Stability of Neutral Delay Differential Equations — Boundary Criteria

SUN Le-ping

(College of Mathematical Sciences, Shanghai Teachers University, Shanghai 200234, China)

Abstract: We are concerned with the asymptotic stability of the Neutral Delay Differential Equation $x'(t) = Lx(t) + Mx(t-\tau) + Nx'(t-\tau)$, where L,M, and $N \in C^{d+d}$ are constant complex matrices and $\tau > 0$ stands for a constant delay. We obtain two criteria through the evaluation of a harmonic function on the boundary of a cerain region.

Key words: eigenvalue; matrix norm: spectral radius; boundary criteria; asymptotic stability; harmonic function; logarithmic norm

CLC number: O241.81

Document code: A

Article ID: 1000-5137(2001)04-0034-06

1 Introduction

Let W denote a bounded region in the complex plane. The symbols ∂W and \overline{W} represent the boundary and the closure of W, respectively. That is, $\overline{W} = \partial W \cup W$, and

$$f(z) = f(x,y) = u(x,y) + iv(x,y),$$
 (1)

is an arbitrary analytical function for $z \in \overline{W}$. Here, we adopt the notations $i^2 = -1$, z = x + iy, u(x,y) = Re f(z), and v(x,y) = Im f(z).

We consider the question of whether there exist zeros of f(z) for $z \in \overline{W}$. The following two theorems give sufficient conditions for the non-existence of zeros of $f(z) \in \overline{W}$.

Theorem 1^[1] If for any $(x,y) \in \partial W$, the real part u(x,y) in (1) does not vanish, then $f(x,y) \neq 0$, for any $(x,y) \in W$.

Theorem 2^[1] Assume that for any $(x,y) \in \partial W$, there exists a real constant λ satisfying $u(x,y) + \lambda v(x,y) \neq 0$. Then

$$f(z) = u(x,y) + iv(x,y) \neq 0$$
, for any $(x,y) \in \overline{W}$.

Theorem 2 is an extension of Theorem 1. These two theorems only require the evaluation on the boundary ∂W of the harmonic functions corresponding to f. Hence they are called boundary criteria.

Recieved: 2001-01-12

Biography: SUN Le-ping (1963-), female, Associate Professor, Master, College of Mathematical Science, Shanghai Teachers University.

2 Delay Independent Stability of NDDEs

Now we deal with the asymptotic stability of NDDEs.

$$x'(t) = Lx(t) + Mx(t-\tau) + Nx'(t-\tau), \ \tau > 0,$$
 (2)

where L, M, and $N \in C^{d+d}$ are constant complex matrices and r > 0 stands for a constant delay.

For the stability of the system (2), we investigate its characteristic equation

$$P(z) = \det[zI - L - Me^{-zt} - zNe^{-zt}] = 0,$$
 (3)

where z is a root of the equation.

The above characteristic equation (3) may be written as

$$\det[zI - L - Me^{-x} - zNe^{-x}] = U(x,y) + iV(x,y), \tag{1}$$

where z = x + iy.

The following two lemmata are well-known.

Lemma 1^[2] If the real parts of all the characteristic roots of (3) are less than zero, then the system (2) is asymmotically stable; that is, every solution x(t) of (2) satisfies $x(t) \to 0$ as $t \to \infty$.

Lemma 2^[2] Let $A \in C^{d+d}$ and $B \in R^{d+d}$. If the inequality $|A| \leq B$ holds, then the inequality $\rho(A) \leq \rho(B)$ is valid. Here the order relation of matrices of the same dimensions should be interpreted componentwise. |A| stands for the matrix whose component is replaced by the modulus of the corresponding component of A, and $\rho(A)$ means the spectral radius of A.

For a complex matrix W, let $\mu(W)$ be the logarithmic norm of W.

$$\mu(W) = \lim_{\Delta \to e^+} \frac{\|I + \Delta W\| - 1}{\Delta}.$$

 $\mu(W)$ depends on the chosen matrix norm. Let ||W|| denote the matrix norm of W subordinate to a certain vector norm. In order to specify the norm, the notation $|||_{p}$ is used. And the notation $\mu_{p}(\cdot)$ is also adopted to denote the logarithmic norm associated with $||\cdot||_{p}$.

Lemma 3^[2] For each eigenvalue of a matrix $W \in C^{d \times d}$, the inequality

$$-\mu_{\rho}(-W) \leqslant \operatorname{Re}\lambda(W) \leqslant \mu_{\rho}(W)$$

holds.

We have the following results[2]

$$\begin{split} \mu_1(W') &= \max_k \Bigl[\mathrm{Re}(\omega_{ik}) + \sum_{i,u \neq k} |\omega_{ik}| \, \Bigr], \\ \mu_2(W) &= \frac{1}{2} \max_i \bigl[\lambda_i (W + W^+) \bigr], \\ \mu_{\infty}(W') &= \max_i \bigl[\mathrm{Re}(\omega_{ii}) + \sum_{k \neq i} |\omega_{ik}| \, \Bigr]. \end{split}$$

Here, " * " denotes the conjugation symbol.

The following lemma states a sufficient condition for the stability of (2).

Lemma 4 Let ||N|| < 1. If the condition

$$\mu(L) + \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|} < 0 \tag{5}$$

holds, the system (2) is asymptotically stable.

Proof Assume that the condition of the lemma is satisfied and that the system (2) is unstable. There is a root z of P(z) satisfying $Re(z) \ge 0$.

Note that z is also an eigenvalue of the matrix $L + Me^{-zt} + zNe^{-zt}$. The inner product

$$z = < Lx, x> + < Mx, x> e^{-\pi} + z < Nx, x> e^{-\pi}$$
, where $x \in C^{I}$, $||x|| = 1$,

implies

Ωť

$$|z| \le ||L|| + ||M|| + |z| \cdot ||N||,$$
 $|z| \le \frac{||L|| + ||M||}{1 - ||N||}.$
(6)

Applying the properties of the logarithmic norm and lemma 3, we have the following inequalities:

$$0 \leqslant \operatorname{Re}(z) \leqslant \mu(L + Me^{-z\tau} + zNe^{-z\tau}) = \lim_{\Delta \to 0^+} \frac{\|I + \Delta(L + Me^{-z\tau} + zNe^{-z\tau})\| - 1}{\Delta} \leqslant \mu(L) + \|M\| + |z| \cdot \|N\| \leqslant \mu(L) + \|M\| + \|N\| \cdot (\frac{\|L\| + \|M\|}{1 - \|N\|}) = \mu(L) + \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|}.$$

This, however, contradicts the condition (5). Hence the proof is completed.

The following Theorem 3 gives a region including all the roots of (3) with nonnegative real parts when the condition of Lemma 4 fails.

Theorem 3 Let ||N|| < 1. Suppose that there exists a root of (3) whose real part is nonnegative.

(i) If we have the estimation

$$\mu(L) + \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|} > 0,$$

the inequalities

$$0 \leqslant \operatorname{Re}(z) \leqslant \mu(L) + \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|}$$

$$\mu(iL) - \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|} \leqslant \operatorname{Im}(z) \leqslant \mu(-iL) + \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|}$$

and hold.

(ii) If we have the estimation

$$-\mu(-L) - \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|} > 0.$$

define a positive number β satisfying

$$- \mu(-L) - \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|} e^{-\beta \tau} = \beta.$$

Then the inequalities

$$\beta \leqslant \operatorname{Re}(z) \leqslant \mu(L) + \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|} e^{-\beta c}$$

and

$$-\mu(iL) - \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|} e^{-\beta r} \leqslant \operatorname{Im}(z) \leqslant \mu(-iL) + \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|} e^{-\beta r}$$

are valid.

Proof (i) A proof similar to that of Lemma 4 yields

$$0 \le \text{Re}(z) \le \mu(L) + \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|}.$$

Next, the imaginary part of an eigenvalue of a matrix L is equal to the real part of the eigenvalue

of -iL. The second inequality holds.

(ii) By Lemma 3

$$-\mu(-L-Me^{-x}-zNe^{-x})\leqslant \operatorname{Re}(z)\leqslant \mu(L+Me^{-x}+zNe^{-x}). \tag{7}$$

A derivation similar to that in (i) leads to

$$-\mu(-L) - \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|} \leqslant \operatorname{Re}(z) \leqslant \mu(L) + \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|}.$$

$$\beta_{o} = -\mu(-L) - \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|}.$$
(8)

Set

By (7),

$$\operatorname{Re}(z) \geqslant -\mu(-L - Me^{-z\tau} - zNe^{-z\tau}) = -\lim_{\Delta \to 0^{+}} \frac{\|I + \Delta(-L - Me^{-z\tau} - zNe^{-z\tau}\| - 1}{\Delta} \geqslant -\lim_{\Delta \to 0^{+}} \frac{\|I + \Delta(-L)\| + \|\Delta(-Me^{-z\tau} - zNe^{-z\tau}\| - 1}{\Delta} = -\mu(-L) - \|M\| + |z| \cdot \|N\|) |e^{-z\tau}| \geqslant -\mu(-L) - \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|} \cdot |e^{-z\tau}| = -\mu(-L) - \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|} \cdot e^{\operatorname{Re}(z)\tau}.$$

Hence, in virtue of (8),

$$\operatorname{Re}(z) \geqslant -\mu(-L) - \frac{\parallel M \parallel + \parallel L \parallel \cdot \parallel N \parallel}{1 - \parallel N \parallel} \cdot e^{-\beta_0 r}.$$

Let $\beta_1 = -\mu(-L) - \frac{\parallel M \parallel + \parallel L \parallel \cdot \parallel N \parallel}{1 - \parallel N \parallel} \cdot e^{-\beta_1 \tau}$. Then we have $\operatorname{Re}(z) \geqslant \beta_1 \geqslant \beta_0$. Let $\beta_1 = -\mu(-L) - \frac{\parallel M \parallel + \parallel L \parallel \cdot \parallel N \parallel}{1 - \parallel N \parallel} \cdot e^{-\beta_5 \tau}$. Again we have $\operatorname{Re}(z) \geqslant \beta_2 \geqslant \beta_1 \geqslant \beta_0$.

The iteration

$$-\mu(-L) - \frac{\|M\| + \|L\| \cdot \|N\|}{1 - \|N\|} \cdot e^{-\beta_j t} = \beta_{j+1} \geqslant \beta_j, \ (j = 0.1, \cdots)$$

and the monotonicity

$$\beta_0 \leqslant \beta_1 \leqslant \cdots \leqslant \beta_s \leqslant \beta_{s+1} \leqslant \cdots \leqslant \operatorname{Re}(\mathbf{z}) \leqslant \mu(L) + \frac{\parallel M \parallel + \parallel L \parallel \cdot \parallel N \parallel}{1 - \parallel N \parallel}$$

assure that the limit of the series $\{\beta_i\}$ exists and is equal to β_i , where β is a positive number satisfying

$$-\mu(-L) - \frac{\parallel M \parallel + \parallel L \parallel \cdot \parallel N \parallel}{1 - \parallel N \parallel} \cdot e^{-\beta_{r}\epsilon} = \beta.$$

Therefore, the first inequality holds. In a similar manner, we can get the second inequality.

Theorem 4 Let $||N|| \le 1$. If z is a characteristic root of (3) with nonnegative real part, the inequality

$$|z| \le \rho (|L| + |M| + \frac{||M|| + ||L|| \cdot ||N||}{1 - ||N||} \cdot |N|)$$

holds.

Proof By the assumption above, there exists an integer j $(1 \le j \le d)$ such that $z = \lambda_i (L + Me^{-zr} + zNe^{-zr})$.

This implies the inequality

$$|z| \leq \rho(L + Me^{-z\tau} + zNe^{-z\tau}).$$

It is obvious that

$$|L + Me^{-z\tau} + zNe^{-z\tau}| \leqslant |L| + |M| \cdot |e^{-z\tau}| + |z| \cdot |N| \cdot |e^{-z\tau}| \leqslant |L| + |M| + \frac{\|L\| + \|M\|}{1 - \|N\|} \cdot |N|.$$

Therefore, due to Lemma 2, we have the conclusion.

3 Boundary Criteria for NDDEs

Let

$$\gamma = \mu(L) + \frac{\parallel M \parallel + \parallel L \parallel \cdot \parallel M \parallel}{1 - \parallel N \parallel}.$$

By virtue of Lemma 4, if $\gamma < 0$, the system (2) is delay-independent asymptotically stable. If $\gamma \ge 0$, the system (2) may be stable or unstable. We consider the stability of (2) when $\gamma \ge 0$.

Let $\beta_0 = -\mu(-L) - \frac{\parallel M \parallel + \parallel L \parallel \cdot \parallel M \parallel}{1 - \parallel N \parallel}$ and $\gamma \geqslant 0$. We define the following quantities according to the sign of β . (See Theorem 3)

(i) If $\beta_0 \leq 0$, we put

$$E_0 = 0, \ F_0 = -\mu(iL) - \frac{\parallel M \parallel + \parallel L \parallel \cdot \parallel M \parallel}{1 - \parallel N \parallel},$$

$$E = \mu(L) + \frac{\parallel M \parallel + \parallel L \parallel \cdot \parallel M \parallel}{1 - \parallel N \parallel}, \ F = \mu(-iL) + \frac{\parallel M \parallel + \parallel L \parallel \cdot \parallel M \parallel}{1 - \parallel N \parallel}.$$

(ii) If
$$\beta_0 > 0$$
, we put $E_0 = \beta$, $E = \mu(L) + \frac{\parallel M \parallel + \parallel L \parallel \cdot \parallel M \parallel}{1 - \parallel N \parallel} \cdot e^{\beta r}$, $F_0 = -\mu(iL) - \frac{\parallel M \parallel + \parallel L \parallel \cdot \parallel M \parallel}{1 - \parallel N \parallel} \cdot e^{\beta r}$ and $F = \mu(-iL) + \frac{\parallel M \parallel + \parallel L \parallel \cdot \parallel M \parallel}{1 - \parallel N \parallel} \cdot e^{\beta r}$, where β is a root

of the equation

$$-\mu(iL)-\frac{\parallel M\parallel+\parallel L\parallel\cdot\parallel M\parallel}{1-\parallel N\parallel}\cdot e^{\beta r}=\beta.$$

Under the above notations we turn our attention to the following three kinds of bounded regions in the z-plane.

Definition 1 Let l_1, l_2, l_3 and l_4 denote the segments $\{(E_0, y), F_0 < y < F\}$, $\{(x, F), E_0 \leqslant x \leqslant E\}$, $\{(E, y), F_0 \leqslant y \leqslant F\}$ and $\{(x, F_0), E_0 \leqslant x \leqslant E\}$, respectively. Furthermore, $l = l_1 \cup l_2 \cup l_3 \cup l_4$ and let D be the rectangular region surrounded by l.

Definition 2 Let $R = \rho(|L| + |M| + \frac{||M|| + ||L|| \cdot ||M||}{1 - ||N||} \cdot |N|$.) Let K denote the circular region with radius R centered at the origin of the plane of C.

$$K = \{(r,\theta), r \leqslant R, 0 \leqslant \theta \leqslant 2\pi\}.$$

Definition 3 Let T represent the intersection $D \cap K$. The boundary of T is denoted by ∂T and $\overline{T} = T \cup \partial T$.

The following two theorems give criteria for the delay-dependent stability of system (8).

Theorem 5 If for any $(x,y) \in \partial T$, the real part U(x,y) in (4) does not vanish, then the system (2) is asymptotically stable.

Proof Assume that the condition is satisfied and that the system (2) is unstable. This means the existence of a characteristic root z of (3) with nonnegative real part. According to Lemma 1. it suffices to prove $P(z) \neq 0$ for $\text{Re}(z) \geqslant 0$. Applying Theorem 3 and Theorem 4 and Definition 3, it is sufficient to consider $z \in T$.

From the assumption of this theorem and the statement of Theorem 1, this contradicts with P(z) = 0 for $z \in \overline{T}$. Hence $P(z) \neq 0$ for $\text{Re}(z) \geqslant 0$ and the proof is completed.

Due to Theorem 2, we can further extend the above result as follows.

Theorem 6 Assume that for any $(x,y) \in \partial T$, there exists a real constant λ satisfying $U(x,y) + \lambda V(x,y) \neq 0$,

Then the system(2) is asymptotically stable.

The proof is analogous to Theorem 5.

We gave two criteria for the delay-dependent stability of the linear delay system(2). Theorem 3 and Theorem 4 show that the unstable characteristic roots of the system(2) are located in some specified bounded region in the complex plane, while Theorem 5 and Theorem 6 show that it is sufficient to check certain conditions on its boundary to exclude the possibility of such roots from the region. Theorem 1 and Theorem 2 provide general and simple criteria for nonexistence of zeros of an analytic function in any bounded region.

References:

- [1] HU Guang-di, HU Guang-Da. Stability of Discrete-Delay System: Boundary Criteria [J]. Applied Mathematics and Computation, 1996, 80: 95-104.
- [2] DESOER C A, VIDYASAGAR M. Feedback System: Input-Output Properties[M]. New York: Academic Press, 1977.
- [3] KUANG J X, TIAN H J. The Asymptotic Behaviour of Theoretical and Numerical Solution for the Differential Equations with Several Delay Terms[J]. Journal of Shanghai Teachers University (Natural Sciences), 1994, 23 (3).
- [4] HU Guang-da, TAKETOMO Mitsui. Stability of Linear Delay Differential Systems with Matrices Having Common Eigenvectors[J]. Japan J Indust Appl Math. 1996, 13: 487-494.
- [5] SUN L P. Stability Criteria for Delay Differential Equations[J]. Journal of Shanghai Teachers University(Natural Sciences), 1998, 27(3).

中立型方程的稳定性:边界准则

孙乐平 (上海师范大学 数学科学学院,上海 200234)

摘要:研究了中立型方程 $x'(t) = Lx(t) + Mx(t-\tau) + Nx'(t-\tau)$ 的新近稳定性,其中 $L,M,N \in \mathbb{C}^*$ 是常数 复阵, τ 为常数延时量。利用在一个区域边界上对一种相应的调和函数的估计,得到了判别其稳定性的两种稳定性 准则。

关键词:特征值;矩阵范数;谐半径;边界准则;渐近稳定性,调和函数;对数范数