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ABSTRACT

It is shown that subtle changes in the velocity profile across the seaward extension of midlatitude jets, such
as the Gulf Stream, can lead to dramatic changes in the zonal-penetration scale. In particular, if a = dg/dy
> 0, where g is the absolute vorticity and ¢ is a streamfunction for the geostrophic flow, then the jet tends to
penetrate across to the eastern boundary; conversely if a < 0, the jet turns back on itself creating a tight
recirculation on the scale of order |a|~'/2, This behavior is demonstrated in a quasigeostrophic ocean model
in which a jet profile is prescribed as an inflow condition at the western margin of a half-basin, and radiation
conditions along the remainder of the western boundary allow the injected fluid to escape, Jet inflows with both
vertical and horizontal structure are considered in one and one-half-, two-, and three-layer models.

Finally, the implications of our study for numerical simulations of ocean gyres, which frequently show sensitivity
of jet penetration to horizontal and vertical resolution and to choice of boundary conditions, are discussed. In
particular, it is demonstrated that poor resolution of the horizontal jet structure may lead to a dramatic reduction
in penetration.

1. Introduction

A notable feature of the circulation of the subtropical
gyre is the seaward-flowing inertial jet on its northern
rim. The factors that determine the zonal penetration
scale of the jet are not well understood. The penetration
of a jet must be strongly influenced by its hydrody-
namical stability, as studied in eddy-resolving models
by Holland and Schmitz (1985) and, using a para-
metric representation of the eddy field, lerley and
Young (1988). Here, however, attention is focused ex-
clusively on the inertial control of a jet; we will show
that the form of the jet’s cross-stream velocity profile
can exert a controlling influence on its degree of pen-
etration.

We argue that the propensity of an inertial barotropic
jet to strike seaward or turn back on itself is controlled
by the parameter «, given by

-4
=2y (1)
where g is the absolute vorticity:
q=V%+f(»), (2)
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Y is a streamfunction for the horizontal velocity v = k
X V¢ (with k a vertical unit vector), and fis the Co-
riolis parameter, a function of meridional coordinate y.

When « is positive, we assert that an unforced jet
will have a tendency to resonate with a Fofonoff-like
mode (Fofonoff 1954) and hence penetrate across to
the eastern boundary of the basin; the actual penetra-
tion scale would then be controlled by instability in
the manner explored by Holland and Schmitz (1985).
When « is negative, however, we assert that the jet will
resonate with a modonlike solution (Stern 1975) and
therefore recirculate tightly, its penetration scale being
set directly by a. The sign of «, and hence the type of
response, is controlled by the cross-stream velocity
profile. If the velocity profile is cusplike, as in Fig. 1a,
then a > 0; if the profile is wavelike, as in Fig. 1b, then
a<0.

The possible role of « in influencing the penetration
scale of an inertial subgyre has been examined by
Greatbatch (1988) in attempting to understand the
barotropic experiments of Béning (1986) and the re-
sults from multilayer eddy-resolving general circulation
models. Here we take this idea further and present nu-
merical experiments designed specifically to demon-
strate the dependence of penetration on «.

In section 2, analytical solutions in which « takes
on varying signs are reviewed. These include Fofonoff’s
(1954) boundary-layer solution in which « is positive
and the “Modon” of Stern (1975) in which « is neg-
ative. Numerical experiments are presented in section
3, in which a jet is injected into a half-basin open to
the west. This facilitates complete control over the pro-
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F1G. 1. Schematic diagram of the cross-stream velocity profile of
(a) a penetrating jet in which o = dg/dy > 0 and (b) a recirculating
jet in which a = dg/dy < 0, where ¢ is the absolute vorticity and ¢
is the streamfunction.

/ 1

file of the inflowing jet and vividly demonstrates that
« does indeed control the scale of penetration. Fur-
thermore, it enables inflows to be investigated in which
the potential vorticity is a nonlinear function of the
streamfunction. Extensions to a stratified ocean are
presented in section 4, in which the inflow has both
vertical and horizontal structure. Finally, in section 5,
implications of our results for more detailed models of
the North Atlantic are discussed. In particular, we show
that poor spatial resolution can lead to artificially neg-
ative values of « and hence a greatly reduced jet pen-
etration scale.

2. Analytical background

We shall conduct our discussion in the confines of
quasi-geostrophic dynamics on a 3 plane and adopt,
initially, an equivalent barotropic model:

90

5 T =0, (3a)

where

Q=VY+/(y)-FY (3b)

is the potential vorticity, and F = L;?, where L, is the
Rossby radius of deformation. The Jacobian of a and
bis J(a, b) = 0.ad,b — d,ad.b. Here, x is an eastward-
pointing coordinate, y points north, and 7 is time.

We have a particular interest in steady, free solutions
in Eq. (3a) because they can be resonantly excited by
an inflowing jet. Steady solutions to Eq. (3a) have the
form

VA + By = g(¥), (4)
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where the beta-plane approximation has been made, f
= fo + By, with f; a typical midlatitude value of the
Coriolis parameter and g its gradient. Here g is the
absolute vorticity.

A particular subgroup of solutions can be selected
by choosing the functional relationship between ¢ and
Y to be linear:

q(¥) =¥ —c, (5)

where « and ¢ are assumed to be constants. Hence,
Vi +By=af—c. (6)

A general solution to (6) for a rectangular ocean
satisfying boundary conditions of no-normal flow at
walls placed at x = £xp and y = 0, — ), can be found
in a paper by Fofonoff (1962). The form depends on
the sign of «.

Ifa>0:
g =[O0ty sinhk(y + yo)
k2 Yo sinhky,
2 2 (=1)"{ k\? coshk,x . nm(y+ y)
ool — , (7
* T E n (k,,) coshk, xo St Yo S

where k% = k* + (nx/y)% k? = a, and ¢ has been

chosen to have a value —By;.

Ifa<O:
v = Byo [sink(y + yo0) _ (¥ + »o)
k? sinky, Yo
2 2 (=1)"{ k\? cosk,x . nm(y+ y)
-z = , (8
anl n ' (kn) COSanO sin Yo ( )

where k2 = k? — (nw/w)? k* = —a, and ¢ = —Bys.

For a > 0, (Fig. 2a), the gyre fills the entire basin,
while for a < 0 (Fig. 2b), the solution consists of ed-
dylike structures, which Fofonoff interprets in terms
of time-dependent motion.

(b)

F1G. 2. An example of Fofonoff’s general solution
in which « is (a) positive and (b) negative.
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The boundary-layer solution, presented in the sem-
inal paper of Fofonoff (1954), is a special case of Eq.
(7) appropriate when o ~'/? < xq, yo,

+
1[/ ~ % {.(ly_o}.@) — eky} {1 — ek(x—xo) —_ e—k(x+xo)},

(9)

where k? = «. It has a special place in canonical ocean
circulation theory as reviewed by Pedlosky (1979). The
gyre fills the entire basin, with inertial boundary cur-
rents of width o ~'/2 on its eastern, northern, and west-
ern flanks. We show in section 3 that a jet in which «
1s positive can resonantly excite Fofonoff ’s boundary-
layer mode and thus penetrate across to the eastern
boundary.

But what happens if o < 0? Fofonoff’s general so-
lution when « is negative (Fig. 2b) suggests that a jet
in which & < 0 will excite a recirculating gyre. However,
if the jet recirculates tightly, then there is no reason
why the g(y) relation outside the recirculating core
should be determined by the velocity profile of the jet;
the g(y¥) relation external to the recirculating core may
take on a different value, as in the family of modon
solutions. Such a flow in which « is negative inside a
closed bounding streamline, and outside of which there
is no flow, is given by Stern (1975):

. 6"0 J[(kr) r .
¥ 2\ Tk sinf, r<ry
y =0, r=r, (10)
where kro = 5.136, k? = —a, and r* = x? + y?, tanf

= ylx.

This solution, plotted in Fig. 3, consists of two re-
gions linked by a boundary across which the stream-
function and velocity are continuous; inside the closed
streamline a < 0, outside « is in fact infinite. It exists
on an infinite 8 plane and does not rely on the presence
of boundaries. The interior recirculating region, in
which « is negative, is surrounded by an exterior in
which there is no flow. The recirculation is tight, and
it is isolated from the rest of the basin. (To interpret
Fig. 3 as a possible representation of the inertial recir-
culation, we consider only the positive half-plane where

F1G. 3. A Stern modon solution on an infinite 8 plane. Within the
closed streamline region « is negative; outside there is no flow.
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x = 0.) It should be contrasted to Fofonoff’s boundary-
layer mode in which « is positive everywhere.

Hence, we have two very distinct prototype solutions
to Eq. (6), modons and Fofonoff gyres, representing
two classes of free modes with which our system can
resonate. Which class is excited depends on the cross-
stream velocity structure of the inflowing jet. We hy-
pothesize, and confirm by numerical experiment in
section 3, that if this velocity profile is such that «
> 0, then Fofonoff-type modes will be excited and the
jet will penetrate. Conversely, if o < 0, then modon-
type modes will be excited and the jet will recirculate.
Furthermore, subtle changes in the cross-stream current
profile can switch o from positive to negative and
thereby radically alter the zonal-penetration scale.

Before describing our numerical experiments, in-
formation about penetration and recirculation scales
is now deduced from the prototype solutions.

a. Zonal scale of penetration

Consider the case a < 0. On examining Eq. (8), we
see that at a particular latitude (i.e., for a constant y),
the solution consists of a sum of cosines and hyperbolic
cosines [since for large n in Eq. (8), k2 becomes neg-
ative]. Furthermore, the term with the smallest zonal
structure (n = 1 in the series expansion) suggests a
penetration scale:

L~ w|a|™'2 (11)

One might not expect such a scaling to carry over
to the modon because, unlike Eq. (10), the form of
the Eq. (8) derives largely from a need to satisfy
boundary conditions on the walls of the basin. The
modon, in contrast, is highly localized; « is uniform
and negative only in the recirculating region and in-
finite elsewhere. Nevertheless, for a Stern modon, the
condition, from Eq. (10), is

ro = 5.136|a|7"2, (12)

not unlike Eq. (11). Greatbatch (1988) has compared
the prediction Eq. (12) with a variety of published nu-
merical gyres and found some evidence of this scaling,
particularly in the one-layer numerical experiments of
Boning (1986).

When « is positive, it is seen from Eq. (7) that the
jet always penetrates across to the eastern boundary;
there is no inertial control on the zonal scale of pen-
etration which, in the absence of flow instability, is
restricted by the location of the eastern wall.

b. Meridional scale of the recirculation

Having established the possible role of « in deter-
mining the zonal penetration scale, we now examine
those factors that determine the latitudinal scale of the
recirculating jet. It turns out that, in addition to «, the
value of the relative vorticity on the northern boundary
1s also of importance. If on this boundary where y = 0,
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¢ = 0; then in Eq. (6) the magnitude of this (negative )
relative vorticity is given by c.
Consider the positive definite quantity:

(V¥)? = V-(yVy) — yviy = 0, (13)

which is proportional to the kinetic energy density. In-
tegrating over the area enclosed by a closed streamline
Yo, applying the divergence theorem, and replacing y
by (¥ — ¥o), we obtain

—f L (¥ — Yo)VdA = 0. (14)
For an anticyclonic recirculation, the net relative vor-
ticity within  must be negative. But if the recircula-
tion extends too far south, the requirement to conserve
absolute vorticity along streamlines implies that the
relative vorticity will, due to the variation of planetary
vorticity, become increasingly positive in these south-
erly regions leading, eventualily, to a violation of the
above constraint. Hence, condition Eq. (14) must set
a limit on the meridional extent of the recirculation.

There are two cases to be considered. When « is
positive, the most negative relative vorticity is to be
found on the northern rim of the recirculation. A lat-
itudinal scale can be deduced by estimating the distance
a fluid element would need to travel south in order to
lose all of this relative vorticity:

¢
L,=-.
ay:
Indeed, this is just the latitudinal extent of the westward
return flow of a Fofonoff gyre.

The second case, in which o is negative, is more
difficult to quantify. Here if |a/| is sufficiently large,
planetary vorticity gradients will be unimportant, and
relative vorticity will be concentrated and most negative
at the center of the recirculation where ¢ is a maximum.
In this limit «, rather than ¢, controls the latitudinal
scale. Modon theory [Eq. (10)] suggests an approxi-
mate scale given by

L,~ |a|™'2

(15)

(16)

Therefore, we suggest that when « is positive, the me-
ridional scale is determined by ¢, and that as « becomes
increasingly negative, the scale tends to be determined
by « itself. Between these extremes, both « and ¢ will
be important.

3. Barotropic jet experiments

In order to demonstrate the resonant excitation of
the solutions described in the previous section, nu-
merical experiments are now presented in which a jet
of fluid is injected from the west into a half-basin. De-
pending on the value of « of the inflowing jet, it either
penetrates into the basin or recirculates.
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a. The model

We use a 1'2-layer version of the N-layer quasigeo-
strophic model described in Marshall et al. (1988).
The experiments are performed in a half-basin, 2L
X L, where L is of order 500 km, open along the west-
ern boundary.

There are three distinct boundary regions (see Fig.
4). The rigid walls of the northern, eastern, and south-
ern boundaries are a streamline, and here ¢ is set to
zero. Along the western boundary, an influx and efflux
of water is allowed. An inflow (i.e., a streamfunction
distribution ) is specified along the northern part of the
boundary and held constant in time. Along the re-
mainder of the western boundary, radiation boundary
conditions are prescribed, allowing an outflow. The
numerical recipe employed, due to Miller and Thorpe
(1981), is described in appendix A.

In addition, along the western boundary, we assume

that
azw)
—| =o.
(axz x=0

This enables dg/dy of the inflowing jet to be spec-
ified completely in terms of the meridional velocity
structure. Along the remaining solid boundaries, V*y
is extrapolated from adjacent interior grid points.

The prognostic vorticity equation (3a) is leapfrogged
forward in time on the finite-difference grid. The spatial
resolution of the model is A = L/48 ~ 10 km if L
~ 500 km. Typically, a time step of 0.1 days was used.
All the prescribed inflows have total transports consis-
tent with observations of the North Atlantic Gulf
Stream recirculation for this choice of L, that is, ap-
proximately 50 Sv (Sv = 10° m?® s™!) recirculating in
the subtropical gyre. In interpreting the transport of
our 1%-layer model, we have assumed an effective
depth of one kilometer. In the following experiments,
the width of the imposed jet is approximately L/5 or
~100 km.

The model is unforced, apart from the use of a weak
biharmonic diffusion; a term of the form »V% is em-
ployed on the right-hand side of Eq. (3a) to smooth
the vorticity field at the scale of the grid. Consequently,
an additional higher-order boundary condition is re-

(17)

Solid Boundary
Imposed Inflow _::, l
Kl L
Radiative Outflow + l
) 2L

FIG_. 4. Schematic diagram of the model domain. An inflow is
prescribed and held fixed in time at the northern sector of the western

. boundary. Along the remainder of this boundary, a radiative boundary

condition allows outflow. The streamfunction is set to zero along the
remaining solid boundaries.
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FIG. 5. The steady-state solution resulting from a Fofonoff bound-
ary-layer inflow. The streamfunction, v, is presented in units of
10728L3, and the absolute vorticity, ¢, in units of §L. (The same
convention is employed in all subsequent figures.) The two graphs
show the g(y) relationship and jet velocity profile across the imposed
inflow, Latitudinal distance is in units of L measured away from the
northern wall, and the velocity is given in units of 10728L% If 8
=16 X 107" m™" 57! and L = 500 km, then a nondimensional
velocity of unity corresponds to a current speed of 4 cm s™'; thus,
the jet peaks at a speed of 30 cm s™'.

quired and V% = 0 is imposed. We choose a bihar-
monic coefficient of magnitude » = BA®, where A is
the grid spacing. For a A of 10 km, » has a value of
~10° m*s™!, implying a vorticity spindown time scale
of 100 days on the grid scale of the model if a value 3
= 1.6 X 107" m™! 57! is assumed. There is no bottom
friction. We have tested the sensitivity of our experi-
ments to our level of biharmonic diffusion. Our results
are robust to order of magnitude variations of »; the
solutions are to first approximation free—see sec-
tion 3b (7).

b. Results

1) FOFONOFF GYRE

A jet inflow profile was imposed with the functional
form of Fofonoff ’s boundary-layer solution [Eq. (9)].
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Note the cusplike form of the inflow velocity profile.
The interior of the basin was initialized with a variety
of streamfunction distributions; a Fofonoff gyre was
obtained filling the entire basin in each case. Figure 5
shows the solution after 10 years of integration, and
should be compared with Fig. 2a, the analytical solu-
tion.

2) NONLINEAR FOFONOFF GYRE

In an attempt to obtain a Fofonoff mode with a non-
linear functional relation between g and v, the follow-
ing inflow was imposed:

(18)

that is, the value of the inflow streamfunction used in
section 3b(1) was doubled, thus destroying the linear
relation between streamfunction and potential vortic-
ity. Nevertheless, our solution retained all general fea-
tures of a conventional Fofonoff gyre, as can be seen
in Fig. 6. Note the increased meridional extent of the
gyre; the magnitude of the relative vorticity on the
northern boundary is twice that of the previous exper-
iment, and hence, as anticipated by Eq. (15), the me-
ridional scale is increased. In this particular case, it is
limited by the southern boundary of the basin.

\"inﬂow = 2"A(’Fofonoff s

3) MODONS

Initially, a jet inflow was prescribed given by Stern’s
modon solution; it has a wavelike inflow velocity pro-
file. As expected, a tight recirculation is obtained, but

¥
1.0
0.7
e everse—vs rewe
. 01
14 R
12 -0.41
10 R
2 S -089
§ 8 § 4
S 6 5 -1.21
4 3 ]
-1.61
2 .
0t T T T v 2.0t T T
0 0.1 0.2 0 04 0.8 1.2
distance streamfunction

FiG. 6. The steady-state solution arising when an inflow profile of
twice the strength of Fig. 5 is prescribed. Notice how the g(y) relation
is nonlinear, and yet the solution is still of Fofonoff character.
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accompanied by some time-dependent motion in the
exterior, which in the time-mean state averages to zero
(Fig. 7). This is a consequence of both finite resolution
of the model and imperfect nature of the radiation
boundary conditions, most evident in the potential
vorticity field of Fig. 7.

We also tried relaxing the constraint [ Eq. (12)] and
chose instead values in the range:

3.83 < |a|'?ry < 5.136. (19)

Such modons are only stationary in the presence of a
uniform zonal flow in the far field (Larichev and Rez-
nik 1976). Nevertheless, a tight recirculating solution
is still obtained but it coexists with strong time-depen-
dent features in the far field. However, in the time-
averaged state, a pattern very similar to that of a Stern
modon is obtained: a recirculating region in which
is negative, with virtually no mean flow in the exterior.

4) SINE JET
An inflow profile was prescribed of the form:

Yinnow = Yo sin{—ky). (20)

q -0.1
-0.7
10, 0 4
8] ]
E 2
2 6] T -0.4
Q =
S
K 43 2 ]
= 8
1 3
2 ~0.84
]
0 ~ ——— v r T ——————
0 0.1 0.2 0 0.4 0.8

distance streamfunction

F1G. 7. The steady-state solution resulting from use of a Stern
modon inflow profile. The flow is confined to a tight recirculation.
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In this example, « is negative but not uniform. A
tight recirculating solution, with time-dependent
structures in the exterior, is obtained. The time-aver-
aged streamfunction again resembles that of a Stern
modon, see Fig. 8.

5) UNIFORM ABSOLUTE VORTICITY JETS

Setting & = 0 in Eq. (6) gives

lpinﬂow=§é)—(3)[(y+yo)_((y+y0))3]- (21)
Yo Yo

With this inflow profile, a solution is obtained that
has a strong resemblance to a Fofonoff mode; see Fig.
9. This « = 0 case is consistent with both classes of
solution; Fig. 9 can be viewed either as a Fofonoff gyre
or as a modon with an infinite recirculation radius.
From either perspective, the recirculation fills the entire
basin zonally.

6) OBSERVING THE CHANGE OF BEHAVIOR OF
THE SOLUTION

To observe the transition from a tight recirculating
gyre to a penetrating jet, we experimented with a mixed
modon-Fofonoff inflow given by

lPinﬂow = (1 - x)‘Pmodon + X¢Fofonoﬁa (22)

where Ymodon 18 the modon profile used in section
3b(3), and Yromnor is the Fofonoff profile of section
3b(1).

One consequence of this choice of inflow condition
is that the transport changes slightly as X is varied.
However, this effect is small and not important. Values
of X between 0.2 and 0.4 are presented that change the
inflow profile from a wavelike to a cusplike one. As X
increases, the jet penetrates further and further toward
the eastern wall until the gyre fills the entire basin, see
Fig. 10. For each inflow « is remarkably constant and
clearly becomes less negative as X increases. The pen-
etration scale is even more sensitive to changes in «
than predicted by Eq. (11). Figure 10 vividly dem-
onstrates the role of « in controlling the penetration
scale of the inflowing jet. It is remarkable that such a
subtle change in velocity inflow profile can have such
a dramatic effect on its penetration properties.

7) SENSITIVITY OF THE RESULTS TO THE LEVEL
OF EXPLICIT DIFFUSION

In a recent study, lerley and Young (1988) showed
that jet penetration can depend on the Reynolds num-
ber of the flow, where, in this context, Re is a measure
of the importance of mixing of potential vorticity by
a subgrid-scale geostrophic eddy field, represented
parametrically through a term xV?g. In particular, in
the limit of very high Reynolds number (weak dissi-
pation), their gyre, in which « = 0, extended across to
the eastern boundary as one would expect. The present
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FIG. 8. The steady-state solution obtained when a sine jet is pre-
scribed. Now the absolute vorticity is a nonlinear function of the
streamfunction, across the inflow, but the underlying « is negative;
a modon-type recirculation is obtained.

study focuses exclusively on inertial control in a regime
where frictional effects are unimportant and penetra-
tion is controlled by the cross-stream velocity profile.
To verify that our results are, to first approximation,
independent of the level of biharmonic friction, we
have performed a series of experiments in which the
frictional coefficient takes on a range of values. The
inflow from the experiment in section 3b(6) is used,
in which X = 0.3. In Fig. 11, jet penetration, measured
by the most easterly point reached by the y = 0.1 con-
tour, is plotted as a function of the magnitude of the
biharmonic friction coeflicient (normalized with re-
spect to our reference value BA%). Jet penetration is,
to a first approximation, independent of frictional coef-
ficient until a value one order of magnitude larger than
that used in our experiments is reached. Reducing v
by an order of magnitude leads to no change in pen-
etration scale, but the vorticity field is somewhat noisier
on the scale of the grid.

4. The penetration of a jet in a stratified ocean

Here we consider injecting a fluid into a basin from
an inertial jet that has both vertical and horizontal
structure. The degree to which the jet penetrates is
controlled by the extent to which the inflow projects
onto either the baroclinic Fofonoff gyres of Marshall
and Nurser (1986) or a baroclinic generalization of the
modon. First, the relevant theory is introduced, fol-
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lowed by supporting numerical experiments with a 2-
and 3-layer version of our quasigeostrophic ocean
model. In an analogous way to the barotropic model,
the key parameter in our baroclinic model is oy = dg,4/
d¥ 4, but where g4 and ¥, are now the absolute vor-
ticity and streamfunction associated with the pseudo
barotropic mode.

a. The 2-layer model

For convenience, we carry out our analysis in a
model having two layers of equal depth with a density
jump in between. This 2-layer model provides an il-
luminating insight into the penetration properties of a
baroclinic jet. The quasigeostrophic potential vorticity
of the two moving layers is defined thus:

01 = V¥, + By — F(¥1 — ¥n), (23a)
Q> = V¥, + By — F(Y2 — ). (23b)

In the upper layer, for analytical convenience, we
assume a linear functional relationship between the
streamfunction and the potential vorticity. In the sec-
ond layer it is assumed, following Rhines and Young
(1982) and as in Marshall and Nurser (1986, 1988),
that eddies homogenize the potential vorticity to the
value of the planetary vorticity on the northern bound-
ary of the gyre:

(24a)
(24b)

Or=v—c,
Q,=0.

104 0 1
8] 1
] e
2 6] 8 -0.4
S b I f———————— -
3 S
¥ 4 ;]
b <
]
2] -0.84
0 —r T v Y T T T v 1
0 0.1 0.2 0 0.4 0.3
distance streamfunction

FIG. 9. The steady-state response to a uniform absolute vorticity
jet inflow. The resulting circulation is Fofonoff-like.
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Two linearly-independent modes can be identified,
which will be called “pseudomodes,”! defined by

¥, = cosn¥ + sinngys, (25a)
Vg = cosnpy; + sinnpys, (25b)
where
tann, 5 = A = V1 + A2, (26)
A =~/2F. (27)

As shown in appendix B, Eqgs. (25a) and (25b) can
be neatly inverted to find the projections of the pseu-
domodes onto each layer, thus:

¥ = —sinpg V¥V, + sinn,¥p, (28a)
¥n = cosng V¥, — cosny Vs, (28b)

The absolute vorticities for the pseudomodes,
qa,8 = VY, 5+ Basy, (29)

are linearly related to the corresponding streamfunc-
tions, that is,

Qa8 = a4 8V4p— Cyun, (30)
where a4 g 18 given by
+2F
asp=2 F FVI + A2, (31)

2

The effective planetary vorticity gradients felt by each
mode are

B4, = B cosny p(l + tann, g), (32)

and
(33)

Now we show that the important quantity controlling
penetration 18 a4, the eigenvalue of the “pseudobaro-
tropic” mode analogous to the « of our 12-layer model.
On examining Eq. (31) and using Eq. (27), it is seen
that a4y = 0 when v = 0. We now examine the two
cases in which ay > 0 (y > 0)and ay < 0 (y < 0).

Cq,8 = CCOSTy,B.

1) PENETRATING JETS: oy > 0

This class of jets is similar to the boundary currents
of the baroclinic Fofonoff gyres of Marshall and Nurser
(1986, 1988). Both o, and «p are positive, and the
discussion of section 2b can be extended to show that
¢ must be positive if we are to have an anticyclonic
gyre. The structure of our inflowing jet can be readily
written down by making use of our modes.

! Note that when v = 0, our modes reduce to the usual barotropic
and baroclinic modes.
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The first mode has the form of a Fofonoff-gyre so-
lution,

\I/A=—C—A-[6—Az+l—e‘/“—‘y}, (34)
04 | Cy
as does the second mode,
\1/B=£’5[@“1+1—e‘[‘5y}. (35)
&p | Cp

These modes must now be projected onto each layer
using Egs. (28a) and (28b). The projection of ¥, onto
each layer is positive, but the projection of ¥ is of a
different sign in each layer: positive (negative) onto
the top (lower) layer. There are two regions of interest.
In the upper layer of the eastward-flowing northern
boundary current, the pseudobaroclinic mode rein-
forces the negative relative vorticity from the pseudo-
barotropic mode, while in the lower layer, it tends to
cancel the pseudobarotropic relative vorticity in a
manner required to ensure that Q, is homogenized.
Penetration occurs in both layers of the solution. How-
ever, in the returning zonal flow to the south, the second
mode increases the current in the lower layer while
reducing the current in the upper layer. This has the
effect of moving the bounding streamline in layer 2
north from that predicted by the pseudobarotropic
mode alone (with the opposite effect in the upper
layer). South of the bounding streamline, the lower
layer is at rest, and the remaining recirculating water
returns in the upper layer in a manner described by
the “stacked” Fofonoff gyres of Marshall and Nurser
(1986).

Choosing a value of ¥ = F/2 implies a positive ei-
genvalue for the pseudobarotropic mode; Eq. (31) gives
ay = 0.22F and ap = 2.28 F. The pseudomodes are
given by Egs. (34) and (35), and, projecting back onto
the layers, the following expressions for , and y, are
obtained:

g, = [4.0 yl +2.0 - 1.72072F — 0.28e“-2*”] ,
(i

F
(36a)
Yy = Bro [5.0 2 42.0-2210% 4 0.21e”2’2”y] i
F Yo
(36Db)

These solutions were used to prescribe the inflow to
our numerical model, now extended to allow two
moving layers above a flat bottom, but otherwise as
described before. We choose a value of F = (0.05L)2
corresponding to a Rossby radius of 25 km for L
= 500 km. The results are displayed in Fig. 12, together
with plots of the inflow jet profiles. Penetration readily
occurs, and the recirculation closely resembles the form
predicted by the analytical solution. Note in particular
the difference between the meridional scales in layers
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1 and 2, as predicted by the analysis in the preceding
sections, and a characteristic feature of the baroclinic
Fofonoff gyres of Marshall and Nurser (1986).

2) RECIRCULATING JETS: oy < 0

These jets are characterized by a negative value of
a4. For analytical convenience, we will consider the
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FIG. 10. A sequence of experiments in which the prescribed inflow
is a “mix” of modon- and Fofonoff-type solutions. The inflow is
given by Yingow = (1 — X)¥modon + X¥Fofonosr- There is a striking vari-
ation in the penetration scale of the jet as a becomes less negative,
even though the changes in the prescribed inflow velocity profiles are
rather subtle.

case in which ¢ = 0. A modon solution for the pseu-
dobarotropic mode satisfying Eqs. (29) and (30) can
be written as

v, = [AJ.(kr - EA—E] sind, (37)

k2

where k2 = —a,, and 4 is a constant.
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FI1G. 11. The sensitivity of jet penetration to the level of biharmonic
friction. Details of the inflow can be found in the text. The penetration,
defined as the most easterly point reached by the ¢ = 0.1 contour,
is plotted in units of grid size (the eastern boundary is at 96). The
biharmonic diffusion coefficient is normalized with respect to our
reference value BAS,

For the pseudobaroclinic mode, it can be shown that
ap is always positive, so a modon-type solution is not
appropriate. However, a particular integral corre-
sponding to a zonal flow is

|Bslr .
- 981
ap

Vp = nd, (38)
where for clarity, the modulus of 85 is taken since Bz
is always negative when o4 is negative. Equation (38)
satisfies only the boundary condition on the northern
wall. However, anticipating recirculating behavior, we
are not concerned with the need to satisfy an eastern
boundary condition.

When the above two modes [Eqgs. (37) and (38)]
are projected onto each layer, two different modon so-
lutions with modified radii and amplitudes are ob-
tained. At first sight, this is a surprising result, but it
arises because a modon solution consists of the sum
of two elements: a bessel-function perturbation and a
zonal flow. By adding or subtracting an additional zonal
flow we merely alter the relative magnitude of these
two terms, thus changing the amplitude and radius of
our solution. The effect of projecting the two modes
onto the second layer is to create a modon of reduced
radius. In a similar way, the recirculation radius in
layer 1 will be increased.

Choosing a value of y = —1.5F gives ay = —F, ap
= 1.5 F. The solutions for the two layers, constructed
from the two pseudomodes, are then

¥y = BF¥2{—13.4J,(VFr) — 1.0VFr} sinf, (39a)
Yo = BF32{—6.7J,(VFr) — 1.0VFr} sing, (39b)

where in Eq. (37) A has been given the value
—158,F" to give a realistic jet magnitude.

A numerical experiment was performed with the
above inflow profile. Here F was chosen to have a value
(0.1L)72, implying a Rossby radius of 50 km if L
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= 500 km. The steady-state solution from the numer-
ical model, together with the inflow profile, are shown
in Fig. 13. In both layers the gyre recirculates tightly,
in a nonpenetrative manner, and the recirculation ex-
tends farther in the upper layer than in the lower layer,
entirely in accord with the above analysis.

Hence, it is seen that oy, the eigenvalue associated
with the pseudobarotropic mode, determines the pen-
etration properties of our baroclinic jet. When «, is
positive, the baroclinic jet penetrates across to the east-
ern boundary of the basin; when « is sufficiently neg-
ative, the jet recirculates tightly. In both cases, ap is
positive, but the pseudobaroclinic mode merely intro-
duces baroclinic structure into the jet; it does not con-
trol its penetrative behavior.

b. The continuously stratified model

We began our discussion by stating that a, would
be instrumental in determining the penetration char-
acter of our jet and have shown this to be the case in

F D
- 0.2
0.1
10
2
§ 5
N
0
(] 0.1 0.2
distance

FiG. 12. The steady state resulting from a prescribed baroclinic
Fofonoff-type inflow in a 2-layer model in which a4 = 0.22F. The
meridional scales of the return flow are in broad agreement with the
analytical solution.
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F1G. 13. The steady state resulting from a prescribed baroclinic
modon-type inflow in a 2-layer model in which a4 = —1.0F. Note
the different recirculation scales in each layer, diminishing with depth,
as suggested by our analysis.

a 2-layer system. The above ideas are easily extended
to many layers, although the analysis quickly becomes
rather tedious. Two experiments have been performed
with a 3-layer model, with equal layer depths and equal
density jumps between them, to illustrate how our ideas
carry over to models with a more realistic vertical
structure. In the first, the eigenvalue, a4, of the pseu-
dobarotropic mode takes on a positive value with

ays=0.06F, ag=11F, ac=30F,

and F = (0.05L)? implying Rossby radii of 25 km
and 14.4 km if L = 500 km. In the second experiment,
a4 18 negative with

aA=—l.0F, a3=0.6F, ac=2.8F,

and F = (0.1 L)~? implying Rossby radii of 50 km and
28.8 km if L = 500 km.

In calculating the jet inflow profiles, we assumed
that the potential vorticity is homogeneous in the two
subsurface layers. The steady states from the numerical
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experiments are plotted in Figs. 14 and 15. As expected,
in the first experiment where a4 > 0, the jet penetrates
across to the eastern boundary in each layer. In the
second experiment, oy < 0 and the jet recirculates
tightly in roughly circular regions that diminish in ra-
dius with depth. This is entirely in accord with our
foregoing analysis.

In the continuously stratified model, as noted by
Greatbatch (1988), there are an infinite set of pseu-
domodes, ¥4, ¥, ¥, ..., and a corresponding set
of eigenvalues, ay < az < ac <, .... A finite number
of these eigenvalues may be negative, and the most

¥

¥3

P

L 0.1

9]

6

2
W 1
S 34
W «
> <4
0+

-3

0 0.1 0.2

distance

FIG. 14. The steady state resulting from a 3-layer baroclinic inflow
in which a, = 0.06 F. Note that the flow in the upper layer is cusplike
as sketched schematically in Fig. 1a. The jet penetrates across to the
eastern boundary in all three layers.
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FIG. 15. The steady state resulting from a 3-layer baroclinic inflow
in which ey = —1.0F. Note the flow in layer 1 is wave-like as sketched
schematically in Fig. 1b. The recirculation is tight in all three layers.
Note that the contour interval is a factor of 10 smaller in layer 3
where the flow is extremely weak.

negative eigenvalue will belong to the pseudobarotropic
mode. In the case that all the eigenvalues are positive,
our jets will be described by the continuously stratified
baroclinic Fofonoff gyres of Greatbatch (1987), and
we expect penetration. Conversely, if the pseudobaro-
tropic mode is sufficiently negative, we anticipate that
recirculation will occur. In analogy with the 2-layer
and 3-layer systems, we predict that the first mode will
determine the underlying behavior of the jet and that
additional modes will serve only to modify the baro-
clinic structure. This idea is reinforced by the obser-
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vation that downstream velocity profiles of the Gulf
Stream are likely to strongly project onto the pseudo-
barotropic mode; there is little evidence of major re-
versals of current with depth, and it is observed to be
surface intensified. The pseudobarotropic mode is also
strongly surface intensified (because dQ/d¥ is so neg-
ative near the surface), and there are no nodes in the
vertical.

5. Jet penetration in numerical models

In the foregoing experiments we have shown that
subtle changes in the cross-stream velocity profile of a
seaward-flowing inertial jet can have a marked -effect
on its penetration properties. This suggests that jet dy-
namics will be highly sensitive to the formulation of a
numerical model and its resolution. We briefly mention
three important modeling issues here that our study
may illuminate.

a. The barotropic model

Equation (4) admits an infinite number of solutions
in the absence of forcing and dissipation; in purely free
inviscid flow « can be ascribed any value. However,
in the presence of weak forcing and dissipation, « can-
not be freely chosen. For example, a plausible balance
over closed streamlines between wind stress curl forcing
and downgradient fluxing of potential vorticity by the
geostrophic eddy field requires that

do

2y <0
(Niiler 1966; Rhines and Young 1982; Marshall and
Nurser 1986). In a barotropic model, this immediately
implies that « is negative, hence excluding the possi-
bility of a penetrating jet. Indeed, barotropic models
of ocean circulation are characterized by recirculating,
rather than penetrating, jets (for example, see Boning
1986). However, in a 1%:-layer model, or an N-layer
model, the stretching term in the potential vorticity
enables « to be greater or less than zero, permitting
both penetration and recirculation while satisfying Eq.
(40) in near-surface layers.

(40)

b. Horizontal resolution of a numerical model

Solutions for a subtropical gyre, in which « is pos-
itive, necessarily have low values of absolute vorticity
on the northern boundary. Conversely, solutions for a
subpolar gyre, in which « is positive, have high values
of absolute vorticity on the southern boundary. What
happens, then, in a double-gyre configuration? Given
a model with infinite resolution, a discontinuity in the
absolute vorticity field at the confluence of the gyres
would be represented. However, at finite resolution, as
is the case in a numerical model, the g profile as seen
by the model, ¢* (Fig. 16), may be very different; a
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F1G. 16. A schematic diagram demonstrating how finite-grid res-
olution may change the sign of dg/dy as “seen” by a numerical
model. Here ¢ and q are the analytical forms for the streamfunction
and the absolute vorticity; g* is the absolute vorticity as obtained by
a crude finite difference calculation (the markers indicate the location
of grid points). If the grid resolution is much smaller than the width
of the jet, the volume of fluid in which « changes sign will be negligible.
However, at coarse resolution, this volume will be large, dramatically
changing the subsequent behavior of the jet.

small region will exist in which « changes sign. This is
illustrated in Fig. 16 where, at very coarse resolution,
the model may well interpret the jet as a region in
which « is negative.

Experiments have been performed to investigate
whether change in penetration properties results from
poor model resolution. In order to represent the double
gyre, a symmetry condition was adopted along the
northern wall of our subtropical gyre:

(V)0 = 0. (41)

Figure 17 shows the results of identical runs with a
Fofonoff-type jet inflow imposed as in section 3b(1),
but at two model resolutions: one with 49 grid points
in the north~-south direction (10-km resolution) and
the other with a resolution of 21 grid points (25-km
resolution ). The former yields a Fofonoff-type solution,
while in the latter case, the jet recirculates in the man-
ner of modon, a consequence of poor model resolution;
the cusplike jet profile cannot be represented in the
low-resolution model and is seen as a wavelike profile.

Barnier et al. (1991) present a detailed study of the
effect of changing horizontal and vertical resolution on
an eddy-resolving double-gyre experiment. They con-
clude that the most striking change on increasing the
horizontal resolution is, indeed, to facilitate the reso-
nance of inertial modes and increase jet penetration.
It seems that at 10-km resolution they can resonantly
excite Fofonoff’s (1954) mode, leading to penetrating
rather than recirculating behavior.

¢. Lateral boundary conditions

The role of boundary conditions along the western
margin of ocean basins, and their possible impact on
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the penetration of emergent jets, have been discussed
before (Marshall 1982). There it was argued that a no-
slip boundary condition along the western boundary
reduces the penetration of a jet as compared to a free-
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FiG. 17. Results of two identical experiments in which a Fofonoff-
type inflow has been prescribed. In the first experiment, a resolution
of 97 X 49 grid points { corresponding to ten across the jet) has been
used; in the second, a resolution of 41 X 21 grid points (only four
across the jet) has been employed. There is a dramatic change in
penetration properties. Notice how « reverses sign near the northern
boundary; in the poorly resolved run, this region completely domi-
nates the dynamics of the jet.
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slip condition. This is readily understood in the context
of our present work.

Imagine, as illustrated schematically (Fig. 18), fluid
parcels moving from the Sverdrup interior being swept
northward into a western boundary current. If free-slip
conditions are assumed, fluid parcels near the boundary
will conserve potential vorticity, resulting in anoma-
lously low values of relative vorticity in the north-
western corner of the subtropical gyre. On separation
from the wall, these fluid parcels form an intense jet
with a > 0 and Fofonoff behavior. However, if a no-
slip boundary condition is assumed, a viscous sublayer
results in which relative vorticity diffuses in from the
boundary. The absolute vorticity of the water closest
to the western boundary must be positive to satisfy the
no-slip condition. On emerging to form a seaward jet,
water that has passed through the sublayer will have a
negative «; if the sublayer is wide, it will dominate the
behavior of the jet, leading to recirculation rather than
penetration. Indeed, barotropic models of the subtrop-
ical gyre in which no-slip conditions are applied are
characterized by tight recirculating gyres in the north-
western corner of the basin. In complete contrast, pen-
etrating inertial gyres are obtained in the limit of weak
dissipation when no-slip boundary conditions are as-
sumed (e.g., Pedlosky 1979). Which, no-slip or free-
slip, is the appropriate condition to assume in a large-
scale model is still unknown.

6. Concluding remarks

It has been shown that the distribution of absolute
vorticity across a jet can strongly influence its zonal
scale of penetration by exciting one or the other of two
classes of free-mode solutions depending upon the sign
of a = dq/dy. Whether the jet penetrates or recirculates
depends on the degree to which it ““projects” onto the

viscous 3
sub-layer

FIG. 18. A schematic diagram illustrating the implication of a no-
slip boundary condition on the absolute vorticity profile across a jet.
Since the tangential velocity on the wall vanishes, dv/dx > 0 at the
boundary, and so in the viscous sublayer, strong cyclonic vorticity
is present in the flank of the northward-flowing current. If the viscous
layer is of a comparable width to the boundary current, then the
“effective” o will be negative, resulting in recirculating rather than
penetrating behavior.
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classes of “free-mode” solutions, prototypical examples
of which are the Fofonoff gyre (« > 0) and the modon
(a < 0). In a jet with both vertical and horizontal
structure, it is the « associated with the “‘pseudobaro-
tropic” mode that controls the penetrative behavior.
We have seen that subtle changes to the velocity struc-
ture of a jet can have marked effects on its behavior.
A corollary of our study is the importance it attaches
to resolving adequately both the vertical and horizontal
structure of intense jets, such as the Gulf Stream, in
models of gyres. It may provide, in part, an interpre-
tation of some of the results of Barnier et al. (1991).
They, however, propose a subtle role for the higher
baroclinic modes in controlling the energy cascade of
an unstable jet. Instead, here we emphasize the im-
portance of the gravest (pseudobarotropic) vertical
mode in controlling the free, inertial behavior of a jet.
The study also provides a context for the study of
Cessi et al. (1987) and lerley and Young (1988). In
the two aforementioned papers, uniform absolute vor-
ticity solutions are investigated (i.e., « = 0), and so,
as we have seen, inertial effects do not constrain the
east-west scale. In this case, eddy processes must come
into play in setting the penetration. However, in the
more general case where « is nonzero, the inertial effects
considered here may play a dominant role.
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APPENDIX A
Radiation Boundary Conditions

Radiation boundary conditions prescribe the time
evolution of the streamfunction field on the open west-
ern boundary of our model, according to a recipe by
Miller and Thorpe (1981). The equation on which this
is based is

9 _ 99

ot ¢ ox’ (Al
where c is a velocity that includes both wave propa-
gation and advection and ¢ is the property of the fluid
that is to be radiated across the boundary. In our par-
ticular application, ¢ is the velocity component normal
to the boundary.

The velocity ¢ is calculated from adjacent grid points
at the two previous time steps:

_0p/0t _ A [¢F— 95
‘T oplox  M\eTP—¢12

where the superscript refers to the time level, and the
subscript labels the grid point.

), (A2)
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Here At is the time-step interval and A is the grid
spacing. Combining (A1) and (A2) gives the numerical
recipe

5 — 957

12— g5
If 47! = ¢%!, then ¢7 is set to ¢7'. If ¢ is positive,
corresponding to an inflow, then ¢7 is given by ¢77';
if ¢ is greater than (A/Ar), then ¢} is set equal
to ¢371.

The streamfunction values bounding the radiative
region are required to remain constant in time. Any
discrepancy between these values and values implied
by the radiative scheme are removed by adding or sub-
tracting an appropriately weighted amount from each
radiatively calculated normal velocity component.

¢T =7 + (o7 ~ ¢§*')( ) . (A3)

APPENDIX B
Derivation of Projection of Pseudomodes onto Layers

Here we detail the derivation of Eqs. (28a) and
(28b). The pseudomodes are defined by Egs. (25a)
and (25b). Multiplying ¥, by cosng, and ¥z by cosn,,
and taking the difference, we obtain

sin(ns — ng)¢, = —sinnp¥, + sinn, V5. (Ada)
Similarly,
sin(n4 — )Y = cosnp¥,4 — cosn,¥p. (A4b)

Using the identity,

sin(ns — ns) = cosn, cosnp(tann, — tanng),

and substituting for tann, p from Eq. (26), we obtain

sin(ny — nB) = 2V1 + A2 COS”,4 COSTp
But, making use of the trigonometric identity
_ 1
cosx = ——————m ,
together with Eq. (26), it follows that

1
COS COS = ——.
140N = VT + a2
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Thus,
sin(ng — np) = 1, (AS5)

and so Eqs. (A4a) and (A4b) reduce to the expressions
for ¥, and - quoted in Eqgs. (28a) and (28b).
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