavelet is the modulated Gaussian exp(i5¢ — 0.5¢).
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stress acting upon each wave component in the equi-
librium range is considerably intermittent.

¢. Fractal structure of S,,

The intermittency of energy dissipation in turbulent
fluid movements has been the subject of many theo-
retical and experimental investigations over the past
15 years. Meneveau and Sreenivasan (1987), after an-
alyzing the experimental data of grid turbulence, the
wake of a circular cylinder, boundary-layer turbulent
flow, and atmospheric turbulence, demonstrated that
the turbulent energy dissipation distribution is consid-
erably intermittent in space, that the geometrical
structure of the intermittency is a multifractal ( Frisch
and Parisi 1985), and the multifractal spectra f(vy)
(where v is the Lipschitz-Holder exponent) for one-
dimensional sections through the dissipation fields of
these four different turbulent flows are the same within
experimental accuracy. They approximated the mul-
tifractal spectra based on a hypothesis that the turbulent
cascade was a binomial multiplicative process with the
fraction p = 0.3, that is

_EnE+ (1 —Hin(1 —§)

& = 0 , (2.13)
with
_In(1 —p)+yIn2
£= In(1-p)—tnp ’ (2.14)
see Fig. 2.

The binomial multiplicative model can be sum-
marized as follows: In the turbulence field, we choose
arbitrarily a unit line segment S = [0, 1], and first
divide it into two parts of equal length 6 = 27!, The
left part is given a fraction p (=0.3) of the total dissi-
pation on S, and the right hand is given the remaining
fraction ¢ = 1 — p = 0.7. Next consider an increased
resolution 6 = 272 locked at each new fraction of the
line. The multiplicative process divides the dissipation
in each part in the same way. Four pieces arise with
the fractions of the dissipation given by

{m} = pp, P4, 90, 94 (2.15)
f 1.00 1
0.80 |
0.60
0.40
0.20
000, 30 040 oco 080 100 130 140 180 180T

FiG . 2. The multifractal spectrum /() of the binomial
multiplicative model with the fraction p = 0.3.
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As this process of redistribution is iterated, it produces
shorter and shorter segments that contain less and less
of the total dissipation. After n steps there are N = 2"
segments with the length 6 = 27". We have then with
t=k/nandk=0,1, - -+, n,

Nn(§) = (2.16)

n!
(EM((1 = E)m)!
segments on which the fraction of the dissipation is

e = phg" " = (p*q'"H)". (2.17)
The Lipschitz—Holder exponent v is defined by the
equation
(2.18)

There is a one to one correspondence between the pa-
rameters £ and v. In the nth resolution, N,(£) line
segments (with the length 6 = 27") have the same frac-
tion of the dissipation. These segments form a subset
S, of the unit interval S = [0, 1]:

S=US,.
Y

Mg = o”.

(2.19)

In the limit n = co, we find that for each given v (or
£), the subset S, is a fractal set of points and the fractal
dimension of §, is given by Eq. (2.13). In the nth
resolution, we have, by the definition,

N, (&) oc 67/, (2.20)

The most important property of the binomial mul-
tiplicative model we apply in this paper is that the
overwhelming bulk of the dissipation is concentrated
essentially on “the set of concentration™ S.,, with fractal
dimension given by the entropy dimension I' (Man-
delbrot 1982):

_plnp+gqing

T=v;=f(y5) = ~ 0.88, (2.21
¥s = J(vs) T 0 (2.21)
and the corresponding fractal codimension is
p=1—-T=~0.12. (2.22)

In other words, we find that a fraction of dissipation
arbitrarily close to 100% is contained in sets that have
¢ ~ p for which N(§)p; is near its maximum. It is this
fact of concentration (which is called curdling) that is
the topology of the intermittency of the energy dissi-
pation in turbulent flows. We note that the entropy
dimension T is only one of the measures of the com-
plexity of turbulence.

Although the energy dissipation intermittency is a
universal feature in high Reynolds number turbulent
flows, whether their fractal structures depend on
boundary conditions and external forces is still a chal-
lenge to both theory and experiment. Kerman (1993)
established that the spatial distribution of breaking
waves is a multifractal process. He found that the codi-
mension for the support of breaking waves, which con-
stitute the locations of dissipation, is essentially 0.12
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[the same value as Meneveau and Sreenivasan’s
(1987)}. Kerman’s work is important in that it suggests
that although the appearance of breaking waves over
the air-water interface changes radically the large-scale
structure of the wind flow in the matched layer (Banner
1990Db), its influence on the small-scale dissipation in-
termittency (curdling) would be of secondary partic-
ularity. As a hypothesis, we anticipate that the result
of Meneveau and Sreenivasan (1987) can be applied
in our case as a first approximation. It follows that the
entropy dimension D of the support subset on which
the energy input from the wind to gravity waves in the
equilibrium range is mainly concentrated is (see Man-
delbrot 1972, 1982)

D=1—-[plnp+(1—p)In(1-p)]/In2 =~ 1—u,
= 1.88. (2.23)

We note that this entropy dimension D, being less than
its topological dimension (=2), is a measure of the
intermittency and fractal structure of the energy input
from wind to wave components in the equilibrium
range. Generally,

1<D<2. - (2.24)

In Phillips’s arguments leading to the formulation of
Eq. (2.7), the input of the turbulent wind vortex mo-
mentum (and its energy as well) into the gravity wave
component of wavenumber k was assumed to occur
in a (statistical ) uniform manner over the whole water
surface. Nevertheless, we believe that such is not the
case in the presence of intermittent turbulence. The
action input S, is highly intermittent, with large mag-
nitudes concentrated in rather small regions. Consider
a unit surface II (more specifically a unit square) on
which S, is to be calculated. Let us divide II into 22"
subsquares, with side 6 = 1/2”. According to the mul-
tifractal model presented above, the action input from
wind to the wave component of length scale 8 is mainly
concentrated on

1
BD
subsquares interspersed in II. On the rest 22" — N;
subsquares, although there are some individual loca-
tions upon which the intensity of action input is quite
high, the sum of the input is nearly zero. To simplify
the algebraic calculation we shall neglect this minor

effect and assume that the action input S,, is totally
concentrated on the

N; oc (2.25)

1
N; = 3D (2.26)
subsquares. In Eq. (2.26) we have set the proportion-
ality coefficient to be equal to 1. In fact, it does not

change our formulation of Eq. (3.6) below.

3. Refinement to the degree of saturation B(k)

The intermittency discussed previously requires an
adjustment to Eq. (2.7), which expresses the rates of
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spectral action input from wind to the wave compo-
nents in the equilibrium range as a function of wave-
number k.

Consider the longest wave component (length scale
Ly = 27 /ky) in the equilibrium range. Suppose that
at a given time the process of action input from wind
to the wave component of length scale Ly = 2w /kg
occurs uniformly on water surface cells of size Ly and
of area L3. Then each of the initial cells breaks up into
T? subcells, and the action input from wind to the
wave component of length scale /; (= Lo/ T = 2n / Tky)
is essentially concentrated within N of these T2 subcells.
The fraction 7 of the surface occupied by the active
energy input from the wind is

N
= F .
After infinite steps, the fractal subset II'(CII) will be
achieved, of which the entropy dimension is D. The

number N can be defined with the aid of the entropy
dimension D {see Eq. (2.26)]: N= T?, and

T

(3.1)

T=T7* (3.2)
where p is the fractal codimension
u=2-D. (3.3)

The essence of the present paper is to assume that
Jormulation of Eq. (2.7) in Phillips is valid only in the
active regions. At step g of the mentioned process, the
corresponding wave length scale will be

_ Lo _ 2
koT9"
Then the mean rate of the action input from wind over

q Tq
the unit water surface will be the local Phillips for-
mulation prorated for the active area

(3.4)

2
S, = 79m cosz"ﬁgk“‘(%) B(k), (3.5
which, with the aid of Eq. (3.2), can be written as

2
S, = (Lok)~*m cosZPogk-‘*(%) B(k), (3.6)
since kLo = Lo/l, = T,

On substituting Eq. (3.6) and Eq. (2.6) in Eq. (2.9),

we found the refined degree of saturation
B(K) = (Lok) ™8 cospo(%’f) . (37
Expression (3.7) is different from (2.10) by an am-
plitude factor (Lok) /2. It results from the fractal in-
termittency for the turbulent energy input discussed

previously. Accordingly we expect the degree of satu-
ration to be intermittent also.

4. Refined spectra in the equilibrium range

In the Phillips (1985) formulation, the wave spec-
trum was related to the degree of saturation B(k), as
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discussed in section 2. In the spirit of the dynamics
associated with the expression of wave spectral energy,
albeit now locally, we consider a refinement, deter-
mined by the fractal intermittency, of the averaged
wave spectrum based on the degree of saturation (3.7)
averaged over local active regions.

Accordingly from Egs. (3.7) and (2.5) we are led to
a refined wavenumber spectrum in the equilibrium
range

W(k) = k4 B(k)

Ly*?8 cos”O(l"i)k"““/z,
c

L5*?B cosPBu, g 2k~ %2 (4.1)

where in view of the relation (2.24)

u 2—-D 1
0< > 3 < X (4.2)
and L, is the wavelength of the longest wave compo-
nent in the equilibrium range.

The refined wavenumber spectrum (4.1) is different
from (1.3) in Phillips in that the exponent of Eq. (4.1),
H say, is

3 27t 3 (4.3)
instead of being 7/2, and the wavelength of the longest
wave component in the equilibrium range L, appears
explicitly in the refined wavenumber spectrum (4.1).

For a given fetch, the value L, will increase with the
friction velocity u, . Because the refined wavenumber
spectrum (4.1) is proportional to u, Ly*/?, it is ex-
pected that the refined ¥(k) is less sensitive to wind
strength than Phillips’ original spectrum (1.3). The
experiment results of Banner (1990a) and Banner et
al. (1989) confirm qualitatively this tendency as well
as the relation (4.3).

The refined frequency spectrum in the equilibrium
range can be found from Eq. (4.1) by integration over
all wavenumbers at constant frequency o:

7 7
—<Hk(=—+ﬁ)<4

w/2 do\7!
®oy=2] kqf(k)(a) b s
= 4BLo**I(p)uyg' a4 ",
= aLi*?u g4, (4.4)
where g < o < (47s) "0, 5 = (*)?/No, o is the

peak frequency, « the Toba constant, Ao the dominant
wavelength, and

/2
I(p) = f cos”6de6.
/2

-

(4.5)

Similarly, the refined frequency spectrum in the
equilibrium range is different from Phillips’s Eq. (1.4)
in that, first, the wavelength of the longest wave com-
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ponent in the equilibrium range L, appears explicitly
in the refined frequency spectrum (4.4), and, second,
the exponent of Eq. (4.4), H, say, is equal to 4 + u
instead of being 4 and its precise value is between 4
and 5,

4 <H,(=4+u)<S5. (4.6)
To a first approximation, the value of D is given by
(2.23). It follows from Eq. (3.3) that the frequency
exponent
H,+4+ u=4.12. 4.7)
The theoretical frequency and wavenumber spectra
in the equilibrium range are of essential importance to
the whole theory of wind-generated gravity waves. We
point out that every theoretical or empirical spectrum
of the wind-generated gravity wave has to be reconciled
with the equilibrium range spectrum over large ¢ or k
and this reconciliation begins generally from the fre-
quency or wavenumber, which is equal to about twice
that of spectral peaks. If the Toba constant is of per-
sistent uncertainty, then the spectra will be undeter-
mined not only in the equilibrium range but also in
the energy-containing regime. To verify the expression
for the refined frequency spectrum in the equilibrium
range, that is, Eq. (4.4), we first rewrite it in dimen-
sionless form, that is

&(o5)g?
(L — au(oua/g) 4 (4.8)
*
with
2 \u/2
a, = a(ﬁ) . (4.9)

The term a, is dimensionless. If the entropy dimension
D was set equal to 2, that is, the codimension g = 0,
o, would be the same as the Toba constant «, which
is the case considered by Phillips, and correspondingly
Eq. (4.8) would be identified with the classical fre-
quency spectrum (1.4). We shall call a, Toba’s vari-
able, which is determined not only by the friction ve-
locity u, and gravity g, but also the wavelength of the
longest wave component in the equilibrium range L,
(by the entropy dimension D), all scaled by the fractal
codimension u. Here Lj represents the lower limit of
the range of wave components over which the processes
of energy input from wind, spectral flux divergence,
and loss by breaking are all of importance and pro-
portional. Therefore, Ly will be determined by two
conditions: first, the internal nature of the equilibrium
range, characterized by u, and g as demonstrated by
Phillips (1985) and second, the external nature of the
equilibrium range, that is, the conditions of the dom-
inant waves, particularly their nonlinear wave-wave
interactions. The relation (4.9) demonstrates that the
dependent parameter L is a central parameter to de-
termine the wave spectra in the equilibrium range.
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When we look for the dependence of L, (more spe-
cifically the geometry of the initial surface cells men-
tioned at the beginning of section 3) on external con-
ditions, intuitively, it should depend on the wave age,
the directionality of the wave field, the state of wave
breaking, the wind drift, the ambient current, etc. A
systematic experimental investigation on the influences
of these processes was performed by Banner (1990a)
and Banner et al. (1989), who proposed a more detailed
empirical equilibrium subrange model.

Measured values of the Toba constant « vary widely.
Examples of such values are o = 0.02 (Toba 1973),
0.062 (Kawai et al. 1977), 0.14 (Mitsuyasu 1980),0.11
(Kahma 1981), 0.11 (Forristall 1981), and 0.13
(Battjes et al. 1987), of which the relative error is
greater than 85%. In view of such variability, Mitsuyasu
(1980), comparing the JONSWAP spectrum with their
measurements in the East China Sea and sea regions
adjacent to Japan, constructed a formula for «, that
can be rewritten as

oy = 8.44 X 107254117,
=5.57 X 1072X /21 (4.10)

where Go = 0oU0/8, X = gX/ U, X is the fetch. Sim-
ilarly, based on the measurements of Donelan et al. in
Lake Ontario, Battjes et al. (1987) proposed the rela-
tion

ay = 0.15555%47,
= 0.0514X /10, (4.11)
To reconcile the relation (4.9) with Eq. (4.10) or
Eq. (4.11), Ly would be

L()OC%.
]

(4.12)

In other words, Ly would be determined only by the
gravity wave dispersion relation of the dominant waves.

Phillips (1985) examined various observational re-
sults and concluded that for the Toba constant «,
there seemed to be no systematic variations with “sig-
nificant slope” s (=V{§?)/Xo), gX/ Uy, or oous/g.
Because of the lack of reliable measurements of the
parameter Ly, an examination of the validity of Eq.
(4.9) and Eq. (4.12) is not possible. In fact, to deter-
mine the intrinsic dependence of L, is beyond the ob-
jective of the present paper. It is suggested that future
experimental work will confirm our prediction that the
Toba constant, which determines the spectral levels in
the equilibrium range, is not an absolute constant, but
a variable whose dependence is governed by Eq. (4.9).

In the refined frequency spectrum (4.4) the fre-
quency exponent H, = 4 + (2 — D) is a number be-
tween 4 and 5, instead of exactly 4 as in Phillips model.
To a first approximation, H, = 4.12; see Eq. (4.7).
This result is confirmed as realistic by many data mea-
surements, such as those of Mitsuyasu (1980), Kawai
et al. (1977), Forristall (1981), Tang and Shemdin
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(1983), Battjes et al. (1987), and Wen (1990). For
example, in the spectra series of Kawai the mean ex-
ponent and standard deviation are 4.13 = 0.2. Thus,
the relative difference between our result and that of
Kawai’s best estimate is only 0.24%. [ Correspondingly,
the wavenumber exponent H; = 7/2 + u/2 of the re-
fined wavenumber spectrum (4.1) is a number between
7/2 and 4, which is more realistic than being 7/2 ex-
actly.]

The more reliable value of the entropy dimension
D of the support subset, on which the energy input
from the wind to the gravity waves in the equilibrium
range is concentrated, will depend on further direct
measurements of the multifractal spectrum for one-
dimensional sections through the interacting wind
fields over water surface.

To conclude we point out that:

1) The present paper seems to support the equilib-
rium range model of Phillips (1985), in which the pre-
dicted mechanics may be considered as the most es-
sential one.

2) The fractal intermittency of the wind energy in-
put and of wave breaking has much profound signifi-
cance both to wind wave theory and to observations:
the present paper suggests that the singularities of the
wind wave equation caused by high Reynolds number
is not negligible when we describe wind waves by wave
spectra; and that the singularities in wind waves cannot
be described wholly by classical spectral methods.
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