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ABSTRACT

The effect of the inclusion of the horizontal gradients of background density and baroclinic flow on the
propagation of linear internal gravity wave packets across the flow is investigated using ray-tracing techniques.
The focus is on the behavior of wave packets at the boundaries of regions supporting wave propagation as well
as on identifying the locations of critical layers. For the case of isopycnals with constant slope but arbitrary
spacing, it is shown that the critical-layer valves (critical layers for which one wave may pass through while
another encounters a critical layer) found if the horizontal gradients are not included do not exist. An analytic
example of a quite different basic state that has a critical-layer valve is presented. It has the property that for
the wave encountering a critical layer, the group velocity goes to infinity as it is approached and the wavenumber
also goes to infinity. The analytic and numerical results indicate that critical layers occur in only a few special
cases. One case where they do occur is an important one; namely, that of high-frequency waves in a tidally

mixed front.

1. Introduction

It is well known that, due to their low damping,
internal gravity waves are capable of propagating
hundreds of kilometers in the ocean. Over these length
scales horizontal inhomogeneities of the background
flow can significantly effect their propagation. Impor-
tant horizontal variation of the background flow can
occur on length scales comparable to the wavelength
of the waves, particularly for low-frequency waves and
in the vicinity of fronts and baroclinic jets. The effect
of these variations is an important question in deter-
mining the energetics and mixing that may resuit. In
particular, are there mechanisms for wave absorption
such as critical layers, or are. waves reflected?

During the past two decades a number of authors
have investigated the propagation of linear internal
gravity waves in a horizontally and vertically inho-
mogeneous ocean. These studies have largely been re-
stricted to special cases. Samodurov (1974), Miro-
pol’skiy (1974), and Miropol’skiy et al. (1976) con-
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sidered the case of a horizontally varying but vertically
constant buoyancy frequency N. In this case the places
where the buoyancy frequency and the wave frequency
are equal act as critical layers. This can potentially re-
sult in wave absorption and mixing. In contrast, it is
well known that for a vertically varying buoyancy fre-
quency these locations act as reflectors. See Olbers
(1981) for a review of these cases.

Mooers (1975a) generalized the problem by taking
more effects into account by including all linear terms
in a perturbation expansion, including not only the
vertical density gradient p . (i.e., N*), but p, and V,
as well. (Here p and ¥V are the background density and
geostrophic flow, assumed to depend on x and z only.)
For waves propagating across a baroclinic current he
identified regions of wave propagation in which the
wave frequency is larger than N as well as regions where
it is smaller than f, the vertical component of the Co-
riolis parameter.

In a strict application of WKB methods, in which
the wave amplitude « and the ratio of the wavelength
to the scale of variation of the basic state, 3, are given
by the same small parameter, Olbers (1981) argued
that the linear terms involving the gradients of the basic
flow (i.e., the effects of advection of the basic flow by
the wave) are negligible. In doing so it is possible to
consider the propagation of waves in three dimensions.
He considered in detail the two-dimensional case in
which the isopycnals all have the same constant slope
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and found that the waves are trapped in a region where
the intrinsic wave frequency o is less than N and is
greater than a critical frequency o, > f. Between these
two bounds he also found a critical layer exhibiting a
valve effect, in that one set of waves passed through
unaffected, while another set of waves encountered a
critical layer. These types of critical layers were first
described by Acheson (1973) in the context of waves
propagating in shear flows.

Kunze (1985) retained the terms Olbers ignored,
arguing that WKB methods are more robust than a
strict application of the theory might imply. Being pri-
marily interested in near-inertial (low frequency)
waves, he simplified the exceedingly complex equation
for 3D wave propagation to arrive at a more tractable
problem. He showed that near-inertial waves are re-
stricted to regions where ¢ > f.5, where f.4 is equal to
Jplus half the relative vorticity of the background flow.
Thus, regions of negative relative vorticity can trap
waves with frequencies less than f, while regions of
positive relative vorticity can act as barriers to waves
with low frequencies. Consideration of a baroclinic jet
showed that horizontal and vertical trapping in a neg-
ative vorticity region results in critical-layer phenom-
ena. These results qualitatively bear out observations
of enhanced energy levels on the negative vorticity sides
of fronts (for example, see Kunze and Sanford 1984).

In this paper the problem considered by Mooers
(1975a), with all gradients of the background velocity
field and density retained, is reconsidered. The focus
of attention is high-frequency waves, thus comple-
menting the work of Kunze (1985). Observations of
high-frequency waves propagating across a density front
toward an unstratified region (Loder et al. 1992; Brick-
man and Loder 1992) on top of Georges Bank provided
the initial motivation for this work. Our aim is to in-
vestigate the significance of the terms neglected by Ol-
bers (1981). Because of the complexity of the general
case only cross-stream propagation is considered; that
is, the component of the wave vector in the direction
of the background flow is taken to be zero. This re-
striction allows a strict application of WKB methods
to determine paths followed by wave packets and to
identify regions of reflection and critical behavior. The
behavior of wave amplitudes along the rays is not dis-
cussed. The reader is referred to Lighthill (1978) or
Olbers (1981), among others, for a discussion of this.

By including the horizontal gradients of the back-
ground flow in the linearized equations, we find that
the critical layer with a valve effect (henceforth called
critical-layer valves after Acheson 1973) found by Ol-
bers for the two-dimensional case of isopycnals with
constant slope is no longer present. The physical reason
for the presence of these critical-layer valves in the ab-
sence of these terms is discussed. It is argued that such
behavior is possible if these terms are retained and,
indeed, an analytic example of it is presented. An im-
portant case with critical layers, the one that motivated
this work, is that of a tidally mixed front. It is remi-
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niscent of the trapping of near-inertial waves in regions
of negative vorticity described by Kunze (1985). In
this case, high-frequency waves trapped vertically en-
counter critical layers if they propagate horizontally
toward unstratified water. The third example in section
4 discusses this case.

The plan of the paper is as follows. In section 2 the
model is introduced, in section 3 the theory is devel-
oped, and in section 4 three examples are discussed.
Finally, section 5 summarizes our findings.

2. The model

The governing equations are those for an incom-
pressible, inviscid Boussinesq fluid on an fplane. In
making the Boussinesq approximation the density is
assumed to be constant everywhere in the momentum
equations except in the buoyancy term. We let pg be
this constant and define P as the normalized pressure
D/ po and b as the buoyancy pg/po. The velocities are
(u, v, w) in the (x, y, z) directions, x and y being the
horizontal coordinates and z the vertical coordinate.
The equations are nondimensionalized using a length
scale L, a velocity scale U, and the convective time
scale L/U. Taking typical values at Georges Bank
(Loder et al. 1992) we have L = 100 m (based on
water depth at bank edge) and U = 0.1 m s~ (based
on along-bank velocities). This gives a nondimensional
value f= O(0.1). We expect these scalings to be rea-
sonable for other tidally mixed fronts. Typically N is
about an order of magnitude or more larger than f.

The nondimensional governing equations are

U + uuy + vu, + wu, — fo = —P,
v+ uve+ oo, + wo, + fu=—-P,
Wt uw + ow, + ww, = —P, — b
b, + uby + vb, + wb, =0
U+ v, +w, = 0. (2.1)

The basic state considered is a steady geostrophic
flow of the form

(u’ v’ w! b! ‘P)
= (0, V(x, z), 0, b(x, z), P(x, z)).

From the governing equations we sec that the basic
state must satisfy

(2.2)

fV=P, and b=-P, (2.3)
from which we get the “thermal wind” equation
by=—fV, (2.4)

relating vertical velocity shear to the horizontal density
gradient.
A perturbation is now introduced via

~

(u,v,w, b, P)=(0,V,0,b, P) + (i, 0, W, b, P),
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where ¢ is a small parameter measuring the wave am-
plitude. Linearizing about the basic state gives

i+ Vi,

—fb=—P;
b+ VB, + aV, + WV, + fii = =P,
W+ VW, =—~P,— b
b+ Vb, = aM* + wN?
Gy + b, + W, =0,
where N, given by

N2 = -} =__g_’_’£

(2.5)
Po
is the buoyancy frequency and M? is defined as
-5, = - ££x, (2.6)
Po

Note that while N2 > 0 is required for stability of the
basic state there is no such constraint on M2, Following
Mooers (1975a) the squared notation is used solely for
its analogy with N2,

Kunze (1985) argued that WKB methods are more
robust than a strict mathematical application would
imply. Putting aside the question of the validity of this
for the moment, we proceed following Kunze and ex-
press all variables in the form of a plane wave that is,

¢ = ¢ ei(kx+1y+mz-—at); d)() conSt

where ¢ can be any one of #, ¥, W, P or b. This leads
directly to the dispersion relatlon whlch (from Kunze
1985; also Mooers 1975b) can be written as

ioed(k? + I + m®) + o3[ Vik + V.m)
~ igo[ N2 (k* + 1) + o}m? — 2M%*m)]

+ [(—N?V, + M?V,)kl — fM*m]l =0, (2.7)

where

0'} =f(f+ I7):)

and
go=0c—k- V=gV

is the intrinsic frequency. This equation for ¢ has three
roots, two for the internal gravity modes of the form
¢ = %q + ir with g real or imaginary and r real and an
imaginary root ¢ = is corresponding to the vortical
mode. The region in which g is real is the region of
wave propagation, the hyperbolic region. The waves
are evanescent in the elliptic region where ¢q is imagi-
nary. If [ = 0 then r and s are zero.

This dispersion relation is difficult to deal with an-
alytically. Kunze (1985) was interested in low-fre-
quency motion allowing him to suitably simplify a
more complicated dispersion relation involving a more
general basic state. Here we wish to include high-fre-
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quency motions in our investigation so that a simpli-
fication is not so straightforward. Thus, we consider
the 2D case / = 0. This has a further mathematical
advantage in that the preceding dispersion relation can
be arrived at in a mathematically rigorous manner.
Suppose that the wavelength is O(1 ) and that the basic
state varies on the slow scale, that is, are functions of
Bx and Bz where 8 < 1. Then one can have Ve, Vs,
N2, and M2, all O(1). Note that this means that the
barochmc current ¥ must be large, of O(8™!), so that
one would anticipate the results to be most useful in
the vicinity of strong baroclinic fronts and jets.

Note that Eq. (2.7) can also be arrived at rigorously
if one considers solutions with a weak along-current
variation, that is, the case of / = O(B).

3. Analytical results

This section contains the main analytical results. As
previously discussed, they are restricted to the 2D case
for which all terms are independent of y. Thus, / =0
and the intrinsic frequency oy and the wave frequency
o are identical. The three roots of (2.7) become ¢ = 0
for the vortical mode and ¢ = £ with

27,2 - 2 M2 km 1/2

Q= N’k + o {m (3.1)
K4+ m

for the two internal gravity wave modes. The ray equa-

tions governing the motion of a wave packet are
(Lighthill 1978)

dx m [ km(N? — o3) + M*(k: — m?)
d =%=q 2 232
! Q (k* + m*)
(3.2a)
dz_ o _k(kmN~ o} + MK~ m?)
dt " 0 (kz +m2)2
(3.2b)
d_ _q - "L
e 7200k 4 )
i) . 9
27 a2 20 o 9 5
X(k (9xN + m axo'f 2km8xM) (3.2¢)
LN
dt T2k + m?)

(k2 N2+ m? aia, 2km%M2). (3.2d)

Here, the total derivative d/d! is the derivative moving

with the local group velocity (2, Q,,). Thus,
d 9 7] a
== O+ Q,
dt o Fox az

Since the basic state is independent of ¢, the frequency
¢ is constant and will always be assumed positive.
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From (3.1) we have

kK M*+]'?
mo N G-
where I is defined by
I=M*+(N?-o%) (0% - o). (3.4)

Waves exist only in the hyperbolic regions where 1
= 0 given by

2 2
SH R
<N2+a}+[(N2—a}

2 4 1/2
s 3 ) +M ] . (3.5)

The boundaries of the hyperbolic regions are the
curves I = 0. From (3.5), as pointed out by Mooers
(1975a), two consequences of including ¢} = f(f
+ V) and M? in the dispersion relation are that waves
with anomalously low frequencies ¢ < fas well as waves
with anomalously high frequencies ¢ > N are possible
(assuming of course that N > f). Note that the right
side of (3.5) is always greater than N? so that the region
in which waves of a given frequency can exist is made
larger at the upper end; that is, they can pass through
the boundary N = ¢. The region can be decreased or
enlarged at the lower end depending on the sign of
f V. The anomalously low-frequency waves have been
investigated by Kunze (1985).

In addition to determining the behavior of wave
packets at the boundaries of the hyperbolic regions,
one of the purposes of this paper is to investigate the
possibility of critical layers. The two well-known ex-
amples of critical layers in the context of internal grav-
ity waves (M2 and f'V, terms ignored) are the vertical
critical layer occurring where N(x) = ¢ (Samodurov
1974; Miropol’skiy 1974 or Miropol’skiy et al. 1976)
and the horizontal layer where o — U(z)k = f, where
U(z) is a horizontal mean flow in the x direction
(Bretherton 1966; Olbers 1981). In both of these cases
the critical curve is a curve that rays approach asymp-
totically while the group velocity goes to zero (or rather
to the velocity of the mean flow) so rapidly that the
curve is never reached. This is accompanied by un-
bounded growth of the wave amplitude and the wave-
number

K = (k* + m*)'2, (3.6)

Whether the critical layer is considered a viscous critical
layer or a nonlinear critical layer depends on which of
the neglected terms, nonlinear or viscous, become im-
portant first (Benney and Bergeron 1969). In example
3 of section 4 we find a curve that has the property
that rays approach it asymptotically with the wave-
number going to infinity but with the group velocity
becoming infinite! Whether the wave amplitude grows
or not has not been determined. It would depend on
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which effect dominates: the convergence of the rays or
the stretching. In either case, because the wavelength
goes to zero we would expect viscous effects, which are
present in any physical situation, to lead to absorption
of wave energy into the mean flow unless the wave
amplitude becomes very large, in which case a more
complex nonlinear behavior, including reflection, may
occur (for example, see Killworth and MclIntyre 1985,
who consider Rossby wave critical layers). In this paper
we will define a critical curve to be a curve that has
the property that the wavenumber K goes to infinity
along a ray as the curve is approached asymptotically.
No restriction on the behavior of the group velocity of
the wave amplitude is imposed.

Curves of reflection are also curves along which the
group velocity is zero. As rays approach these curves
the group velocity goes to zero in such a way that the
curve is reached in a finite time. The group velocity
normal to the curve passes through zero resulting in
reflection. There is one caveat. Although linear theory
remains valid, the WKB solution breaks down near
the reflecting curve and must be modified. For simple
1D problems the solution is modified through the use
of Airy functions (Desaubies 1973). The behavior of
the curve as a reflector is unchanged and we assume
this to be the case for the more complicated geometries
considered here.

With this in mind we now consider the group ve-
locity G along a ray. Defining G as -

ds
=—=(Q%+ Q)" 3.7
dt ( k m) ( )
‘where s is distance along the ray, we find that G can
be written as :
11/2
i (3.8)

and that the total wavenumber K changes along a ray
according to

dK _ _ (N~ o[ ( k)P ON?
dt 2l¢ m/| on
k aM?  do?
Zm " + an}’ (3.9)
where
II = (N? = ¢®)2 + (M?* + pI'/?)*  (3.10)
with p = £1 given by
k  M?*+ pr'/?
—n—l—'——“—‘Nz_o_z (3.11)
and
d k-V
mo K (3.12)
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is the derivative normal to the ray in the direction of
the wave vector k = (k, m).

It is apparent that the group velocity can be zero
only if K = oo or at the boundaries of the hyperbolic
region where I = 0 as long as K is nonzero (as always
appears to be the case). Unless K —> oo at the bound-
aries we expect wave reflection. Thus, we are led to
investigating the behavior of K.

Because of the form of (3.9) it seems unlikely that
anything can be said in general. The curve z(x) fol-
lowed by the ray is given by

M? + pI'/?
NZ__ 2

and depends on the values of M2, N2, and o7, while
the rate of change of K along the ray depends on the
derivatives of these quantities normal to the curve.

There are, however, a few things that can be said.
First consider the curve I = 0. From (3.8) and (3.9)
we have

(3.13)

aK _dK | . _ _(N?—a*)T(k\?oN?
ds dt 212 r m| on
k OM? 60}

S Pl 14

m dn  on ]K (3.14)

andasI— 0

£

m N?-g?

II— M*+ (N? - ¢2)% (3.15)
The slope of the ray z(x) is given by (3.13) so that in
general the ray is not parallel to the boundary I = 0.
Hence, as the group velocity goes to zero the wave
packet travels a finite distance. Assuming M? # 0 the
behavior of K is determined by how I goes to zero
because all the other terms in the coeflicient of K on
the right side of (3.14) can be regarded as constant,
equal to their values at the point where the ray reaches

the boundary.
Let
I~a(s—s)% as s— 5,
where I = 0 at s = §3. Thus, from (3.14)
K ~ cesm'™ 44

and remains finite if « < 2. Assuming that M?, N2,
and o7 are smooth we expect that

I=M*+ (N?—- c®)(e?— a})

~ a(s—5) + ax(s — )%+ -+ as

5= S

S > S

implying that in general a = 1.

Thus, in general K remains finite and we expect re-
flection at the boundaries of the hyperbolic regions.
The exception to this rule is the case when the ray
approaches the boundary asymptotically. In this case
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the foregoing analysis is invalid because the distance
traveled along the ray becomes infinite and the point
Sp is undefined. In addition, there is no reason that the
terms in the coeflicient of K, other than I, should ap-
proach constant values. Numerical results verify that
the boundary acts as a critical layer if the rays approach
it asymptotically. This is easily seen to be the case if
M? and fV, are ignored. Briefly reviewing this case,
we have

I=(N* = o?)(o® = f?).
The boundary (for high-frequency waves) is N2 — ¢
= (. Since
k o,2 _f2 1/2
)

m

we see that the ray becomes vertical as it approaches
= 0. Thus, the ray travels a finite distance if the curve
I = 0 is not vertical and an analysis similar to the pre-
ceding shows that

K ~ Aea(ﬂZ_fZ) —3/2(5_30)1/2.

Thus, K approaches a finite value as s = sp, G ~ (s
— 5p)'/? and the ray reaches the curve in a finite time
and reflects. If the curve N> — ¢2 =0 (ie.,, I = 0) is
vertical the ray approaches the boundary asymptoti-
cally, never reaching it. As is well known, K =  so
that the boundary is a critical curve (Samodurov 1974;
Miropol’skiy 1974; Miropol’skiy et al. 1976).

In conclusion, then, the inclusion of the M? and
fV, terms in the dispersion relation displaces the
boundary between the hyperbolic and elliptic regions.
The behavior of the boundary is unchanged in that it
acts as a reflector unless the slope of the boundary is
equal to the slope of the rays at the boundary, which,
using I = 0 in (3.13) and (3.4), can be written as
(¢? — a}) M2, _

In the general case with M2 and fV, included the
curve N2 — ¢2 = 0 is of special interest. From (3.4),
(3.10), and (3.11) we see that as N> — ¢2 - 0

I~ M, (3.16a)
and that if pM* > 0
II ~ 4M*,
k 2M?
;l"';v—z:?, (3.16b)
while if pM? <0
2 2:\2
I~ [1 + (———GZM;”) ](N2 - o%)?,
k o2 — ¢?
~~- 2M2f (3.16¢)

Note that if pM? > 0 the ray becomes vertical as the
curve N? — g% = 0 is approached.
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Consider a ray approaching N2 — ¢ = 0 and assume
that it does not approach the curve asymptotically.
Then the ray reaches the curve after traveling a finite
distance. Invoking an analysis similar to the preceding,
we find that if pM? > 0

dK
ds
AM*3N?/dn — AM*(N? - ¢*)OM?)dn

_ + (N? - 0’2)286}/6’1 K

8| M3 | M* ’

(3.17a)

while if pM? < 0

K
ds

0%~ o7 OM? (lc_}_
2M? on  on

2 "2_‘7} :
e
(3.17b)

Thus, K remains finite and from (3.8) the group
velocity does not go to zero. Nothing special happens.
Note that if the curve N> — ¢% = 0 is not vertical then
both rays pass through the curve with no effect. The
ray with pM? > 0 always has infinite slope along the
curve N2 — ¢? = 0, making this curve easy to spot on
a plot of a family of rays.

The result is, of course, different if the curve N2
— ¢2 = 0 is vertical and we consider the ray with pAf?
> 0. In this case the ray approaches the curve asymp-
totically. Equations (3.17) are still valid. For the case
in question we see that

&K
ds dn
where X\ is a constant (assuming M? is bounded away
from zero we can take M? to be constant). Thus, the
behavior of K is determined by the sign of dN?/dn.
Since k/m ~> oo we have
W k o
an k| ax
From (3.2a), as k/m -> oo the horizontal group ve-
locity behaves like
dx mM?* (k. \ m
dt — ok? m ko?’
From (3.16b) (k/m)M? has the same sign as N2 — ¢2.

Hence, we can write dx/dt ~ A%k(N? — ¢?) for some
real A so that

dx dN? IN?

X OGN 72 _ 02y o A2(N? — 02)2k o
dtéx(N 0°) =~ A“(N a)kax.

0’2—0’}26]\’2
—+
( 2 M? ) on 2

K.

(3.18)

(3.19)

(3.20)
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Since we wish to approach the curve N2 — ¢2 = 0,
which minimizes (N? — ¢2)2, it follows that

EJ_C a(NZ — 0,2)2
dt dx

Hence, the left side of (3.20) is negative. Thus, (3.19)
and (3.20) give

sgn ﬂi =sgnl k QiV_Z =—1
& “on & ax ’
Hence, from (3.18) K increases exponentially with dis-
tance implying that if the curve N? — ¢% = 0 is vertical
it is a critical curve. If M? # 0 on the curve then it is
a critical-layer valve since the ray with pM? < 0 passes
through it. Equation (3.8) shows that if M2 is bounded,

or increases more slowly than K, the group velocity
goes to zero as the curve N2 — ¢2 = 0 is approached.

<Q0.

4. Examples

a. Example 1

The first example is one for which the basic pressure
is given by

P = 0(Ax + Bz) = 0(§), (4.1)

where 4 and B are real constants satisfying 42 + B2
= 1 and O is an arbitrary function of £ = 4Ax + Bz.
This example was considered by Olbers (1981) who,
through neglect of the M? and fV, terms in the dis-
persion relation, deduced that there was a critical valve
at 62 = N24% + f2B2,

The pertinent functions in the dispersion relation
are

N? = B (4.22)
M?* = AB®' (4.2b)
ol= 2+ A%, (4.2¢)

where primes denote differentiation w.r.t. £, Because
N?, M?, and o7 are functions of the single variable ,
the component of the wave vector parallel to lines of
constant £, Bk — Am, is constant along a ray. Set

= Bk — Am
qg = Ak + Bm. (4.3)
Then using (3.3) for k/m and (4.2) we find that

2 4R — p71/2
9_JAB-pI" (4.4)
/ Bf*~g¢
Note the denominator is constant. This shows that g,
and hence K = (g2 + [?)'/2, is never infinite so that
the group velocity G can only be zero at the boundaries
I = 0 where there is wave reflection. In particular, there
are no critical curves. Olbers, on the other hand, by
simplifying the dispersion relation obtained a different
form for g//, with the denominator becoming
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—~A(N? — ¢%) + pB[(N? — ¢%)(s? = f})]',
which is zero when
o> = A’N* + [*B? (4.5)

provided AB(N? — ¢%)p > 0. Hence, this curve is a
critical valve. Equations (4.2) show that M? and [V,
are negligible if 4 < B. Hence, in order to be consistent,
one should ignore the 4°N? term in (4.5). It is the
inclusion of the “small”” M? and f V, terms that cancels
this term to give the denominator in (4.4).

Olbers’ simplified case is, however, an enlightening
one, particularly if we further assume that the B%f*>
term is negligible. If we do so, the slope of the rays are

k 0,2 1/2

m p(N 2 - 02) ’
which, along o2 = 42N?, is equal to —p| A|/| B|. For
the ray encountering a critical curve along ¢ = 4%N?,
we have the slope as —A4/ B, that is, the ray is tangent
to the isopycnals. Now for internal gravity waves, if
the M? and o7 terms are ignored, fluid parcels oscillate
along the ray. If the ray is parallel to the isopycnals the
gravitational restoring force disappears. It is not sur-
prising that there is a valve effect, since along o2
= A?N? the gravitational restoring force is only missing
for one of the rays. Of course with M and ¢} included
the picture is more complicated, yet it seems reasonable
to expect cases with critical valves. Example 2 is such
a case.

Some numerical calculations were done to illustrate
the nonexistence of critical valves if the M2 and fV,
terms are retained. In order to determine how stable
our result is to perturbations of the basic state, a num-
ber of cases of the form

P=0(4x + Bz) + Y (x, z)

were investigated numerically. Figure 1a shows the re-
sults for three values of e for which () = 0.1(£%/2
+ sinf) with 4 = B = 1/V2, and Y(x, z) = sin[(x
~ z)/V2]. For € = 0 the basic state is periodic, with
waveguides running parallel to lines of constant £. For
large values of € (not shown ) the perturbation connects
the waveguides of the unperturbed state at regular in-
tervals. Wave packets then appear to propagate up the
unperturbed waveguide for a while and then appear to
“jump” to another waveguide along which they travel
for a considerable distance before jumping again. Sev-
eral other perturbation functions Y (x, z) were tried.
In none of the cases for small perturbations was a crit-
ical valve found. Figure 1b shows the critical valve that
is present if M2 and fV, are ignored.

b. Example 2
Consider the basic pressure field
_ z2 z3
P=Ax—+ B— 4.6
x> 3 (4.6)
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for which
N?= Ax + Bz (4.7a)
M? = Az (4.7b)
o = f2. (4.7¢)

Although not physically realistic for the whole domain,
since N? is negative if Ax + Bz < 0, this example is
useful analytically because

R = k*(34m — Bk)

is constant along a ray.

Critical curves are located by considering locations
where kK = oo or m = oo. Using the aforementioned
we find that

k 34k*  M*+ pI'?
m R+ BK® N?— g2
from which we obtain
_ R(M? + pI''?)

3A(N? — ¢%) — B(M* + pI'/?) "’
From (4.8) m = oo when k = 0 or when k = oo. Thus,
there are two cases to consider.

(4.8)

K3 (4.9)

1) CASE(i): k=0

Consider the numerator of (4.9). For it to be zero,
we need
M*=1=M*+(N?-a¥)(c?—f?).

Thus, we need N2 = 62 or 62 = f2. For the first pos-
sibility we find that & is in fact nonzero: the denomi-
nator of (4.9) is zero and one can show that k3 = ~ R/
B along N? — ¢? = 0. This confirms what we already
know; the curve N? — ¢2 = 0 in this case is not vertical
and hence nothing special happens here. For the second
possibility, 62 = f2, we find that k = 0 everywhere and
m is constant. This case is of no interest.

2) CASE (il): k= o
From (4.9) we see that k is infinite along
3A(N? — 6%) — BM? — pBI'/? = 0,

which, after squaring, gives

B B\? B\?
Ax+—z=({1+(—| [e*— (= | /> (4.10
crgeee (5 o= (55) e
Thus, along this curve k and m are infinite, provided
p has the correct sign,
3A(N? - ¢2) — BM?
B
Here, then, is a critical valve. Some further analysis
shows that I increases rapidly enough so that the group

velocity G — o0 as z — +oo. Figure 2 shows some
typical rays for this case. Note that the rays passing

p=sgn( ) (4.11)
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FIG. 1. Basic states of the form P = 0.1(£2/2 + sinf) + e sin[(x — z)/ V2] with £ = (x + z)/
V2 are considered. A single waveguide for the case ¢ = 0 is left unshaded. Panel (a) shows rays
for e = 0, 0.5, and 0.75 (solid curve, long dashed curve, and short dashed curve, respectively).
For larger values of e the shape of the waveguide changes dramatically, connecting waveguides
that are separate at lower values of «. These allow wave packets to “jump” from one waveguide
to another. A critical valve was never observed. Panel (b) shows the results (¢ = 0) when the A2
and fV, terms are excluded. Here the ray encounters a critical valve (dashed line) along o2
= (N*+f?)/2.
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FIG. 2. Here the basic state has P = xz%/2 + z3/6. The shaded region is the elliptic region
where wave propagation is not possible (at the given wave frequency). The short dashed line is
a critical valve and the long dashed line is the curve N = ¢. The solid curves represent the paths
of two rays, one passing through the critical valve and reflecting off the boundary of the hyperbolic
region, while the other does not pass through the critical valve. The solid circles along the ray
paths give locations of the wave packet at equal time intervals. It is clear that as the critical valve

is approached the group velocity is increasing.

through the critical valve ultimately get caught there
after being reflected off 7 = 0.

¢. Example 3

Consider the basic pressure field

— 1 h
P=—z+ (—i%’i—x) In(coshz)  (4.12)
for which
. 1+ h
h=1- (——tza—“—i‘) tanhz (4.13a)
1+
N2 = (—-—%‘ih—x) sech?z (4.13b)
, _ sech’x tanhz
M — (4.13c)
o} = f* — sech’x tanhx In(coshz). (4.13d)

This example has a few desirable features. First, b
€ (1,0) and N? € (0, 1). The latter corresponds to a
dimensional buoyancy frequency of about 103 s™! us-
ing the scalings mentioned in section 2. Contour plots
of the buoyancy and of the buoyancy frequency are
shown in Fig. 3a and Fig. 3b, respectively. We see a

buoyancy field qualitatively similar to the time-aver-

aged fields observed at Georges Bank (Loder et al.
1991), which is indeed qualitatively similar to a tidally
mixed front (Garrett et al. 1981). To the left the fluid
is unstratified, while on the right a pool of light warm
water sits above denser cold bottom water. The contour
plot of N suggests vertical trapping and the inability of
wave packets to penetrate past a certain point to the
left. The undesirable features of this example are of
course that V is linear with z as z = o0, resulting in
very large values of ¢} away from z = 0.

Figure 4 shows the paths followed by two wave
packets of different frequencies, both propagating to-
ward the unstratified region. The high-frequency wave
packet (¢ = 0.8, /= 0.1) encounters a critical layer as
it tries to propagate out of the region of high N. The
behavior of this wave packet is reminiscent of the ver-
tically and horizontally trapped near-inertial wave
packets discussed by Kunze (1985). Here the role of
the horizontal and vertical trapping is reversed. For the
high-frequency wave it is the horizontal trapping by
an N contour passing through the vertical that results
in the critical layer, whereas for the near-inertial wave
the critical-layer behavior results from a o, contour
passing through the horizontal.

The other ray shown in Fig. 4 is for a lower-frequency
wave (o = 5= 0.5). This wave escapes from the region
due to the influence of the M? and o} terms.
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Thus, it would appear that in such a density strati-
fication most high-frequency (close to the maximum
value of N) waves propagating onto a bank will en-
counter critical layers. Lower-frequency waves (perhaps
not too low) may be more likely to escape past the
curve N? = o2 and get far enough to be reflected at the
bottom.

5. Summary

The propagation of internal gravity waves in an in-
homogeneous background field, varying with x and z
only, has been investigated. Only waves with no com-
ponent in the alongflow direction were considered;
thus, effects of Doppler shifting are not included. In
addition, the domain was assumed infinite so that re-
flection at the sea surface or at the sea bottom was not
treated.

One of the main goals of this work was to consider
the effects of retaining the horizontal derivatives of the
background density and baroclinic flow. Waves can
exist in the hyperbolic region where

I=M*+(N?—¢%)(c?— o}

is positive. Waves with frequencies higher than the local
value of N or lower than f may exist. In particular,
provided that M? is nonzero, wave packets can pass
through the contour N = ¢ to enter regions where o
> N. At the other end of the frequency range, the hy-

=

—

FIG. 3. The upper panel shows a contour plot of the density field
b= 1.0 — (1 + tanhx)(tanhz)/2 that is qualitatively similar to ones
observed at tidally mixed fronts. The lower panel is the contour plot
of N2. The plotted regions are the same in both cases. The density
decreases with height and N increases from left to right.

JOURNAL OF PHYSICAL
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FiG. 4. This figure shows two rays for wave packets of different
frequencies. For both cases = 0.1. Note that N& (0, 1). The plotted
region is identical to that in Fig. 3. The high-frequency wave with ¢
= 0.8 (short dashes) gets trapped in the region of high N. The lower-
frequency wave, o = 0.5, (long dashes) escapes because of the retention
of the M? and ¥, terms.

perbolic region is made larger if /¥, < 0 and smaller
if [V, > 0.

Critical curves are defined as curves for which the
total wavenumber K = (k2 + m?)'/? becomes infinite
as the curve is approached. As illustrated by the second
example discussed, the group velocity does not nec-
essarily go to zero. The boundaries of the hyperbolic
region generally reflect wave packets. They act as crit-
ical curves only if they are tangent to the rays. This is
also true if the M? and fV, terms are ignored. In that
case the curve N = ¢ is a boundary of the hyperbolic
region and is a critical curve only if it is vertical. With
all the terms included, the curve N = ¢ is still a critical
curve only if it is vertical—but now for just one family
of rays. Hence, in this sense using the complete set of
terms has little effect, merely displacing the boundary
of the hyperbolic region slightly.

The example of a basic flow field with isopycnals
having constant slope considered by Olbers (1981),
who neglected the horizontal gradients of the back-
ground flow in the dispersion relation, was reconsid-
ered. It is shown that the critical-layer valves found by
Olbers do not exist when the horizontal gradients are
retained. Through numerical calculations this new re-
sult appears to be stable to small perturbations of the
background field. Olbers had neglected these terms,
arguing that they are small. The radically different be-
havior found when the terms are retained raises the
question of how the neglected nonlinear terms might
affect the behavior. It would be interesting to do a nu-
merical simulation of the full nonlinear equations to
investigate this.

It was argued that with the complete set of terms
one should still have cases with critical-layer valves
(apart from the case when the curve N = ¢ is vertical).
The second example discussed is such a case. One in-
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terestmg feature of the critical curve for this example
is that the group velocity becomes infinite as it is ap-
proached.

The final example considered is a case with a density
transect qualitatively similar to those observed at
Georges Bank and at other tidally mixed fronts. It traps
high-frequency waves both vertically and horizontally
if they are propagating onto a bank toward the unstra-
tified water. For high-frequency waves, critical layers
reminiscent of those for trapped low-frequency waves
(see Kunze 1985) are obtained, although it is now the
horizontal trapping that results in the critical-layer ef-
fects. For this particular example lower-frequency
waves can escape from the region due to the M? and
SV, terms (the latter in particular). Thus, there is the
possibility that high-frequency waves propagating onto
a bank encounter critical layers, while low-frequency
waves (which may not need to be too low, i.e., o = 5 1)
may propagate farther past the curve N = ¢, making
them more likely to be reflected at solid boundaries.
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