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ABSTRACT

A simple baroclinic model of the abyssal ocean circulation is formulated in which the reversa!s c_;f the meridiopal
velocity with depth, and hence the layering of the abyss, is explained by the longitudinal variation of upwelling

into the main thermocline.

Since the barotropic meridional velocity is connected to the local upwelling velocity by the Sverdrup relation,
regions of weak upwelling have meridional velocity fields that are essentially baroclinic. The baroclinic velocities
are driven by thermal anomalies that propagate westward by stationary diffusive Rossby waves from regions of
relatively strong upwelling in the eastern portion of the basin. These dynamically driven, internally generated
vertical velocities produce the layered baroclinic structure in the western interior of the basin. A simple linear
model, continuous in the vertical, is developed to illustrate these elements of the conceptual picture.

1. Introduction

Our present understanding of the abyssal oceanic
circulation still rests on the elegantly simple model
presented by Stommel and Arons (1960a,b, hereafter
SA) in a series of papers published over 30 years ago.
In their model cold water, occupying the bulk of the
oceanic interior, is heated and rises slowly through the
base of the thermocline and, participating in the cir-
culation of the upper waters, flows to a few narrow
sinking regions where it is cooled and returned to the
abyss. The circulation is closed by a network of deep
western boundary currents and the Antarctic Circum-
polar Current. At the time the theory was presented,
the suggestion of interior upwelling into the thermo-
cline was motivated by early thermocline theories that
featured the upwelling of cold water to balance the
downward diffusion of heat. Our current picture of the
thermocline is of a domain more advective than dif-
fusive (e.g., Luyten et al. 1983), but it is at least plau-
sible that in a transition zone between the vigorous
thermocline and the sluggish abyss some such balance
may arise.

To keep matters as simple as possible, SA imagined
the interior upwelling at the base of the thermocline
to be horizontally uniform. However, they were aware
(SA 1960b) that, theoretically at least, the upwelling

* Woods Hole Oceanographic Institution Contribution No. 7795.

Corresponding author address: Dr. Joseph Pedlosky, Woods Hole
Oceanographic Institution, Clark 363, Woods Hole, MA 02543,

© 1992 American Meteorological Society

should be more intense in the eastern part of the ocean
where the thermocline vertical scale is least since the
estimate of w,, the deep vertical velocity of upwelling,
is

K
h 2
where « is the vertical mixing coefficient of temperature
and A is the vertical scale depth of the temperature (in
reality the heat flux) at the thermocline’s base. Almost
all thermocline theories predict 4 to increase westward
from an eastern minimum in each oceanic basin.

The triumphant simplicity of the Stommel-Arons
theory, capped by the subsequent observation of the
hypothesized deep western boundary currents, makes
it an important building block in ocean circulation dy-
namics. However, as Warren ( 1981) points out in his
excellent review of the subject, “This model was never
intended as a realistic description of the deep ocean
circulation, and in at least two respects it would be a
qualitatively bad one . .. because the model is baro-
tropic, it cannot allow layered deep flow.”

The SA model treats the entire abyss as a single ho-
mogeneous layer. In the model, the upwelling velocity
linearly increases from the (flat) ocean bottom to the
base of the thermocline. This yields a depth-indepen-
dent stretching of planetary vorticity columns. Under
the assumption of planetary-scale geostrophy, this uni-
form stretching must be balanced by a poleward me-
ridional flow independent of depth. The observed lay-
ering of the abyss (e.g., the interleaving tongues of
Antarctic Intermediate Water, North Atlantic Deep
Water, and Antarctic Bottom Water in the Atlantic)
is unexplained by the SA model.

Wy =

(1.1)
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The estimate (1.1) can be rewritten

Wy _ 9°T/82

1 o
K T /dz

kK 9z’ (1.2)
so that in principle vertical variations in the upwelling
might be due to vertical variations in the turbulent
mixing coefficient as well as due to vertical variations
in the scale height of the temperature gradient. Al-
though variations in w, due to vertical variations in x
cannot be excluded, I focus instead on a process related
to the large-scale structure of the forcing.

In this paper I suggest that the layering of the interior
meridional velocity is due to the longitudinal variation
of the upwelling into the thermocline. The physical
explanation can be grasped by considering an extreme
example. Suppose all the upwelling in an ocean basin
is restricted to a region eastward of a longitude ¢'. From
the Sverdrup relation, the vertically averaged meridi-
onal transport satisfies

i} f vdz = fw,,

where the integral is over the depth of the abyssal re-
gion. If w, is locally zero, that is, west of ¢/, then the
net transport is zero. However, the temperature dis-
turbance produced by eastern upwelling will tend to
propagate westward due to the 3 effect. In a steady flow
this yields an arrested baroclinic Rossby wave in which
the westward penetration of the thermal anomaly is
balanced by, say, local thermal diffusion. Thus, west
of ¢' the temperature anomaly will yield an internally
generated w field and hence a meridional flow. How-
ever, (1.3) guarantees that west of ¢', the average v is
zero in the abyss, that is, the meridional velocity must
be layered.

In the remainder of this paper, I present a model
based on simple linear physics first introduced by Li-
neykin (1957) and subsequently used by Pedlosky
(1969) and Gill (1985) to study the thermocline. In
this model the flow is entirely geostrophic, hydrostatic,
and incompressible. The heat equation consists of a
vertical motion rising against a fixed, average temper-
ature gradient balanced by vertical diffusion of the as-
sociated thermal anomaly.

The model is highly simplified and is clearly inad-
equate at the equator and in western boundary current
regions. It is employed here only to show how the verbal
argument given above can be realized in a continuous,
self-consistent model in which w, is smooth. It also
gives us an opportunity to estimate the degree of lay-
ering to be expected. Naturally the weakness of the
model is in its linearized thermodynamics. In the abyss,
lateral variations of temperature are not very much
smaller than vertical variations. Obviously this makes
problematic the direct application of the quantitative
results that follow. It is, therefore, important to keep
in mind that the basic result rests on the most robust

(1.3)
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feature of the dynamics, namely, the tendency for
western propagation of the baroclinic anomalies by the
Rossby wave mechanism.

2. The model
a. Formulation

Consider an ocean basin of overall depth D, which
occupies a longitudinal extent ¢,, < ¢ < ¢.. The tem-
perature, T, in the abyssal layer —D < z< 0 is

T, = Ty + AT,,(I + %) + (AT T(6, 0, 2). (2.1)

The mean temperature gradient A7,/ D is considered
to be much larger than that due to the horizontally
varying temperature anomaly ATy. This anomaly
scale, ATy, is related to the scale W, of the upwelling
imposed at z = 0 by

(2.2)

by application of the thermal wind balance and a scal-
ing for the horizontal velocity of U = W,R/D. Here
R is the earth’s radius, g is the acceleration of gravity,
Q is the earth’s rotation, and « is the coefficient of
thermal expansion. The independent role of salinity in
affecting the density is ignored. If the pressure anomaly
is scaled to hydrostatically balance the temperature
anomaly, the nondimensional equations of motion be-
come

1 ap
fo= cosf 9¢’
__9%
==
ap
T=>
0z
1 0e] ] ow
osd g(vcos0)+£u]+—z—0,
_Er 8T
wS = 5 32 (2.3a,b,c,d,e)
where f = sinf and
§= agAT,D
"~ 4Q%R?
K
Er= W . (2.4a,b)

Note that S = N?D?/4Q%R?, where N is the Brunt—
Viisild frequency.
At the lower boundary,

w=T=0, = -1 (2.5)
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is given, while at the upper boundary, representing the
base of the thermocline,

w= W*(¢, 0)9
T=0.

z=0
(2.6)

It would be easy to generalize (2.6) to include non-
zero temperature anomalies at z = 0, but they are ig-
nored for simplicity.

The parameter ratio

E;  k4QR?

S T ND (2.7)
is chosen to be O(1). This implies that the Lineykin
depth

%
dr = R 2.8
L [ ﬁ* N2 ] ( )

is of the order of the thickness of the abyssal layer, D.
[In (2.8), fx = 2Q sinf and 8, = 22 cosf/R.]

It is useful at this point to describe the problem in
terms of Fourier vertical modes. With the boundary
conditions (2.5) and (2.6), it is natural to use the rep-

resentation
w (W) .
[T} = E} [ Tn} sinnwz, (2.9a)
u © Un
v =2 8§V, coshnz, (2.9b)
D n=0 | P,
where, of course,
U,, 0 u
Vi, = 2e,,f dz{vcosnwz,
P, o
W zfod "l (2.10a.b)
= innwz, .10a,
T, . z T sinnwz a
and
L n>0
““ 1172, n=o0.

Multiplying (2.3a,b,d) by cosnwz and (2.3c,e) by
sinnwz and integrating over the depth yields

1 0P,
Vn = »
S cosf 3¢
aP,
SUp=— 29
—nwP, = ¢,T,,
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N

au,
c050 % (V cosf) + % + 2¢,wy + nwe, W, = 0,

> Er
W,=—n*zr?=—=T,.

2.
55 (2.11a,b,c,d,e)

b. The barotropic mode (n = 0)

The model solution for n = 0 yields the barotropic
solution for the horizontal velocity, that is, for n = 0

T0=0,

V0=—W*7

de cosf
Up = ff &dfi’

where I have used the boundary condition of zero zonal
flow on ¢ = ¢,. The solution for the barotropic mode
is precisely the same as the SA solution. In particular,
note that the barotropic meridional velocity is given
entirely in terms of the local value of w,. As long as
w, > 0, the barotropic velocity is always poleward.

f wy)  (2.12ab,c)

¢. The baroclinic modes (n > 0)

The baroclinic fields have T, # 0. The continuity
equation yields, in conjunction with the geostrophy
and hydrostatic balance,

2 B 97,

W= — —— Wy — ——e—— =",
¥ nr?f?cosd o¢

nw
which with the thermal equation (2.11e) yields an
equation for T',, namely,

(2.13)

2
OTn _ o )T, = — 27 costw,., (2.14)
¢
where
n*r* cosé Er _,
= =, 2.15

Recall that in these units 8 = cosf and f = sinf. The
solution of (2.14) in which 6 enters only parametrically
and which satisfies U, = 0 on ¢ = ¢, is

be , 2 2
T,= f en(9=¢") n;f cosfw, d¢’
]

+ C,,e"“"‘d’"_"), (2_ 16)

where C, is an arbitrary constant. Before further dis-
cussion of the baroclinic solution, it is useful to point
out that (2.14) is a balance between the westward
propagation effect due to 8 (the first derivative term),
the vertical diffusion (the term proportional to a,),
and the thermal forcing produced by w,. It is clear
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from this equation as well as its solution, (2.16), that
the baroclinic fields are not locally related to w, but
depend on the distribution of w, east of the point under
consideration.

Note that C, in (2.16) is not determined by the con-
dition that U, (or 87,/d0) vanish on the eastern
boundary. Instead, an additional condition must be

- used to determine C,.

d. The integral condition

Suppose that our ocean basin is girdled by a bound-
ary I" through which, at several locations, mass enters
to represent the entry of cold water formed in polar
regions. These sources must deliver an amount of water
equal to the volume of water leaving at the upper level
of the abyss due to upwelling into the thermocline.
Suppose also there are J such sources, each yielding
locally a velocity normal to the boundary (see Fig. 1)
uY . n. The inward transport of each source is

50 = [ [ dzdist?(8,0,2), j=1,2,---,
(2.17)
where
sP=—y.p, (2.18)

and in particular, each s’ can be represented in the
Fourier cosine series:

oo}
sV =3 s cosnnz.
n=0

(2.19)

When the continuity equation (2.11d) is integrated
over the basin containing the flow,

2¢, f f Wy cosfdedd + nme, f f W, cosfdpdb
J
-2 j;sf,j)dl =0. (2.20)
j=1

In (2.20) I have used the fact, easily verified, that
only the interior vertical velocity and not the vertical
velocity in western boundary currents is significant in
the overall mass balance. A similar integral condition
was derived in Pedlosky (1969); see also Tziperman
(1986).

The balance obtained from the n = 0 term yields
the integral balance of SA, which equates the overall
upwelling to the sources of cold water formed in narrow
sinking zones, that is, for n = 0

J ' J
ff Wy cosfdodd = >, fsf)’)dls >S90 (2.21)
j=1 j=1

This allows us to relate the net upwelling strength
to estimates of the deep water formation rates (or vice
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versa), as is done in SA (1960b). Otherwise, it places
no constraint on the solution.

The integral condition for # > 0 becomes, using
(2.11e)

J
2 ff wy cosfdidy — 2 f sPdl
j=1

33
I ff T, cosbdedy. (2.22)

28
If (2.16) is used in (2.22), this yields an algebraic
condition for each C, in terms of integrals over w, and
each 5. Thus, C, is determined in principle. Unfor-
tunately, as is evident from (2.22), the solution for
each C, will depend upon each Fourier coefficient of
each source term, s¢, and these are entirely unknown.
To avoid the dependence of the solution on the un-
known (and at this point, arbitrary) vertical structure
of the source terms, the integral condition for the
baroclinic modes is replaced by the condition that the
temperature anomaly vanish on the eastern boundary.

This requires

C,=0 (2.23)

and thus completely determines T',. It then follows
that (2.22) can be satisfied by considering (2.22) as a
set of algebraic equations for the vertical structure of
the sources, that is, for the modal distributions s$”.
This seems no more artificial than specifying s to
determine C, and is considerably simpler.

e. The solution

For C, = 0, the solution for U,, V,,, T,, and W, can
be written for n > 0,

f f f¢e ., 3

Vo= 2=w, —2>a, ey do'
g™ "2, x a9
be 2

T, =
¢

a Pe
w,= -2 zn f ean(d>—¢’)w* d¢’
nmJe

2nw 5 cosfw,e ) dg'

19 (% 2 ,
=—— 1 2 L COsOw, e 9y do’

Un=7al), 25

7

(2.24a,b,c,d)
which, with the barotropic mode (2.12), completes the
solution.

3. An example
Consider the upwelling distribution
Wy = KW, e (09,

(3.1)

The upwelling is a maximum on the eastern bound-
ary and decays westward at a rate dependent on s. If
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FIG. 1. A schematic of the ocean basin in the abyss. An upwelling,
Wy, into the mean thermocline is balanced by boundary sources
s representing the entry of deep water formed in sinking zones
adjacent to the basin interior. The contour girdling the basin is T',
and its outward normal is n.

s = 0, the simple SA case of uniform upwelling is again
obtained. The constant K is chosen such that

de e
f f Wy cosfdide = W, f f cosfdidy ;

namely,
K(5) = (¢ — ¢u)s/(1 — €™ %)) (3.2a,b)

Hence, by varying s, only the distribution of upwelling
is changed, and not its strength. Using (3.1) in (2.12)
and (2.24), we obtain (after a partial resum of the
series for w to improve convergence)

w= W*K[e""”e“”(l + z)

o .
3 _2sinnwz (5e7509) — g p=an(#e®)}
n=1 nw(s — a,)
- (3.32)

v= i W*K[e—s(¢e—¢)
B
> 2cosnmwz

+ 2 - - {se_5(¢e_¢) _ ane—an(¢e—¢)} ]’ (3.3b)

n=1 (S - an)

while for the temperature anomaly

© 2nxf?
T=W,K3 oo
n=1 n

X {e () — =50~} sinpwz, (3.3c)

where a, is given by (2.15). Note that a, is a function
of latitude.

For very small stratification, a, becomes enormous,
and the reader may quickly verify that the solution
reduces to the homogeneous solution of SA. Figure 2a
shows v and w as a function of depth for the case where

7*Er B T*2QR?
28 N2D*

(3.4)
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is 10°. The meridional velocity is depth independent,
while w is a linear function of z. The sums in (3.3a,b)
are entirely negligible. The solutions in this limit are
local; that is, they depend only on the local value
of wy.

For smaller values of «, the meridional velocity be-
comes vertically sheared. Figure 2b shows the velocity
profiles at ¢/ ¢, = 0.5 for the case where § = 30°N and
a = 10. Although v is a function of depth, the velocity
is everywhere poleward.

It is, naturally enough, difficult to give a reliable es-
timate for « since it depends on x. However, using a
valueof Nof3radsh ™', D=4km,Q=7.3X 10> s/,
and R = 6 X 103 km, I find that

a =024«

if k is measured in cgs units. A larger buoyancy fre-
quency will reduce « further. For a value of x of 1/2
cm?s~!, this leads to an « of 0.12.

Figure 2c shows v and w as a function of depth at
o/ ¢ = 0.25 for the case s = 0.001 (i.e., w, essentially
independent of longitude) for a = 0.1. There is now,
at @ = 30°N, a slight reversal at depth of the meridional
velocity. At most depths, it is strongly poleward. Figure
2d shows the same case except that now s = 5 so that
the upwelling is strongly localized near the eastern
boundary. The meridional velocity is now highly lay-
ered, and it takes only the slightest imagination to
identify the lobes in v with the alternating intrusions
of Antarctic Bottom Water, North Atlantic Deep Wa-
ter, and Antarctic Intermediate Water as we rise
through the water column. However, given the sim-
plicity of the model, it is perhaps unwise to insist on
detailed comparison with observations. The important
point is, as emphasized in the Introduction, that the
meridional velocity is much larger than the vertically
averaged value, given by ¥, and shown in Fig. 2d. The
meridional velocity in the western basin, where w, is
small, is driven by the internally generated vertical ve-
locity forced by the temperature anomaly propagated
westward from the eastern forcing region and hence,
has a small barotropic component compared with the
baroclinic transport. Figure 3 shows the temperature
anomaly as a function of depth, which is responsible
for the vertical velocity shown in Fig. 2d.

Figure 4 shows a zonal cross section of v at 30°N
for the case s = 5 and a = 0.1. Note that the layering
extends over the whole basin, although the meridional
velocity in the eastern part of the basin is dominated
by the strong poleward flow produced by the local up-
welling. At the same depth, that is, for z = —0.2, the
abyssal velocity is actually southward in the western
part of the basin.

Since a, = af *n*, lower latitudes are parametrically
equivalent to greater stratification. This simply corre-
sponds to the increase of the Rossby deformation radius
with decreasing latitude. Figure 5 shows the meridional
and vertical velocities as a function of depth at 11.5°N
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FIG. 2. The meridional and vertical velocities as a function of depth in the abyss. In each case shown, the sums in (3.3a,b,c) retain 20
modes in the vertical. In each figure, w is scaled by KW, and v is scaled by KW, f/ 8. (a) Homogeneous model (« = 10°) at # = 30°N with
uniform upwelling (s = 1073). The vertical velocity is shown by the dashed line, while the (constant) meridional velocity is indicated by
asterisks. (b) As in (a) except « = 10. The profiles as shown at ¢/¢, = 0.25. The meridional velocity is shown by the solid line. (¢) As in
(a), with & = 0.1. (d) As in (c) except s = 5 (strong localization of w, near ¢ = ¢.). (¢) As in (d) except s = 2.

A

. ) 0.2 0.4 0.6 08

K 1 1 1 1 I 1 /
40 35 -30 25 -20 -15 -1.0 05 O 05 P79
T, w

-1.0

FIG. 4. A cross section showing contours of meridional velocity

FiG. 3. The temperature anomaly (solid line) and associated vertical  at f= 0.5, s = 5, and @ = 0.1. The dashed contours indicate v < 0

velocity. The temperature anomaly is scaled by KW, f%¢/s, where ¢ (contour interval = 0.1); the solid lines indicate v > 0 (contour
is the Rossby number. interval = 0.5).
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FIG. 5. The meridional and vertical velocity profiles at
sind = 0.2 for the case shown in Fig. 2d.

(where sinf = 0.2). The same major lobes are present;
they are moved somewhat higher in the water column.
This corresponds to the dynamical scaling explicit in
(2.15) that smaller fcorresponds to greater S (i.e., N?)
and hence greater baroclinicity in the velocity field.
Figure 6 shows the cross section of meridional ve-
locity at the same parameter values as in Fig. 4, except
that s has been reduced from 5 to 2. Figure 2e shows
the profiles of v and w at ¢/ ¢, = 0.25. The same qual-
1tative features are evident, which is reassuring since a
precise estimate of the eastward intensification of the
upwelling into the thermocline is not available. The
insensitivity of the layering to the value of s is, I believe,
a robust result related to the simple physical argument
presented in the Introduction.
" The overall flow pattern at the selected depths z
= —0.3 and z = —0.7 is shown in Fig. 7. As in the
classical SA theory, no fluid crosses the equator in the
interior. The burden is placed on the unresolved west-
ern boundary current system to transfer mass across
the equator. In the figures presented here w, is chosen
to be independent of latitude. Certainly a different
choice for the latitudinal structure of the upwelling will
affect the structure of the zonal velocity field and the
horizontal pattern of baroclinic currents shown here.

0 0.2 0.4 06 0.8
°/0,

FI1G. 6. As in Fig. 4 but with s = 2.
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F1G. 7. The pattern of the abyssal pressure field at (a) z/D = —0.3
: and(b)z/D=—-07fors=5a=1.

4. Discussion

The simple model presented here suggests that the
layering of the abyssal circulation is connected to the
longitudinal inhomogeneity in the upwelling w, of cold
water into the main thermocline. The basic idea is
composed of two elements: first, that the barotropic,
abyssal meridional velocity is tied to the local value of
upwelling by the Sverdrup relation and hence, is small
where w, is small and second, that the planetary vor-
ticity gradient yields a propagation mechanism by
which the thermal field produced where the upwelling
is large will propagate westward into regions where w,
is small, thus producing a field of vertical velocity not
locally related to w,. This field of thermally induced
vertical velocity yields a baroclinic meridional velocity
with values much greater than the mean.

These ingredients are so simple that the results can
be expected to transcend the limitations of the rudi-
mentary linear model used to illustrate the conse-
quences of the basic ideas. Naturally, horizontal ad-
vection of the thermal field will distort the patterns of
the linear model. However, as long as the abyssal fluid
velocities are smaller (or at least not larger than) the
baroclinic Rossby wave speed, we can expect the prin-
cipal qualitative results to stand.

The use of a constant buoyancy frequency in the
theory is also not of fundamental importance. An
N?(z) that is not constant would lead to a quantitatively
different set of expansion modes with numerically dif-
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ferent eigenvalues replacing the a, of sections 2 and 3.
However, the general properties of the baroclinic modes
are reasonably unchanged.

Relatively little is known directly about the velocity
structure of the abyssal flow apart from uncertain in-
ferences from property fields. There are hints, however,
of deep layering in the velocity field. Armi and Stommel
(1983) made careful repeated measurements in the
beta-triangle area (27°N, 32°30'W). They commented
on the reversal of geostrophic shears observed in the
abyss (see especially their Fig, 7.4). There is then some
evidence directly from the baroclinic mass field for the
layered structure suggested by the ideas of this study.
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