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ABSTRACT

Structure and stability of the multiple equilibria of the thermohaline circulation are studied using 2 X 2 and
3 X 2 box models. Thermohaline catastrophe is a shallow phenomenon and its time evolution consists of three
stages: the search stage, the catastrophic stage, and the adjustment stage.

A 3 X 2 box model is introduced to permit fitting a somewhat less truncated form of freshwater forcing.
Although the total number of possible modes of circulation increases quickly as the number of boxes is increased,
the grand thermal mode and grand saline mode remain. Some muitiple solutions are found to be statistically
improbable, and they belong to the so-called minor modes. With the more realistic freshwater forcing appropriate
for the present-day North Atlantic, our simple 3 X 2 mode! predicts that the thermohaline circulation is near
a critical state, because a small increase in freshwater flux can cause the system to collapse from the present
thermally dominated circulation to an intermediate mode of circulation with strong sinking at midlatitude and

a rather sluggish circulation in the polar basin.

1. Introduction

Gravitational convection due to combined thermal
and haline forcing in an upwind hydrostatic box model
with linear frictional dynamics exhibits multiple equi-
librium states. In applying such models to the ocean,
the so-called Haney (1971) boundary condition has
been widely used for both temperature and salinity
fields. In fact, the external forcing of these two fields
involves quite different physical processes and should
be parameterized in quite different ways. The effect of
different boundary conditions on temperature and sa-
linity was discussed by Stommel (1961), who showed
that two stable states can arise because of the difference
in the Rayleigh coefficient for the two constituents.
Rooth (1982) investigated the case of a three-box
model, consisting of an equatorial box and two polar
boxes, and suggested that a symmetric solution might
be unstable and could drift toward a pole-pole mode.
Welander (1986) pointed out that such a three-box
model can have four stable equilibria: two symmetric
and two asymmetric.

Rooth’s speculation was confirmed by Bryan’s
(1986) numerical experiments based on the GFDL
primitive equation model, in which a freshwater flux
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is specified as the upper boundary condition for the
salinity field. Bryan found that the solution, which is
symmetric with respect to the equator, is indeed un-
stable to finite-amplitude perturbation in salinity, un-
der which the so-called halocline catastrophe takes
place and the system drifts toward one of the stable
pole-pole modes.

The instabilities and multiple steady states associated
with the subtle difference in boundary conditions for
the temperature and salinity have been further dis-
cussed, using simple box models and a numerical
model on a meridional section, by Marotzke et al.
(1988) and Marotzke (1989). A double-diffusion in-
stability associated with these different boundary con-
ditions for the temperature and salinity fields was dis-
cussed by Welander (1989).

Marotzke (1990) made extensive studies of the
multiplicity of thermohaline circulations, using a mul-
tibox model for the World Ocean and two- and three-
dimensional primitive equation numerical models.

The concept of multiple equilibria and halocline ca-
tastrophe of the thermohaline circulation has been ap-
plied to the Younger Dryas period for a possible ex-
planation by Maier-Reimer and Mikolajewicz (1989).

Since the oceanic component of the ocean-atmo-
sphere coupled system can have at least two stable
states, it seems natural to inquire about the bimodality
of the coupled system. The possibility that the ocean—
atmosphere coupled system can have two stable states
was first explored by Broecker et al. (1985). The first
example of the two stable modes in the ocean-atmo-
sphere coupled system was found in a coupled GCM
model by Manabe and Stouffer (1988). Using a Five-
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box model for a single hemisphere, the bimodality of
the ocean-atmosphere coupled system was studied by
Birchfield (1989) and Birchfield et al. (1990).

As a nonlinear system, the thermohaline circulation
possesses multiple solutions. Two types of solution, the
grand thermal mode (sinking at the pole) and the grand
saline mode (upwelling at the pole), have received the
most attention. However, the thermohaline circulation
in the oceans can have many solutions involving minor
modes. .

There is apparently little paleoceanographic evidence
that the grand saline mode occurred in the North At-
lantic during recent geological history, although it
might have existed during the Cretaceous period, with
a very different (from the present-day) ocean-atmo-
sphere system. During the Cretaceous, the climate was
uniformly warm and wet. Warm and salty water masses
might have been formed due to intensive evaporation
in the shallow coastal seas and sank to the bottom,

then upwelled somewhere else. The oceanic circulation
system at that time is yet unclear; for climate during
the Cretaceous, see the review by Barron (1983).

Paleoceanographic studies for the last glaciation
show that nutrient concentrations were higher in the
deeper waters of the glacial North Atlantic than those
today, indicating that deep flow from nutrient-depleted
source waters was less then. However, that these con-
centrations remained lower than those of the Pacific
suggests that flow patteins were not reversed during
glacial times (see the review by Boyle 1990).

As pointed out by Duplessy et al. (1988), during
the last glacial maximum, the deep-water circulation
pattern was noticeably different from the present. The
southern source of deep water was the major feature
of global deep-water circulation, although a relatively
small amount of bottom water was also formed in the
North Atlantic. There is no evidence that the ther-
mohaline circulation was totally reversed during that
period. On the other hand, the amount of intermediate
water was substantially enhanced. That is, the deep-
water formation was slowed down, but not totally cut
off, while this decline in deep-water formation was
compensated with an enhancement in intermediate
water formation.

Paleoceanographic studies also suggest that the deep
circulation in the North Atlantic exhibits many differ-
ent modes (Oppo and Fairbanks 1990) or a continuum
of circulation states (Raymo et al., 1990), instead of
stimple bimodality. The differences among some of
these different states of thermohaline circulation are
not as dramatic as those involved with a total reversal
of the meridional circulation; nevertheless, they rep-
resent some profound changes in the oceanic circula-
tion and water mass formation.

Box models illustrate the effects of nonlinear kine-
matic processes (such as the advection of buoyancy)
in conceptually simple ways over a wide range of pa-
rameters. They cannot be expected to approach the
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fine-scale resolution and more correct and complete
dynamics of sophisticated finely resolved gridded gen-
eral circulation models. Box models do not compete
with numerical models.

A modest increase in the number of boxes can be
useful to address two issues: 1) to test for sensitivity to
truncation and 2) to detect inexpensively preferred
spatial modes or symmetries of the system by large
numbers of runs with a variety of initial conditions.
Exploring what determines the location and size of
sinking regions, relative volume fluxes of surface, in-
termediate and bottom waters, and the asymmetry of
the meridional cell suggests that some phenomenon,
such as sinking in a small region, in the large numerical
models (and nature) are primarily due to the nonlin-
earity associated with density advection. Accordingly,
elementary interpretations can be inferred from simple
analysis of the physical processes involved.

In this study we will first formulate a 2 X 2 box
model, with a Rayleigh boundary condition for tem-
perature and a flux boundary condition for salinity.
When the amplitude of freshwater flux passes through
critical values, catastrophic transitions from one state
to another occur. These critical values, and the time
required to pass through the catastrophe from one
equilibrium to another, are described. To show the size
of the basin of attraction for the thermal mode and the
saline mode, we use a Monte Carlo method to calculate
the possibility partition as a function of the strength
of the precipitation. A similar approach was used by
Marotzke (1990) to discuss the relative frequency dis-
tribution of different modes.

A 2 X 2 box model can at best represent only the
horizontally grand modes of forcing, and a single type
of deep water. A 3 X 2 box is introduced to permit
fitting a reasonably realistic minor modal form (in lat-
itude) of the freshwater flux. As soon as the number
of boxes in the model is increased to 3 X 2, the number
of possible modes is increased to 6. However, these
modes can be classified into the grand thermal mode
and saline mode and some minor, or intermediate,
modes. Most importantly, although the total number
of possible modes increases, these modes are not
equally important. By using a Monte Carlo method,
we will show that some modes are dominant while
some minor modes are very unlikely to appear.

With a simple 3 X 2 box model, we discuss several
cases. One of these cases is forced with a “realistic”
freshwater flux, and the model suggests that for the
freshwater flux close to the present day, the thermo-
haline circulation in the North Atlantic is very close
to a critical point where a small perturbation can cause
the system to fall from a thermal state with strong sink-
ing at high latitude and weak sinking at midlatitude to
an intermediate mode with strong sinking at midlati-
tude and weak upwelling at high latitude. A 3 X 2 box
model does not have enough vertical resolution to dif-
ferentiate between deep and intermediate depths, so
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geometrically we cannot speak of deep and interme-
diate waters. However, in the ocean, deep water gen-
erally forms at the poleward limits of an ocean basin,
and intermediate water at subpolar latitudes. With this
caution, it seems permissible to associate the idea of
intermediate water formation as a phenomenon with
minor (or intermediate) modes, where sinking in the
middle box of a single-basin model might be thought
of as the model’s attempt to form intermediate water
despite the lack of an intermediate depth at which it
could level off.

With appropriate rescaling the 3 X 2 model is also
used to study the case of circulation patterns in pole-
to-pole oceans. The forcing is chosen to be symmetrical
about the equator. For realistic amplitude of imposed
freshwater flux the system is most likely to be in a pole-
to-pole mode in which one hemisphere has a weak sa-
line circulation and the other a strong thermal mode
of circulation, either polarity being equally likely. Of
course, the preference for pole-to-pole modes dimin-
ishes the relevance of the single-basin model that is the
main subject of this paper.

2. The 2 X 2 box model
a. The model formulation

We begin with a 2 X 2 box model, as shown in Fig.
1. Note that the lower-layer thickness is 64, where O
< 6 < oo. The reference fixed air temperature is 77
= T* and T3 = 0. Within each box, water properties
are well mixed and the density is calculated using a
linear state equation

pi=po(l —aT; +8S;), i=1,2,3,4. (1)
T T
TP ‘p
| v
u+
L — T
H
Tu- l u-
I v
% H T3 ‘__l.‘l_ T4
L L

FIG. 1. The 2 X 2 box model defining applied air temperature
T7 , amplitude of precipitation p, temperatures of boxes 7, velocities
u*, u~, box thicknesses H and 8H, and box width L.
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The pressure is calculated by the hydrostatic relation.

In the horizontal direction velocity is linearly propor-

tional to the pressure gradient VP,
+ P 1 P 2

U= e,

P;— Py

T=c——. 2

I3 (2)
Note that rotation is neglected because it is almost im-
possible to introduce rotation into such a highly trun-
cated box model. The upper boundary condition is a
Rayleigh condition for the temperature; that is, the heat
flux is

Hy= poc,I(T* = T) (3)

where T is a Rayleigh relaxation coefficient with 7*
prescribed, and a flux boundary condition for the sa-
linity. Freshwater flux is specified at each upper-layer
box. The algebraic sum of the applied freshwater fluxes
must be zero for a steady model.

The upwind scheme is used for the advection terms
in the heat and salinity equations. Assuming the ve-
locity pattern is that in Fig. 1, we can write down the
heat and salinity balance for each box. We introduce
the nondimensional variables

T; = ToT;, Si=SoSi
LT r
ut,uy==— W u™"), w,=—w;
( ) HPon( PoCp
r Hpocp
=—p, 1=y 4
p pocpp T (4)

where Ty = 25°C is the imposed north-south temper-
ature difference, TT = T* = Ty, T3 =0, S, = 35 psu
(practical salinity units) is the mean salinity, H = 2
km, L = 3000 km, w; is the vertical velocity, and p is
the precipitation rate. After dropping the primes, the
nondimensional equations for heat and salinity balance
in the upper two boxes are

%= —u'T,+uT:+1-T,

% =u'T)~-uT,— T,

% =—u*S,+u"S;
%=u+Sl—u‘Sz. (5)

The equations for the lower two boxes are

dfs _w” p
73 (T4—T3)
dls _w . _
=5 (12— T4)
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dS; _u o _

P7R (Sa = S3)

dS,_u o _

F7R (82— Sa) (6)

where the velocity can be calculated by

u+=—§+A(T1 — Ty + 8T — 8T,)

— B(S; — S, + 655 — 8S54)

u =u*t+p (7)
where the two constants 4 and B are defined as
A= CaTo
B = CBSo
_ cgH?py’c,
¢~

According to Haney (1971), I'/(poc,) = 0.7 m day
= 8.1 X 107* cm s~', so that the time scale is

H 2
poch = —0(%(—) days = 2857 days ~ 8 years.

. In the system there are four nondimensional param-
eters: 4, B, 4, and p.
How can we determine C? In the oceans the large-
scale vertical velocity w is no more than 10 ™% cm s™!.
Thus, the nondimensional w is

_10%cms™!

w= 0.7 m day"! ~ 0.12.

By running the model, we have found that a plausible
estimate for C, which gives rise to appropriate values
of w, is about 0.05. The corresponding p for the present-
day North Atlantic is about 0.38 X 10> cm s~!.

Since an upwind scheme is used in the model, the
equation set, (5) and (6), is valid only for a case when
both u* and u ™ are positive; otherwise, the convection
terms should be changed to maintain upwind condi-
tions.

An overturning scheme is implemented in the model
so that whenever a gravitationally unstable situation
appears within a vertical column, water properties will
be mixed vertically to eliminate the unstable stratifi-
cation. This scheme is called a convective adjustment
in many numerical models. Since convective motion
is induced by any horizontal motion in this model, we
will call the scheme “overturning.”

Apart from mixing associated with advection and
overturning, there is no other type of mixing in the
model, such as turbulent mixing between boxes or
double-diffusive mixing. As a result of the mixing pa-
rameterization, uniformity of the bottom boxes is a
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result of sinking from a single surface box. In a more
elaborate model, the uniformity of the bottom boxes
can be changed by overturning induced by wind forcing
or cross-box turbulent mixing; however, we will not
discuss these cases in order to make the model more
focused. In a separate study we have found that double
diffusion (in a parameterized form) does not qualita-
tively change the bifurcation nature of the model.

b. Reduction to a 2-box model

An interesting case is the limit when é — 0; then
the model is reduced to a 2 X 1 box model. Essentially,
the lower layer degenerates into a pipe; its sole function
is returning the water back to box 1 so as to close the
circulation. In this limit, and assuming no overturning
in the southern column, the heat and salinity response
time in boxes 3 and 4 is zero, so that when u* > 0

T3=T4=T2, S3=S4=Sz.
Therefore, the equations are reduced to
ar
’—d—tl = "‘u+T1 + u—Tz + 1 - T]
dT _
—dt_2 = u+T| u T2 - Tz
ds
Ttl =—u*S\+u" S,
ds.
th =u*S, — u=S,. (8)
The velocities are determined by
u ==+ C(T - $) 9)
and
u"=ut+p (10)
where

T =aTo(T, — T3), & =8S(S)—3S).

We distinguish three regions in &, 7 phase space: region
1 where u* = 0, u~ = 0; region Il where u* < 0, u~
< 0; and region III where u*u~ < 0. _

If we now look for steady equilibrium solutions of
each of these equations, we set dT;/dt = 0,dS; /dt =0
and write (using go = ﬂSo, To = aTo)

Heat equilibrium curve on §, T plane Region

-1 _U+nT,

s_2C+7' 2 T I

__ 1 (+p)7To

$ = et T+ 5 7 o (1)
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ndimensional). The phase space consists of three regions, I, II, and III,
ble salinity-dominated equilibrium. Point D represents the coalescence of points

that for salt equilibrium is dashed. Intersections of these two sets of curves define equilibrium states. The
A and B at the critical p, = 0.0056. In panel (b) there are pairs of arrows to show the directions of &, and 7T, in regions bounded by the equilibrium curves.

FIG. 2. §-T phase diagram for the 2 X | box (& — 0). Three panels are for different values of p (no

intersection at point A is a stable thermally driven equilibrium. Point B is unstable. Point C is a stal

characterizing the velocity pattern. The curve for heat equilibrium is solid;

Salt equilibrium curve on §, T plane Region

p 8o
= +=— I
T +CQS°
p $o
=§ —=— II. 12
T=¢8 S (12)

There are no consistent equilibrium curves for region
III on the &, T plane. The regions are mapped on the
&, T plane in Fig. 2a. The unsteady region III lies
astride the diagonal T = & where u™ <Oand u™ > 0,
and hence, both velocities flow from left to right (very
slowly, of course), tending to sweep all the salt out of
box 2 into box 1.

The equilibrium curves are shown in Figs. 2a~c for
the canonical choice of constants, with the precipitation
p treated as a parameter. The region III is very narrow
because over most of the plane the range of p chosen
is very small compared to the velocities #* and ©~ in
the circulation: p is an order of magnitude less than
utoru.

For p = 0.001 (panel a) the curves have three in-
tersections, so these define equilibrium states for the
system. The point A in region I is a stable node with
a thermally dominated circulation. The point B is an
unstable node in region I; it repels the phase point.
Point C is a stable spiral in region II with a salinity-
dominated circulation. The sense of circulation for the
equilibrium states at points A and C is opposed.

As p is increased to p = 0.0056 (panel b), the salt
curve tends to pull away from the temperature curve
in region I, so that points A and B coalesce to point
D, which defines the critical value of p = p. where the
two curves are tangent. This is the critical situation
where “catastrophe” occurs. Values of p, are tabulated
in Table 1, as functions of § and C. It is seen that p. is
a weak function of 4, indicating that the catastrophe is
essentially a surface phenomenon, independent of the
bottom water. This aspect of the physics will also
emerge from a study of the time evolution of the system
through p.. On the other hand, p, is a strong function
of C, the “conductance” of the model. Large values of
C correspond to large mass fluxes u* for a given hor-
izontal pressure gradient. Another way to think of the
physical role of Cis to remember that it is proportional
to gravity. Consequently p. increases with C. If p is
increased further, say to p = 0.01 (panel ¢), the two
curves in region I no longer intersect and there are no
equilibrium states in the region. The only steady state
that exists is the salinity-dominated one at point C.
Therefore, the phase point moves from D to C, passing
through region III into region IL

It is easy to visualize how a phase point moves on
the phase plane (&, T ) with fixed p, because we can
infer the magnitude and direction of the components
&,and T, of the phase velocity by how close the phase
point is to the equilibrium curves and on which side
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TABLE 1. Critical p, as function of § and C (1075 cm s™*).

)

C 0.1 1.0 5.0
0.025 0.2593 0.2512 0.2431
0.05 0.4537 0.4460 0.4294
0.10 0.7454 0.7373 0.7211
0.20 1.1424 1.126 1.1019
0.50 1.7905 1.766 1.7257
0.75 2.1065 2.082 2.0417
1.00 2.3333 2.309 2.2604

of the curves the phase point lies. The vertical com-
ponent (7 ,) of phase velocity vanishes on the T curve,
is negative above it, and positive between the T curve
and the origin. The horizontal component (&;) of the
phase velocity is positive between the two branches of
the S curve, and negative outside either branch.
Knowing the directions of the components enables us
to visualize the direction of the phase velocity. As an
example, these directions are shown in Fig. 2b. The
phase speed is greatest for points far from both curves,
and least for points close to both 7, = 0 and & = 0
curves.

Note that catastrophe is possible for p < p.. In fact,
finite-amplitude perturbations can cause the system to
switch between states A and C.

¢. Probabilities of two modes

The 2 X 2 model with § = 1 has a phase hyperspace
of eight dimensions, and there are eight hypersurfaces,
one for each of the eight equilibrium equations, whose
common intersections define the possible equilibrium
states. Because of the large number of dimensions in
the 2 X 2 model, a detailed description of the phase
speed and direction is not helpful. A Monte Carlo ap-
proach, however, can be used to illustrate the relative
stability of the two equilibrium states. For a given p,
the model is integrated from initial states of random
temperatures in each box, between 0° and 25°C and
random salinities between 31.5 and 38.5 ppm. (Note
that the salinities have to be normalized so that the
average salinity for the system remains at 35 ppm for
all runs.) The probability of ending up in either of the
two stable modes can be computed by numerical in-
tegration of the time-dependent equations, as a func-
tion of p. Such a figure (for 6 = 1) is shown in Fig. 3.
For small p the thermal mode is most likely; for p
> 0.44 X 107° (greater than the critical p, marking
catastrophe) the saline mode is certain. The estimate
of present day p = 0.38 X 107> cm s~! is marked on
the figure by a triangle. It indicates that the thermal
mode is more likely; but it lies on a steep slope of the
boundary curve and is quite close to catastrophe. Once
a system has achieved equilibrium, it may or may not
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be shifted to the alternate equilibrium mode, depending
upon the size of the applied perturbation; however,

. this is a somewhat different problem than that ad-

dressed in Fig. 3.

d. Transition from a thermal state to a saline state

An arbitrary point in the phase space defines a state
of the system. If at this point the phase speed is zero,
then the point represents an equilibrium solution. It is
instructive to follow the successive equilibrium states
of a system from an initially stable thermal state,
through a catastrophe, to the stable salinity-driven state,
when the pis increased by a discrete increment. A sam-
ple history is shown in Fig. 4. The temperatures 7; and
salinities S; of each box are shown as functions of time
in model years. At the bottom, the mass transport u
and the phase speed ¢ of the point in phase space (¢
=VZL, Ti+ TL,S2)areshown,

At time = ( years the system is in thermally driven
equilibrium with precipitation p = 0.004 (0.3 X 10~°
cm s™!). The surface equatorial box 1 has a high tem-
perature 7', and high salinity S;, and low density ;.
The surface polar box 2 has alow 7, and S; and a high
a,. The two deep boxes 3 and 4 have temperatures and
salinities equal to those in box 2. The mean tempera-
ture over all four boxes is 7.41°C. The circulation u is
positive, and the phase speed ¢ = 0. At time = 40 years
the amplitude of the precipitation p is abruptly raised
to p = 0.006 (0.5 X 10~° cm s~'). The position of the
equilibrium solutions changes abruptly in phase space,
but since the phase point itself is still in the old position
it moves with a finite phase speed due to the redefinition
of the phase space that has occurred with the change

1.0 1 1 1 1
0.8 - -
0.6 - -
Thermal
Mode
0.4 -
0.2 Saline |
Mode
A
0.0 T I T T
0.00 0.10 0.20 0.30 0.40 0.50

P
C=0.05,T*=(1,0)

FIG. 3. Probability of reaching the equilibrium modes from random
initial conditions in 2 X 2 box model as a function of amplitude of
precipitation p, in 10~° cm s~!. Triangular index marks value of p
equivalent to present-day North Atlantic.
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FiG. 4. Evolution of the 2 X 2 (§ = 1) system from thermally
driven equilibrium state to a salinity-driven equilibrium state, as
caused by a discrete increase of p at time 40 years, so that p exceeds
the critical value. The evolution passes through three stages, as de-
scribed in the text.

in p. However, it does not increase to a large value
because it is still close to the redefined equilibrium hy-
persurfaces dT; /dt = 0, dS; / dt = 0, although now they
do not have a nearby common intersection.

The system responds in three stages: 1) a searching
stage, 2) a catastrophic stage, and 3) an adjustment
stage during which the deep boxes adjust their tem-
peratures and salinities to the new values that equilib-
rium requires. For the first 120 years, during the
searching stage, the state moves toward higher T,
and S| with decreasing u, seeking the equilibrium an-
ticipated by the increased opposition it encounters from
the increased salinity forcing. It moves through a trough
of low phase speed ¢ in the phase space because it is
close to the equilibrium surfaces. It is looking for the
now evanescent common intersection of these surfaces,
but cannot find it. One can think of a “‘strange attrac-
tor-repellor” being in this region of hyperspace. When
the initial state of the model is very close to the critical
state, the search stage can be very long because the
phase speed is extremely small when the state is very
close to an imaginary equilibrium one. In the case un-
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der study, this stage ends at time = 160 years when the
phase speed starts to accelerate.

With the search abandoned, the system now enters
the catastrophic stage. The phase speed picks up as the
point moves out of the deepest part of the trough. The
mass flux u drops rapidly through zero, at time 264
years. At this instant the fluxes through the top surface
dominate the time changes in 7; and S; (for i = 1, 2).
The deep boxes are largely cut off from change. There-
fore, it is the time constants of the changes due to sur-
face flux in the top two boxes that determine the du-
ration of the catastrophic stage. In Fig. 4 6 = 1, so we
also ran the program with 6 = 5 and found that the
time required to pass through the catastrophic state
was not as strongly affected as for the deep adjustment
stage. Therefore, it does seem appropriate to think of
the thermohaline catastrophe as a surface phenome-
non, geometrically dependent only on the depth of the
upper boxes, and not strongly on the thickness or
number of deep boxes in the vertical. The phase speed
¢ increases rapidly through a maximum and the mass
flux u reverses sign and overshoots too. We are now
in the salinity-driven state. The time of ending of this
catastrophic stage is rather indefinite, but in the case
under consideration occurs approximately at time 500
years, when the mass flux v has reached a close ap-
proximation of its final equilibrium value. However,
the deep boxes have not yet had time to adjust to the
new equilibrium state. At the bottom of Fig. 4 the val-
ues of total heat content Q and net heat flux HF from
the air to the water are shown as functions of time.
The main feature of the heat content Q is the great
increase as the system moves from temperature-driven
to precipitation-driven equilibrium state, due to heating
of the bottom water. There is an increase in salinity of
the deep water too, but the total salt remains constant
so the mean surface salinity 4 (S; + .S,) drops notice-
ably.

The heat flux HF at first is negative (from ocean to
air) as the u decreases during the search stage, but then
becomes strongly positive as the deep water absorbs
heat from the surface boxes.

The adjustment stage, therefore, begins at time 500
years, and afterward the deep boxes adjust their prop-
erties very slowly indeed: box 4 is the slowest. The new
equilibrium u, in addition to having opposite sign, is
also smaller in absolute value. The phase speed de-
creases slowly throughout the adjustment stage, and
evidently does not reach close to zero (equilibrium)
for several thousand years, and even longer if & > 1.

When equilibrium is finally achieved, the deep box
properties are equal to those of box 1 instead of box 2
as before in the thermally driven stage. The mean tem-
perature over all four boxes is 18.15°C (this would be
larger with larger ). Thus, more heat is stored in the
ocean than before, and this has had to come through
the surface. Accordingly, during the adjustment stage
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TABLE 2. Numerical values in the boxes and of maximum flux and phase velocity at critical times.
a=0.16 8 =0.771
aT* =4 BSe = 26.99
. —aT) —aT; —aT3 —aT, 8BS, BS. BS; BSs
Time
t (years) Stage (o, units) (o, units) u ¢
0 0
5 40 search 3.62 0.37 0.37 0.37 27.69 26.75 26.75 26.75 -0.113 0.003
20 160 3.77 0.24 0.35 0.31 28.40 26.32 26.67 26.54 —-0.065 0.199
33 264 3.98 0.03 0.32 0.25 29.41 25.60 26.57 26.36 -0.003 0.731
39 312 catastrophe 3.84 0.01 0.85 0.30 29.60 24.89 27.03 26.46 -0.050 1.690
62.5 500 3.87 0.04 2.64 1.30 28.69 23.76 28.22 27.27 —0.039 0.754
100 800 bottom water 3.89 0.07 3.49 2.60 28.29 23.29 28.35 28.00 -0.035 0.354
113 904 adjustment 3.89 0.08 3.62 291 28.23 23.28 28.31 28.11 -0.035 0.276

the average surface temperature is lower than in either
equilibrium—a slightly paradoxical consequence of the
overall oceanic heating. Because the salinity of the deep
boxes is greatly increased, and the total salt content
remains the same as before, the new equilibrium state
has a significantly lower average surface salinity. The
meridional gradient of surface temperature is slightly
smaller than before, and the meridional gradient of
surface salinity is much larger. Table 2 gives the nu-
merical values of the properties in the boxes and of the
mass flux and phase velocity at the critical times.

The salinity-driven equilibrium state that the system
is now in is very stable to small perturbations. Reduc-
tion of p in small steps does not restore the thermally
driven state until p < 0 at which instant a backward
catastrophe occurs toward the thermal state.

A concise way of viewing these dependencies of state
upon p (in the 2 X 2 box with é = 1) is shown in Fig.
5. The two solid curves depict equilibrium states as
functions of p. It will be noticed that these curves have
terminations at which one-way transitions to the other
state occur. The exact location depends upon the dp,

and we have depicted these transitions for small dp.
The arrowheads indicate the directions along which
the equilibrium state of a system will move as p is raised
and lowered.

There is a narrow wedge in the u* — p plane, —p/
2 < u* < 0, which corresponds to region III in Fig. 2.
As discussed above, within this region water in both
layers moves (slowly ) southward and carries salt equa-
torward. Therefore, no steady solution is possible in
this region. The existence of this forbidden region is
the fundamental reason for the thermohaline catas-
trophe.

In a typical thermohaline system the haline forcing
is against the thermal forcing. When the haline forcing
is weak, the thermal forcing dominates and the surface
layer moves poleward. As the haline forcing increases
gradually, it works as a brake and slows down the pole-
ward motion in the upper layer. Clearly, if the haline
forcing is very strong, the circulation should be in the
opposite direction. However, there is the forbidden re-
gion around u* = 0, where no steady solution is per-
missible. Therefore, as the freshwater flux is gradually
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FIG. 5. Dependence of the equilibrium values
D, for the 2 X 2 (8 = 1) box. Heavy solid curve

of u™* (in units of 107> cm s™'), T, and S; upon
for p increasing by small increments, thin solid

curve for p decreasing (thus illustrating the hysteresis of the system), long-dashed lines for an
unstable state. The short-dashed lines indicate abrupt transitions.
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increased, the steady state of the system must go
through a catastrophe in order to reach the opposite
circulation pattern. Similarly, if the freshwater flux is
reduced gradually, one expects that the system will
eventually fall back to the thermal mode. However,
due to the existence of the forbidden region, the tran-
sition from the haline mode to the thermal mode has
to be catastrophic.

The essential ingredient for thermohaline catastro-
phe is the difference in upper boundary conditions for
the temperature and salinity; that is, a large Rayleigh
coefficient or a flux condition of the salinity. As dis-
cussed by Stommel (1961), if a Rayleigh condition is
applied to the salinity with a relaxation coefficient equal
or close to the one for the temperature, there would
be no multiple solutions nor thermohaline catastrophe,
even though the system is still nonlinear.

Although the argument above asserts the necessity
of thermohaline catastrophe, it does not tell exactly
where the system must collapse. In order to find the
critical value p., one has to examine the heat and salt
balance. Since the transport is a linear of the temper-
ature and salinity difference between two boxes, Eq.
(8)is quadratic in T and &. By eliminating T, a single
cubic equation can be obtained for §

i—6°0e5°i—e?02=0 (13)
where the upper sign is for region I (thermal mode)
and the lower sign for region II (haline mode). The
corresponding temperature and velocity can be cal-
culated from (11), (12), and (9).

Equation (13) is cubic for §. For p < 0, there are
three real roots in region I. However, only one of these
roots corresponds to a physical solution, and the other
two roots, corresponding to a negative u™, violate the
basic assumption for this region. For p > 0, there is
one real root corresponding to a negative u™, so it is
nonphysical. For 0 < p < p,, the other two roots are
real and they correspond to physical solutions. How-
ever, only one of them (indicated by heavy line in Fig.
5) is stable and the other one (indicated by long-dashed
line) is unstable. At p = p. these two roots coalesce.
For p > p,, they become a pair of complex conjugate
roots, and the other real root in region I is a nonphysical
solution, as discussed above.

Within region II, ( 13) has only one real root for any
given p. For p < 0, the real root corresponds to a pos-
itive 4™, so it is nonphysical. Thus, there is just one
haline mode for p > 0.

The hysterical behavior of the system can be un-
derstood better after knowing the algebraic property of
the model as discussed above. As p is gradually in-
creased from p < 0 (with a fairly small dp), the me-
ridional circulation slows down, but the system remains
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in the thermal mode. As p is increased beyond p., the
system must fall onto the haline mode. If the system
is in the haline mode, it will remain there as long as p
is gradually changed. When p becomes zero or negative,
the system must fall to the thermal mode.

For 0 < p < p., the system can be forced to jump
between the stable thermal mode and the haline mode
by a finite amplitude of salinity perturbation. Since the
study by Bryan (1986 ), the catastrophic transition from
the thermal mode to the haline mode (the so-called
halocline catastrophe) has received much attention.
According to our model, given a finite-amplitude sa-
linity perturbation, a catastrophic transition from the
saline mode to the thermal mode is also possible.

During the entire sequence of events with an increase
of p shown in Fig. 4, there is no gravitational instability
in vertical columns of the boxes except, in a weak way,
late in the adjustment stage: after 3200 years. On the
other hand, the reverse catastrophe, from salinity-
driven to the thermally driven state when p is reduced
below p = 0, is accompanied by extensive gravitational
instability in the column with boxes 1 and 3, as the
excessive salt in box 1 is dumped down into box 3 by
gravitational instability. However, this does not seem
to be the place to pursue these events.

The 2 X 2 model is so highly truncated that when
circulating, it cannot have more than one type of water
in the two bottom boxes, nor can the forcing represent
anything but the latitudinally grand modes. Recent
work on the mapping of net freshwater flux (precipi-
tation — evaporation) at the surface of the North At-
lantic (Schmitt et al. 1989) shows that the freshwater
flux has a markedly different form of latitudinal dis-
tribution than the thermal forcing has. Therefore, it
seems advisable to try to extend the box model to a 3
X 2 one (3 horizontal, 2 deep), so that this difference
in the functional form of the freshwater forcing can be
represented, albeit crudely.

3. The 3 X 2 box model

The boxes in the upper layer are denoted as boxes
1, 2, 3 (from south to north), and those in the lower
layer as boxes 4, 5, 6. Adding these two boxes intro-
duces different flow patterns; we call them modes of
circulation. Since there are only two layers in the pres-
ent case, each mode of circulation is uniquely defined
by the locations of sinking. The temperature forcing
will be denoted by [TT, T5, T3 ] and the precipitation
forcing by [p,, P2, p3] in which p; + p, + p; = 0 and
p=2Z3lpil/2.

We need some simple way of depicting these modes
of circulation and have found it convenient to indicate
the mode by the following notation. If we write the
normalized magnitude of the three vertical velocities
at the bottom of boxes 1, 2, 3 in sequence as, for ex-
ample, (1, ¢, —1), we mean that upwelling is strong
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under box 1 (at the equator), weak at box 2 (midlat-
itude), and that all the sinking occurs at box 3 (the
polar box). This is the expected form of the thermal
mode of circulation, for T} = [25, 12.5, 0]. A saline
mode of circulation, with sinking at the equator and
smaller amplitude might be written as (—2e, ¢, €).

Because, in general, the functional form of both
thermal and freshwater forcing can be arbitrarily spec-
ified, there is a considerable complexity of response.
For economy of presentation we limit our discussion
to three cases.

Case 1: Linear thermal forcing T* = (25, 12.5, 0)
and freshwater forcing (—p, 0, p). Figure 6 isthe 3 X 2
counterpart of the 2 X 2 whose probability diagram
and mode path map have already been shown in Figs.
3 and 5. Comparing the figures shows that for grand-
mode forcing the introduction of the extra pair of boxes
(i.e., higher resolution ) does not essentially change the
response, although moré modes of circulation are in-
troduced by the increased number of boxes.

The top panel of Fig. 6 is what we call a mode path
map. The abscis$a is p. The ordinate is marked with
symbols indicating the mode of circulation. For ex-
ample, the top label is (1, ¢, —1), indicating the order
of magnitude of the three vertical velocities that define
the circulation pattern are upward under box 1, weakly
upward under box 2, and downward under box 3. It
will be noticed that when p — 0 (purely thermal driv-
ing) there are four modes of circulation, whereas in
the limit of large p (predominantly saline driving) there
is only one. At p = 0" only the (1, ¢, —1) model has
a finite circulation throughout all the boxes of the
model. In the (—¢, 1, —1) model (with p — 0) the
water in the column 1, 4 is stagnant; in the (1, —1, ¢)
mode column 3, 6 is stagnant, and the whole model is
stagnant (with p — 0) in mode (—2¢, ¢, €). These modes
in which part, or all, of the model is stagnant when
p —> 0 are artifacts of the high truncation of the model.
They correspond to states in which surface boxes have
identical temperatures to that of the surface forcing,
T; = T¥ (i= 110 2), and the temperatures and salin-
ities of the boxes beneath them sappen to be just exactly
what is required to reduce the horizontal pressure gra-
dient to zero. The probability of such pressure balances
springing up spontaneously from random initial values
is reduced as the number of boxes is increased in the
vertical. If the initial conditions are broadened to in-
clude densities much greater than those formed by the
surface forcing, then systems with many superposed
layers of boxes can settle into stagnant fossil states
where the deep layers are isolated from steady surface
forcing. Small random variability in the surface forcings
will eventually erode all these stagnant thermal modes
and the system will return to the (1, ¢, —1) thermal
mode of circulation. With p = 0 and steady thermal
forcing (plus an infinitesimal random fluctuation),
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HG. 6. Case 1: 3 X 2 counterpart to 2 X 2 linear freshwater forcing.
Path maps (upper panel) and probability of reaching of equilibrium
modes from randomized initial conditions of the 3 X 2 box model
(lower panel). The ordinate of the path map has discrete levels in-
dicating mode of circulation. Vertical arrows indicate transitions from
one mode of circulation to another as p increases. Solid arrows indicate
smooth transitions; dashed arrows indicate abrupt transitions. The
thickness of the pathlines is meant to indicate degree of probability.
In the lower panel there are five possible modes, one smooth transition
(thermal modes), and three catastrophes.

The triangular index shows present-day amplitude of p, in 1073
cm s~!, As pis increased from p = 0, the main thermal mode even-
tually collapses to the saline mode (—2e, ¢, ¢). If p is now decreased
very slowly, the system can be made to remain in the saline mode
all the way top = 0.

these stagnant modes are pathological and improbable.
On the other hand, it is not difficult to understand why
stagnant modes cannot exist at high values of p: there
is no way for the surface boxes to reduce the buoyancy
flux imposed by inexorable precipitation /evaporation.

Now examining the midportion of the upper panel
of Fig. 6, we realize that as p increases slowly the system
will move to the right along the heavy most probable
path (1, ¢, —1). Although for small p the most favored
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mode of circulation is (1, ¢, — 1), this switches smoothly
to (1, —e, —1) as p is increased, through p = 0.25,
indicating that the opposing freshwater flux succeeds
in forcing midlatitude sinking and producing an in-
termediate water mass, so that the properties in the
bottom row of boxes are not uniform. This marks a
bifurcation in a graph of bottom temperature versus p
(not shown), and we can speak of intermediate water
formation. Following this new mode as p increases, at
p =041 X 107° cm s~! there is a catastrophe (iden-
tifiable with that in Fig. 5) and a jump, marked by the
one-way dashed vertical line to the saline mode (—2e,
€ €).

The lower panel of Fig. 6 is to be compared to Fig.
3. The probability distribution figure is generated by a
Monte Carlo method described above. Taking the
thermal modes as a whole, the relative probability of
falling from random initial conditions into one of the
thermal modes, as against the saline mode, is not very
different from the probabilities for the 2 X 2 case in
Fig. 3, although the saline mode is somewhat more
favored. The modes of circulation (—¢, 1, —1)and (1,
—1, €) are rather improbable: these are labeled inter-
mediate modes in the figure; however, the (1, —1, ¢)
mode does not produce intermediate water in the
oceanographic sense because there is only one column
with sinking. The estimated present-day value of p,
indicated by the triangle in the figure, shows that (1,
—e¢, —1) is the expected thermal mode of circulation
for the North Atlantic, but that the saline mode is more
probable. This inversion of probabilities is the main
difference between Figs. 3 and 6 and is due to the
effect of truncation on the representation of the grand-
mode forcing that is applied. However, one should re-
member that case 1 does not represent the form of
applied freshwater flux realistically, according to
Schmitt et al. (1989). The conclusion that we derive
from the comparison of the 2 X 2 and 3 X 2 model
with similar surface grand-mode form of forcing is that
finer resolution does not change the character of the
solution qualitatively except to introduce improbable
minor modes of circulation.

Case 2: Nonlinear freshwater forcing (—ep, —p, p).
At this point we introduce a markedly different form
of freshwater forcing, to conform with the recent map-
ping of evaporation-precipitation over the Atlantic
(Schmitt et al. 1989). Instead of choosing a form of
(—p, 0, p) as in case 1, we choose (—0.18p, —0.82p,
p). This form means that the maximum evaporation
is over the midlatitude box instead of the equatorial
one. The temperature forcing remains the same as in
case 1.

The path map and probability of the different modes
of circulation are shown in the two panels of Fig. 7,
the present-day value of p marked by the triangle. The
situation is quite different from that in case 1 (notice
the expansion of the scale of p in the diagrams). The
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FIG. 7. Case 2: North Atlantic freshwater forcing. Path map and
probability of mode for case with distribution of p; chosen to represent
freshwater forcing displaced northward (Schmitt et al. 1989). Note
change of scale of abscissa. Triangular index shows present-day am-
plitude of p, which lies in nearly symmetric thermal mode with small-
amplitude midlatitude sinking (1, —¢, —1), and close to catastrophe
to a strongly asymmetric mode ( 1, —1, €), with two meridional cells:
thermal in south, saline in north. However, the system is safely remote
from the catastrophe to the main saline mode {—¢, —e¢, 2¢).

system is most likely to be in the thermal mode of
circulation (1, —e, —1), so that there are two types of
deep water (in oceanographic parlance, the less dense
of these might be called intermediate water). The pres-
ent-day value of p lies close to a catastrophe; however,
this is not an abrupt transition to the saline mode, but
to the intermediate mode of circulation (1, —1, €), with
a strong thermal cell at low latitude and a weak saline
cell in high latitude. This flow pattern yields only one
type of bottom water, but it is all formed at midlatitude.
In trying to model the ice-age oscillation of the North
Atlantic, we had hoped to find a catastrophe between
amode (1, —¢, —1) and (1, —1, —¢) close to present-
day amplitude of p. This would be consistent with
Boyle’s (1990) view that the polar deep-water forma-
tion is not entirely cut off during ice maximum. How-
ever, we found a catastrophe between (1, —e¢, —1) and
(1, —1, €). The pure saline mode (—2e, €, €) is im-
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FIG. 8. Case 2: North Atlantic freshwater forcing. For { = 1, 2, 3 the panels show w;, p;, S;,
T; as functions of p. The solid curve shows both thermal modes. The dashed curve shows inter-
mediate mode (with two meridional cells). The dash-dotted curve is the total saline mode.

probable. The catastrophe to the saline mode occurs
at unrealistically high amplitudes of p.

Figure 8 displays the vertical velocity w at the bottom
of the surface boxes, as well as their density p;, salinity
S;, and temperature 7; for each mode of circulation.
When p = 0 the system is in the (1, ¢, —1) mode with
sinking only at the pole, but as the amplitude p is in-
creased, the strong evaporation over box 2 increases
the salinity .S, there and reduces the already small w,
there so that it passes through zero smoothly and a
saline intermediate water is formed at midlatitude (.Ss
is not shown in the figure). The system is still in a
thermal mode, (1, —¢, —1), and this corresponds to a
choice of p representative of the present climate. As p
is increased further, the catastrophe to the (1, —1, €)
intermediate mode involves a threefold change in am-
plitude of w, and w; (with a change of sign in the latter),

larger change in Ty, S3, T3, butlessin S}, S>, 7». The
main change in density is in box 3 where p; drops 1.6
sigma units.

The dramatic changes in poleward mass flux and
the heat flux associated with different modes of cir-
culation are depicted in Fig. 9.

The final catastrophe near p = 1.6 suppresses the
thermal cell in the southern two boxes. The jumps in
pi, S;i, T; are not as large in this transition, but there
are large jumps in w; and w, with a sign reversal in w; .

One may interpret these two catastrophes at p = 0.45
and 1.6 as a split form of the simple catastrophe at p
=0.42in case 1 (Fig. 6). In case 1 the freshwater forcing
has the same form as the thermal forcing, so it must
overcome the thermal forcing all at one time. In case
2 the freshwater forcing is stronger near the pole, so it
can overcome the thermal forcing in the polar cell first,
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FIG. 9. Case 2. North Atlantic freshwater forcing. Meridional mass [in 10® m?s™' (sv)] and
heat (in 10'* watts) fluxes as functions of precipitation (in 10~° ¢cm s™'). The notation is: T,
thermal; 7, intermediate; S, saline; with subscripts N and S to indicate northern or southern cell.

with only a minor effect on the equatorial thermal cell.
It is much more difficult for the freshwater forcing
(confined mostly to the two polar columns) to reverse
the equatorial thermal cell. The second catastrophe is
deferred until p is very large. One may speculate that
with finer resolution in latitude the catastrophe would
be movable in latitude, depending upon p.

Case 3: Nonlinear thermal forcing T* = [0, 25, 0]
and freshwater forcing [p/2, —p, p/2]. To model pole-
to-pole modes of circulation, the parameters need to
be rescaled to reflect the expansion in the doubling of
the horizontal scale. This means setting ¢ = 0.0222.
The thermal forcing is of form [0, 25, 0] and the fresh-
water input is [p/2, —p, p/2]. The results of running
this model are shown in Figs. 10 through 12; they are
rather startling. For small p the thermal mode of cir-
culation (—1, 2, —1) with upwelling at the equator (now
the central box) and sinking at the poles is preferred.
Atp=0the modes(—1, 1, ¢) and (¢, 1, —1) are patho-
logical, with a stagnant polar box. However, at realistic
value of p one of either pole-to-pole modes is preferred.
These are of the form (—1, 1, ¢) or (¢, 1, —1). Each is
strongly asymmetric to the equator, consisting of a sa-
line mode in one hemisphere, with a thermal mode in
the other. The amplitude of circulation of the thermal
mode is greater than that of the saline mode. These
pole-to-pole modes are isolated from the other modes
for p both greater and less than the present realistic
value. As pisincreased, the system goes catastrophically
into a saline mode (¢, —2e¢, €) with antisymmetric cells
with joint sinking at the equator.

It is interesting to notice that the asymmetric modes
are favored over certain ranges of forcing, although the
system is symmetrically forced. In addition, when the
thermal mode collapses to a pole~pole mode, the mass
flux and poleward heat flux are actually intensified in
one hemisphere. In a sense, the system tries to keep up
the total amount of deep water formed. If the deep-
water formation is cut off in the Northern Hemisphere,
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FIG. 10. Case 3: Pole-to-pole ocean model with both forcings sym-
metrical to equator (box 2). The present-day precipitation (triangular
index) is close to multiple catastrophes to asymmetrical pole-to-pole
modes. They are actually most probable, but neither pole is favored
over the other. The pole-to-pole modes have a thermal cell in one
hemisphere, a saline one in the other.
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the deep-water formation in the Southern Hemisphere
will be slightly increased in compensation. If we could
use this model to interpret the paleocirculation during
the last glaciation, the slowdown of the deep-water for-
mation in the North Atlantic might induce a slight
increase in the amount of bottom water formed near
Antarctica and the bottom water flux to the Pacific,
Atlantic, and Indian ocean basins, but of course the
model is much too crude to claim realism and serves
only as a starting point.

4. Conclusions

We have reexamined the structure and the time evo-
lution of the thermohaline catastrophe in a simple 2
X 2 box model. The system has several time scales.
For a small perturbation in the forcing, the evolution
of the system is determined by the adjustment time
scale, which is the inverse of the meridional velocity.
However, if the system is very close to the critical state,
a small increase of precipitation can cause the system
to collapse from a thermal state to a saline state. During
a catastrophe, the system responds in three stages: a
searching stage, a catastrophic stage, and an adjustment
stage. When the initial state of the model is very close
to the critical state, the searching stage will be very long
because the phase speed of the evolution is small if the
state is very close to an imaginary equilibrium one in
the phase space.

Using a 2 X 2 model with different lower-layer
thickness, it can be seen that the thermohaline catas-
trophe is a shallow phenomenon, followed by the
slower adjustment of the deep circulation.

Although the possible number of multiple equilib-
rium states increases quickly as the number of boxes
is increased, these solutions are not all equally impor-
tant. Finite-amplitude perturbations can cause cata-
strophic switching between them. However, for a given
set of forcing conditions, there are always one or two
solutions that are most likely to appear. Some of the
minor mode solutions are very unlikely to appear at
all. In general, the solutions of the model can be clas-
sified as the grand thermal mode, the grand saline
mode, and the minor (or intermediate)) modes. Using
a value for the precipitation corresponding to the pres-
ent-day North Atlantic, the modeled thermohaline cir-
culation is very close to a critical state in all four cases.
A small increase in the precipitation causes a cata-
strophic change in the system, from the thermal mode
to a saline mode or an intermediate mode.

By imposing on the 3 X 2 model a freshwater flux
pattern based on the work of Schmitt et al. (1989), we
find that the catastrophe is split in two: the first from
the thermal mode to an intermediate mode and the
second from the intermediate mode to the saline mode.
The present-day thermohaline circulation in the North
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Atlantic is near the first critical state, and a small in-
crease in the precipitation can cause the thermally
dominated circulation of the model to collapse to an
intermediate mode, which is characterized by strong
sinking at midlatitude and a very sluggish thermohaline
circulation in the polar basin. This intermediate mode
resembles the circulation during the last glaciation. The
critical value required for the second catastrophe (from
the intermediate mode to the saline mode) is four times
larger than the present-day value. According to the
probability distribution study, the saline mode is un-
likely to happen.

The Monte Carlo experiment for a pole-pole basin
model suggests that the asymmetric modes are the most
likely modes for the present-day freshwater flux. How-
ever, the symmetric mode with upwelling at the equator
is the most likely mode for lower freshwater flux. (Since
our model is simplified so much, it is unclear what
would happen for a general circulation model.) This
observation also reaffirms the meaning of our study on
the single-hemisphere models. In fact, the asymmetric
mode for a pole-pole basin model can be seen as a
superposition of a haline mode and a thermal mode
in each hemisphere, as pointed out by Welander
(1986). We speculate that the modes, observed in the
3 X 2 single-hemisphere models, may be used as build-
ing blocks for a pole-pole basin multiboxed model.
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