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ABSTRACT

A pair of gravity waves propagating at oblique angles along the sea—ice interface in a viscous, rotating ocean
is studied theoretically. The motion is described by a Lagrangian formulation. Two theoretical models of the
ice cover are considered. Consequences on wave attenuation from these descriptions of the ice are discussed,
and the results are compared with field data from the Bering Sea. By use of a series expansion in wave steepness,
the nonlinear wave-induced motion is calculated. The mean motion is computed analytically in the case of a
nonrotating ocean and numetically in the more general case of a rotating ocean. The induced current is shown
to have an exceptional feature; its existence depends on the presence of friction, whereas its magnitude in all
directions is independent of the value of the viscosity coefficient. In particular, the computed vertical current
is found to be an order of magnitude larger than that obtained for a free surface. Finally, we discuss the
importance of wave-induced currents on the vertical transport of nutrients near the ice edge.

1. Introduction

In the last decade there has been a growing interest
in the descriptions and explanations of physical pro-
cesses that take place in the Arctic seas. The rising con-
cern about problems in this area (e.g., the Barents Sea)
is due to the fact that there is a potential for commercial
offshore oil drilling in the Arctic. This activity may in
turn affect the biosphere of the same environment. In
this aspect, the vertical mixing of water masses is of
vital importance. Here we will try to formulate a theory
that describes mean vertical transports when the ocean
is covered with ice.

When waves that are generated in the open ocean
hit the ice edge, wave energy is reflected, transmitted
and absorbed; see, for example, Wadhams et al. (1986).
The transmitted wave will be refracted according to
Snell’s law, and its amplitude will attenuate according
to the physical properties of the water and the ice. In
the present paper, we shall only consider the trans-
mitted wave and disregard events that occur at the very
ice edge. Waves on the sea—ice interface may also be
associated with internal waves in the ocean or with
wind blowing over sea ice (Squire 1984).

The region of the ice that is close to the edge is known
as the marginal ice zone (MIZ). This zone, which ex-
tends 50 km or more into the interior of the ice, has
been described in detail by Squire and Moore (1980).
It is well known that near the ice edge, there is an
abundancy of life in the ocean that is not met with
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elsewhere in the polar areas. An important intention
of this paper is to provide one possible explanation for
this phenomenon. The basic idea is that the concen-
tration of nutrients in the biologically active layer is
increased through vertical mixing. Several theories for
describing such mixing have been advanced. One ex-
ample is the upwelling produced by the motion of the
ice edge under wind action (Reed and O’Brien 1983).
Another example is the upwelling near the ice edge
generated by discontinuity in the wind stress (Gam-
melsred et al. 1975). Weber (1987) showed that mean
motion induced by unidirectional waves also possesses
a discontinuity at the ice edge, which in turn results in
upwelling. Here we will consider the effect of a pair of
intersecting monochromatic waves that progress and
attenuate beneath the ice. It has previously been dem-
onstrated that such a combination of waves does yield
periodic, vertical mean motion in the open sea (Weber
1985). We show here that the effect of ice cover en-
hances this effect. In addition, we find that the mean
flow is substantially modified by the effect of the earth’s
rotation.

During summer, which is the season of high biolog-
ical activity, the ice melts and the edge retreats up to
ten kilometers daily (in the Barents Sea in July; see,
e.g., Lunde 1963). Hence, processes that induce mixing
beneath the ice have great impact on life conditions
for the habitat near the ice edge. When the ice is melt-
ing, one may expect to find a surface layer of light,
fresh water on top of heavier water. However, for sim-
plicity, we chose to apply a homogeneous model for
the ocean. Of course, stratification will inhibit the ver-
tical circulation. Nevertheless, the assumption of ho-
mogeneity will not be a serious restraint on the validity
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of the present model. A complementary discussion on
the subject of homogeneity is included in the last sec-
tion.

The present investigation amounts to a study of fluid
motion in the vicinity of a solid boundary. Hence, there
are similarities with roll structures in the planetary
boundary layer of the atmosphere. A number of papers
have been written on this subject [ sec the review article
by Brown (1980)]. These models are chiefly concerned
with the stability of a current profile where waves enter
the problem as undulating perturbations of a parallel
basic flow. However, in the ocean, waves constitute the
dominant contribution to the velocity field, exceeding
the geostrophic current by an order of magnitude.
Thus, the secondary wave-induced motion and the
geostrophic current are of comparable magnitude in
the ocean, making conditions qualitatively different
from those of the atmosphere.

2. Mathematical formulation

We consider an ocean of infinite depth without hor-
izontal bounds rotating about the vertical z axis. The
angular velocity of rotation is f/2, where f'is the Co-
riolis parameter. The ocean is partly covered with ice
of thickness /. Furthermore, we assume that the ocean
water is viscous and of constant density po. The coef-
ficient of kinematic viscosity, », is also taken to be con-
stant. The motion is described in a right-handed co-
ordinate system where the x, y axes are situated at the
undisturbed ice/ocean boundary at the ice edge, such
that ice cover is associated with x = 0.

The motion is described by a Lagrangian formula-
tion. Let a fluid particle (a, b, ¢) have coordinates (x,
¥, z). We may then write the equations of momentum
and continuity:

3

14(p,y,2)
pod(a, b, c)

1 d(x, p, z)
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_14(x,y,p)
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where p is the pressure and g is the acceleration due to
gravity. Subscripts denote partial differentiation, and
d/d(a, b, ¢) is the Jacobian. The explicit form of the
Laplacian V? in Lagrangian coordinates is given by
Pierson (1962). )
This paper considers drift currents due to the inter-
action of surface gravity waves beneath an ice cover.
The identification parameters of a fluid particle cor-
respond to its equilibrium position. That the individual
particles actually orbit this position does not affect the
second-order mass transport solution (Weber 1983).

Xy —fn=— + »V2x,

Yu+ fx = + V2, 2.1)

Zy+g= + w2z,

(2.2)
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Wp write the position x, y, z and the pressure p as
a series expansion (Pierson 1962):

x=a+ ex'V+ x4+ ...
y=b+€y(1)+€2y(2)+ e o 0

2.3
z=ct+ e+ 2z + .- (23

p=—pgc+ @+ p®+ ...

Here ¢ is an ordering parameter proportional to the
amplitude of the surface wave.

As stated in the Introduction, we consider waves with
finite crest length. Such waves may occur when waves
intersect. In the present analysis, we consider the sim-
plest case; i.e., two monochromatic waves with the
same amplitude ¢, and wave vectors

Ky = (ks l)
K =(k, =]

Here k and / are the wavenumbers in the x and y di-
rections, respectively. This makes the x axis the main
propagation direction.

The overall wavenumber is « = (k? + [?)!/2, and
the corresponding wavelength A is defined by A = 2#/
k. The crest length 27 /] = \x/[ is always greater than
the wavelength. We assume that each of the mono-
chromatic waves causes the ice edge to oscillate with
frequency ¢ and amplitude §,.

For the ordering parameter ¢ we choose

(2.4)

€= {0 (2.5)
K
(Weber 1985).

Due to viscosity, the waves will attenuate. The
damping of the amplitude may be regarded as taking
place in either time or space (Lamb 1932). Here the
size of the amplitude depends on how far into the ice
the waves have propagated. Accordingly, attenuation
in space seems to be the natural choice.

3. Linear-wave motion under an ice cover

We restrict ourselves to waves whose frequencies are
much larger than the inertial frequency; i.e.,

o> f (3.1)

The effect of rotation can then be neglected to O(e)
(Poliard 1970).

We take the ice to be a thin elastic plate of thickness
ho (Tabata 1958). By thin, we mean «/hy < 1. Thick-
ening of ice takes place over a distance of several ki-
lometers. Thus, for wavelengths up to several hundred
meters, we may assume, to a good approximation, that
hg is constant. However, it must be realized that, as a
model of a real ice cover, an elastic plate constitutes
an idealization.

Since the ocean is viscous, we must apply a no-slip
condition at the sea-ice interface. This means that at
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¢ = 0 there will be no horizontal displacement to O(e).
Furthermore, we require the wave motion to vanish as

k . . )
x(D ==[(e* — e™)e™ + (e — e™ °)e "] e~ coslb 1
a
(1) I t HKC mcy ,ikE T pkC m*cy ,—ikE) ,—ad o3
y = —li(e* — e™) e’ — i(e* — e™ )e "*]e”* sinlb
ag
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Here we have defined £ = a — ot/k and also the pa-
rameters m and +y by

o \!/?
m=(1—i)(5) =(1-1)~. (3.3)

An asterisk denotes complex conjugate. We note that
m is inversely proportional to the thickness of the vis-
cous sublayer. The ordering parameter is given by
(2.5), and we have assumed that

P (3.4)
”

For the particular case / = 0, (3.2) reduces to the so-
lution given by Weber (1987).

When a wave progresses under an ice cover, the ice
takes on the shape of the wave. In wave motion, the
oscillatory compressive stress is much smaller than the
flexural stress. The mean compressive stress is also ne-
glected. To O(e), the boundary condition at the sea—
ice interface can be written (Liu and Mollo-Christensen
1988):

8’ 1
[DVL4 + p.ho 5?]2“) =—pW -2z, c=0.
Po

(3.5)

Here p, is the relative density of ice to that of seawater.

The flexural rigidity D is

_ Eh®
12(1 — 5%)po’

where E is Young’s modulus and s is Poisson’s ratio.

Furthermore, we have defined

v 2_—i2_+_6.2_
ab?  4c*’

D (3.6)

(3.7)

4. Dispersion and attenuation

In a theory that considers the dynamics of the ice~
sea system, one must describe the mechanical behavior

emc]eiks _ l[(g_’z( _ l)exc _ g';
a am
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¢ —> —0o0.To O(e), the displacement and pressure then
become

L. (3.2)

K ; -
— e"""]e"’QE }e * coslb
)

of the ice. If the waves are much longer than the ice
floes, the ice may be described as an inelastic, inexten-
sible soup, especially when brash ice or grease ice occur
(Weber 1987). Thus, the ice-sea system is modeled by
two fluids of different viscosity sharing a common in-
terface. In the opposite case, when the waves are much
shorter than the floes, one may regard the ice cover as
a semi-infinite sheet (Wadhams 1973). Furthermore,
taking the absolute creep strain in bending the ice to
be negligible compared to the elastic strain (Tabata
1958), the ice cover may be modeled as an elastic plate.

By inserting the O(e) solution (3.2) into (3.5), we
find that the dispersion relation and the coefficient of
spatial decay are

o2 = g(1 + 6) (4.12)
k3 1+4
* vy 1+56° (4.1b)

respectively. Here § = D«*/g is a dimensionless pa-
rameter that may not be small. For a given frequency,
the dispersion relation (4.1a) yields that waves that
penetrate the ice edge become longer beneath the ice
cover (Wadhams 1973). Accordingly, by Snell’s law,
a single wavetrain passing the ice edge at an oblique
angle is deflected away from the direction normal to
the ice edge or the x axis in this case. This means that
I/« increases on penetration.

In fact, the boundary condition derived from Liu
and Mollo-Christensen [i.e., (3.5)] has been obtained
under the assumption of an elastic ice cover. When
the ice is treated as an inextensible layer, the ice cover
will respond to motion with inelastic bending, corre-
sponding to § = 0. Equation (4.1b) then reduces to the
result of Weber (1987). It is worth noting that waves
that progress beneath an elastic lid do not decay as
rapidly as when the cover responds without elasticity.
This is because an elastic plate, when perturbed from
its equilibrium position, will oscillate by itself. When
the ice is thin and the waves are long (i.e., khy very
small), # becomes small. In that case, the attenuation
does not depend much on how the ice is modeled.
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During the last decade, there have been several at-
tempts to determine the attenuation of wave energy in
the MIZ. Wadhams et al. (1987) have calculated the
attenuation coefficient from wave spectra. The spectra
have been computed from data gathered by wave buoys
placed between ice floes at various distances from the
ice edge. The data clearly show that the damping rate
depends on frequency as should be expected from
(4.1). One situation is depicted in Fig. 1. These data
have been published by Squire and Moore (1980) and
are based on observations from the Bering Sea in March
1979. Horizontal bars indicate intervals of smoothing,
and vertical bars show the least-square errors in an
attempt to fit the data within each interval with an
exponential curve.

The data has been obtained from stations positioned
several kilometers apart, with a maximum distance
from the edge of 65 km. One may expect that the ice
thickness would have increased significantly from the
edge to the innermost station. However, Squire and
Moore report that all ice floes visited were less than
0.5 m thick. It should also be noted that their data has
been processed under the assumption that attenuation
is a function of wave period only. Thus, we take the
ice thickness to be constant in Fig. 1 and put A,
=0.3m.

It is of some interest to compare field data with the
suggested theoretical models. The curves in Fig. 1 cor-
respond to damping rates given by (4.1b). Since the
motion in the ocean is turbulent, it seems reasonable
to apply a larger value for v than the molecular one.
We haveput v = 1.5 X 10™* m?s™!, E =6 X 10° Pa,
s =0.3, po = 1025 kg m™3, and k = «. Curve (1) rep-
resents attenuation by an inelastic cover (i.e., ¢ = 0),
whereas curve (2) shows damping by an elastic lid.
Since there is no way of determining the value of the
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F1G. 1. Wave attenuation rate a versus wave period T. The crosses
correspond to observational data from the Bering Sea, March 1979
(Squire and Moore 1980). Labels (1) and (2) correspond to theo-
retical damping of an inelastic cover and an elastic cover, respectively.
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eddy viscosity coefficient from the available data, it has
been chosen to fit the data. As can be seen, the best
agreement with the data is achieved when the ice cover
is taken to be elastic. Nevertheless, it should be em-
phasized that the leftmost part of line 2 corresponds
to wavelengths of 45-60 m, whereas the size of the
individual ice floes in the considered region varied from
10 m to more than 100 m. If the ice were to act as an
elastic cover, one would expect that the typical floe
diameter should be much larger than the wavelength.
It must also be admitted that the elastic effect indicated
by Fig. 1 does not show up in all datasets.

When comparing the data from the Bering Sea with
the analytical results (4.1), one should bear in mind
that the attenuation rate (4.1b) has been obtained from
an idealized situation. In reality, the ocean is covered
with separate ice floes, and neither an undivided, semi-
infinite sheet, nor a continuous soup of high viscosity.
When floes collide, energy is lost due to inelastic de-
formations. In the present analysis, this effect is incor-
porated in the parameterization of the coefficient of
eddy viscosity, ».

Of the two options for describing the ice (i.e., inex-
tensible soup and elastic plate), the latter will be
adopted here. It should be emphasized that this model
of the ice has its deficiencies. In a MIZ environment,
the ice floes will be more or less separated. Wave re-
flection will then not only take place at the ice edge,
but within the MIZ as well. Thus, the description of
the attenuative processes will be sensitive to the im-
perfections of the simplified model of the ice cover.
However, to develop a model that takes the effects of
successive wave reflections into account, is a formidable
task and beyond the scope of the present paper.

Finally, it should be stressed that as long as the no-
slip condition is imposed at the sea-ice interface, con-
siderations regarding the characteristics of the ice only
affect the rate of decay and the dispersion relation, and
not the dynamics in the water. Application of a free
surface condition at the interface leads to unrealistically
high values for the eddy viscosity coefficient, and must,
therefore, be discounted (Weber 1987).

5. Wave-drift equations

We introduce mean variables (denoted by an over-
bar) by averaging over a wave period T:

1 t+T
(Yl’ _j)—t, El) =?J: (xt’ Ve Z;)d‘f. (5'1)

For convenience we define dimensionless mean veloc-
ity components (u, v, w) and dynamic pressure II by

(Xt i, 22)
(u’ v, W) = g-oztok;—z::a
D+ pogZ 2
_ 0|
n= poi‘ozaze_z"‘“
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Furthermore, we split up the average velocities u and
w to isolate the Stokes drift from the total drift. We
also separate the mean inviscid pressure from the total
mean pressure, II. Denoting the differences by variables
with carets, we introduce
=u-—u
W

=W W (5.3)

. k2
n=1- (1 + - coleb)eZ"c
K

Here u,, w; are the stationary responses from the non-
linear interactions of the inviscid part of the O(e) so-
lution (3.2), given by

k2
U = 2( 1+ coleb) e

K
(5.4)

Wy = — U,
K

This flow represents a kind of nondivergent Stokes drift.
Utilizing the solutions (3.2), the governing equations
(2.1)and (2.2) then yield for the nondimensional mean
motion to O(e?):
g -

121 _fv - VVLZuA + Ha

2_
= —a”3+ (3kK2 ! )cosﬂb]e“c

2
+ 4[ 1+ % coleb} sin'yce"] (5.5)

bl

24 a2
v+ fil — vV +%ﬁb = aé[-—(k—til—)ezw
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+2 cos'yce“’c] sin2/b  (5.6)

N N R k2 -2
W, — vVL2w+%HC= o%[l + (7—) coleb]

X (cosyc — sinyc)e™ (5.7)

—2ad + vy, + W, = 0. (5.8)

We have transformed the second-order momentum
equations such that they contain only forcing due to
viscosity. The O(e?) equations are given by Pierson
(1962). However, since they contain some inaccura-
cies, they are included here in the Appendix in cor-
rected form. Only the leading terms in (x /4 ) have been
kept on the right-hand sides of (5.5)-(5.7).

From (4.1b) we observe that a/« is of O(x/¥v).
Hence, when v and w are of the same order of mag-
nitude as ¥, we may write (5.8) as

vy + W, = 0. (5.9)
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The fact that 2afu| < |v,|, |w.| will be verified a
posteriori.

A dimensionless streamfunction y is then introduced
by writing

5.10
W= k_l'¢/b ( )

v= _k_lwc}
The pressure may be eliminated between (5.6) and
(5.7). Thus, we derive an equation for the mean vor-
ticity in the plane perpendicular to the wave propa-
gation direction:
k* + 317
VL2¢, - VVL4¢ = Fkii, + 2017[(“7)82W
K
12
-2 p; (cosyc — sin'yc)e"”] sin2lb. (5.11)

To O(e?), the averaged no-slip condition in the tan-
gential direction at the sea—ice interface becomes

2
u=- {T;(mz,“)za“) =1 + cos2/b
0 —
.2 , ¢=0.
Vo= prma 207 = 0
(5.12)

On average, the ice cover is horizontal and w (¢ = 0)
= (. We choose ¢ = 0 at the origin and obtain
Y(c=0)=0. (5.13)

The drift motion is assumed to vanish at large distance
from the surface; that is,

u, V/cy ¢b -> 0’

Since the wave motion does not start from a state of
rest, there is no unique way of determining the initial
condition for the mean drift current. Due to this, we
are free to choose an initial condition that satisfies the
boundary condition (5.12) at the sea~ice interface. We
take

c—> —o. (5.14)

u(t=0)=(1+ cos2lb)e*c

. 5.15
¢(t=0)=0] ( )

6. Drift solutions in a nonrotating fluid

When we disregard the earth’s rotation, that is, take
/=0, the drift currents can be computed analytically.
By utilizing the boundary conditions (5.12)-(5.14)
and the initial condition (5.15), the streamfunction is
obtained from (5.11). By applying Laplace transforms,
we finally obtain
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The nondimensional velocity components in the crosswave plane (i.e., the yz plane) then become
1 k2 + 2 2 2 2
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® g2 gt I* 4 [ §sin2ycke 2 ds
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The streamfunction (6.1) describes roll motion in
the yz plane. Thus, the axes of the rolls are aligned
along the direction of the wave propagation. The di-
rection of rotation within the rolls is opposite in ad-
jacent cells. This is shown in the conceptual sketch
(Fig. 2). For aesthetic reasons, we have put ly = [y
+ w /2. Then, the x axis is situated at a nodal line.

The nonrotating problem in the x direction, given
by (5.5), does not have a steady solution that satisfies
the boundary conditions (5.12) and (5.14). It consti-
tutes a diffusion problem with a time-independent in-
ternal source of mean momentum. As time increases,
the mean velocity will increase without bounds. On a
rotating earth, this development will be arrested by the

8

inclusion of the Coriolis force. This problem will be
discussed in the next paragraph.

Since the source decays away from the boundary ¢
= 0, the appropriate condition is

u bounded as ¢ = —0. (6.4)

It is obvious that IT will be of order («/v)° [e.g., by
integration of (5.7)]. Hence, to the lowest order, II,
can be neglected in (5.5). We may now calculate the
velocity in the direction of wave propagation. With f
=0andII, = 0, Eq. (5.5) and the boundary conditions
(5.12) and (6.4) yield the induced motion in the di-
rection of wave propagation:

S, 1 [
w=[ere 43 e 4 cosyce™ + = + —f
2 2 wJo

A+ 1 £ +1

3 ] sin2ycé

: e—zazel d‘g’]

K* e [ SK*+3P 0 3PP . 2 Ve
+ coleb{F e* + 5 ¢t e 4 3 cosyce
2 J‘ © [ 4k*y? k22 v2(3k? - )] §sin2ycE .0
-I-‘in(z’y2 0 [1 -i-4£4+£2+x2/'y2 201+ &%) |82+ /42 ¢ dg- (63

For inviscid wave motion in a nonrotating fluid, the
individual particles do not describe exactly closed tra-
jectories, but posses a mean drift of O(e?) in the di-
rection of wave propagation (Stokes 1847). When the
fluid is viscous, the Lagrangian mean velocity shear
near the surface is twice the value of the irrotational
shear. This intensification is independent of the value
of the coefficient of kinematic viscosity, » (Longuet-
Higgins 1953). At a solid boundary, the inclusion of
viscosity implies a no-slip condition. The mean velocity
shear in the direction of wave propagation is then in-
creased by an order of magnitude in v/ k in the viscous
sublayer. Again, there is an intensification of the ve-
locity that is independent of v [see (6.5) or Weber

1987]. As can be seen from (6.1), the steady roll mo-
tion induced by a pair of intersecting waves under ice
exhibits the same remarkable feature throughout the
wave zone. Note that this implies a strong vertical cur-
rent.

Weber (1985) calculated roll motion induced by in-
tersecting waves in the open ocean. Comparing with
his results, we find that the velocity in the rolls increases
by a factor proportional to v /«, i.e., one order of mag-
nitude, when the no-slip condition is imposed. Hence,
when compared to an open-ocean situation, there is
relatively more energy in the mean motion induced by
a pair of waves under ice. At the same time, the rate
of attenuation of linear wave motion, «, is also in-
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FIG. 2. Sketch of the induced roll motion together with the primary
wave field and the displaced ice cover. The waves advance in the
direction of the arrow.

creased by one order of magnitude. Accordingly, owing
to the no-slip condition, wave energy dissipates much
faster under ice than in the open ocean. The ice cover
thus provides an effective source of mean, second-order
vorticity.

Furthermore, we note that the velocities in all di-
rections are of the same order of magnitude [cf,, (6.2),
(6.3) and (6.5)]. We have then justified our a priori
assumption that led to the introduction of the stream-
function ¢; i.e.,

[da] < |vsl, W] (6.6)

The evolution of the rolls is depicted in Fig. 3 for a
typical sea state in the marginal ice zone. We have
taken A =70m, v =10 m?s™, A =025m, E=6
X 10° Nm™2 and s = 0.3. We have also chosen ©
= tan"' (0.5) = 26.6°; O being the angle between the
waves and the main propagation direction. Isolines for
¥ have been drawn with an equidistance Ay = 0.02.
Figures 3a,b correspond to ¢ = 3 hours and the steady
solution, respectively. The dimensional cell width is
w/(2]), which with the present choice of parameters
becomes 40 m.

It is interesting to observe that convergence zones
occur at the nodes of the primary wave system anal-
ogous to acoustic streaming in Kundt’s dust tube. This
was also found by Weber (1985) for the free surface
case. Furthermore, one may note that for the so-called
Langmuir circulation [see the review article by Lei-
bovich (1983)], downwelling zones occur beneath lines
of maximum surface velocity. Although for entirely
different reasons, this is also the case for the present
problem.

7. Effects of rotation

As can be seen from Fig. 3, the rolls develop on a
time scale of several hours. Accordingly, the effect of
the earth’s rotation should be taken into account. This
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is particularly important in Arctic regions, where the
Coriolis parameter has its largest value. The equations
to be solved are (5.5) and (5.11). In the present paper,
we are primarily interested in the vertical circulation;
i.e., the determination of the streamfunction ¢.

In the presence of intersecting waves, u becomes a
sinusoidally varying current in the horizontal direction,
see (6.5). When this current is shifted toward the di-
rection in which it varies, vertical circulation is induced
due to continuity. Indeed, from (5.11), we see that
rotation (the shifting mechanism) provides a new
source of vorticity through the Coriolis force. This has
previously been pointed out by Weber (1985). How-
ever, neither qualitative features, nor quantitative es-
timates of the effect of the Coriolis force on wave in-
duced currents, have hitherto been examined in a La-
grangian framework.,

The time-dependent problem for a rotating ocean is
solved numerically. We choose a Crank-Nicholson
scheme of second-order accuracy. It is then straight-

b
0
m o1

}r

FIG. 3. Streamlines for the dimensionless streamfunction ¢ in the
plane perpendicular to the crests’ propagation direction. Panel (a)
corresponds to the situation after 3 h, whereas the steady state is
depicted in (b). Here y is given by (6.1) and (6.6); see the text for
details. With the present choice of parameters, the depth and width
of each figure are 35 and 160 m, respectively. The equidistance is
Ay = 0.02.
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forward to compute the time-dependent solution. The
finite difference versions of (5.5) and (5.11) are solved
alternately to keep second-order accuracy in time. Here
one is faced with the problem that three different length
scales have to be resolved. These scales are (1) the Stokes
depth [(2)7!], (ii) the Ekman depth [(2¢/f)"'/?], and
(iii) the thickness of the viscous sublayer [y ~!]. Since
v/1 = 0(500), these scales are very different. In order
to test the accuracy, the nonrotating problem was
solved numerically. When comparing the analytical
solution with the computed results, the error was found
to be approximately 5%.

In the computations, we have put f= 1.4 X 1074571,
which corresponds to 74°N. Otherwise, we have chosen
the same parameter values as used earlier (see section
6). The solution is depicted in Fig. 4, where Figs. 4a,b
again correspond to ¢ = 3 hours and the steady solution,
respectively. The equidistance between the isolines is
now 0.1.

We still find zones of convergence and divergence
at the sea-ice interface, but this feature is much less
evident than in the hypothetical case of a nonrotating
ocean. The water that is not trapped in roll motion
now moves toward the right as seen in the direction of
wave propagation (the streamfunction is negative ex-
cept for a narrow region near the interface).

When the numerical scheme has been implemented,
it is easy to examine the effect of the somewhat arbi-
trarily chosen initial condition (5.15). Naturally, the
steady solution is independent of the starting condition.
To investigate the significance of the initial condition,
the problem was solved with u (¢ = 0) = 0. The con-
sequence of this was that the maximum value of the
streamfunction was reduced by approximately one-
half, one-third, and one-tenth after one, three, and six
hours, respectively. Accordingly, a study of the initial
value problem is desirable, but such an investigation
is beyond the scope of the present paper.

8. Discussion and conclusions

The present circulation model assumes a homoge-
neous ocean. In reality, the vertical motion will to some
extent depend upon the stratification of the seawater.
Hence, the wave-induced roll motion may be some-
what restricted initially. However, this circulation will
by itself provide a mixing mechanism and eventually
erode the stratification, depressing the pycnocline to
the base of the wave zone.

In the vicinity of a solid boundary such as an ice
cover, the barotropic tidal current will be modified,
and a shear flow will develop. Thus, turbulent mixing
will take place in the water beneath the ice. In shallow
waters, there is a potential for amplification of tidal
motion. Since continental shelves are a dominant fea-
ture of the polar oceans, one is led to believe that tur-
bulent mixing may be strong in these regions. Indeed,
investigations reveal that in the western Barents Sea,
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FIG. 4. Same as in Fig, 3, but now for /= 1.4 X 10™*s7",
The equidistance is now Ay = 0.1.

the M, tidal current has a characteristic value of 25
cm s}, and a maximum value of 80 cm s™! (Gjevik
et al. 1990). It follows from this discussion that wher-
ever currents are strong relative to the ice, the strati-
fication is expected to be weak even prior to the for-
mation of propagating waves.

Examining datasets from the MIZ, we find that sea-
water is 1) well mixed in the Bering Sea (winter con-
ditions; Squire and Moore 1980); 2) well mixed above
a pycnocline situated at a depth of 25 m or below in
the northern Barents Sea (summer conditions; Mosby
1938); and 3) well mixed in the Fram Strait, at least
in certain situations (winter conditions; Buckley et al.
1979).

As can be seen from (5.11), there are basically two
mechanisms capable of generating roll motion beneath
an ice cover. The effect of one of these mechanisms,
viscosity, was studied in section 6. The second is the
earth’s rotation, and the combined effect of viscosity
and rotation was examined in section 7. The effect of
rotation was found to be dominant. Interaction be-
tween viscosity and rotation gives rise to asymmetrical
motion. However, due to the dominance of rotation,
the asymmetry is very weak. The idea that the effect
of the earth’s rotation may modify wave-induced roll



JANUARY 1992

motion was first advocated by Woodcock (1944). Still,
to the author’s knowledge, this has not been established
by any mathematically formulated theory prior to the
present investigation.

Computations reveal that u, the velocity in the wave
propagation direction (i.e., X) possesses a strong shear
in the viscous sublayer. The shear develops almost in-
stantly (i.e., within a minute or so), because the in-
terface acts as a vorticity source. This feature of wave-
induced currents beneath an ice cover was originally
recognized by Weber (1987). If we choose the values
of the parameters as earlier, and put { = 0.5 m, we
find that the maximum wave-induced velocity is ap-
proximately 6 cm s ™.

The motivation of the present study has been to ex-
amine how wave-induced currents may act as a mixing
mechanism beneath ice. When we focus on the mixing
of nutrients, the vertical velocity is of special interest.

w

3)

FIG. 5. The maximum dimensionless upward velocity w as a func-
tion of depth. Solutions are for (a) a nonrotating and (b) a rotating
ocean. Labels (1) and (2) correspond to the vertical current after 1
h and 3 h. The steady solution is labeled by (3). The physical pa-
rameters are the same as in Figs. 3 and 4. See the text for details.
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- In order to assess its effectiveness, the maximum up-

ward mean velocity has been calculated. In Fig. 5, the
dimensionless vertical mean velocity, w, is depicted as
a function of depth. Labels (1), (2), and (3) correspond
to the upward velocity after 1 hour, 3 hours, and the
steady situation, respectively. Figure Sa shows the-
ponrotational solution, whereas Fig. 5b displays the
corresponding result when f= 1.4 X 10~*s~". For the
rest of the parameters the values are as chosen before:
A=70m,v=10"3m?s™!, ip=0.25m, E =6 X 10°
Nm™2, 5s=0.3,0 =26.6° ,

Again, we note the importance of including the
earth’s rotation. If we choose {; = 0.5 m, we find that
w = 0.1 corresponds to a dimensional velocity of 6.75
m h™'. When the effect of rotation is taken into ac-
count, the maximum dimensional upward velocity af-
ter 3 hours is approximately 18 m h™'. Thus, wave-
induced currents provide an effective mechanism for
vertical mixing of nutrients.

If the directional dependence of the wave spectrum
is ignored (i.e., / = 0), the vertical velocity only be-
comes a fraction of what has been demonstrated here
(Weber 1987). Hence, the presence of finite crest-
length waves is needed for roll formation. The direc-
tional spectrum of a wind-generated sea is symmetric
(Longuet-Higgins 1962), justifying the simple model
chosen in the present paper.

From Fig. 4 we observe that vertical motion does
not extend quite to the sea—-ice interface, but stops a
few meters underneath. However, near the retreating
ice edge in the melting season, sunlight will penetrate
the uppermost meters of the ocean. This has been es-
tablished through measurements of irradiance trans-
mittance by Aas and Berge (1976). Consequently, the
mechanism described in this paper is able to transport
nutrients vertically into the biologically active layer.
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APPENDIX

The Second-Order Momentum Equations

The governing equations for the second-order mo-
tion are

X2 = [y = w9, 2% + IL,®

1
. {PaVx, D + p Wy, M + p Nz, 00
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o, )
d(a, b)
+ 2 0x(P + (6" + yaV)xiad

1
+g = 2v{x,x {32 + v Vxl

+ (x
+ 2% + 0 + 2 )xi)
= v{xPV 2% + xf 0 2y
+ xPv, 2z} (Al)

(2)

VP + XD =y, 2y + 1,®

= % {2.Vx 0 + p VD + p Dz,
a(xh, z(1)
d(a, b)
+ 20y + (0 + 7yl + (e
+ 2y + D + 2y}
= {yPUXD + yPY Iy
+yi0v.2z0) (A2)

= 20{x Py + » Vv

2P = w2 + IP

1
== {2 Vx D + p Dy 4 p (D7 MY

+ g(xVz,M + 3, Mz, 4 7 (17
- 2{x V2 + » V2 + 20z
+ (0 + ya ) ziad + (X + 24 D) zial
+ (D + 2,0z} — {20, 2x
+ 2PV 0 + 20V, 20} (A3)

Here
o = lp(z) + gz‘z).
p

The second-order equation of continuity is
X, @ 4 3, 4 7@ = x Mz (D 4y, (D7 M)

3
(1 0()(( )’ y(l))

T 3(a, b

(A4)
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