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ABSTRACT

This work explores the formation and growth of waves on oceanic flows using a quasigeostrophic model: In
particular, we consider flow regimes consisting of zonal oceanic jets, similar in fact to the westward extension
of the Gulf Stream. Traditionally, the formation of waves has been ascribed to exponentially unstable modgs,
but rather than adopt this paradigm, we seek the most rapidly growing perturbation without restriction of its
structure to normal-mode form. Optimal excitations are determined using the adjoint of the quasigeostrophic
dynamic equations, and the perturbations found by this method are shown to grow more rapidly than the

unstable mode.

Applications of the theory presented here include determination of a tight upper bound on perturbation
growth rate, a constructive method for finding the most disruptive disturbance to a given flow, and a method
for determining the relative predictability of flows. From the form of the most rapidly growing perturbation,
resolution requirements for numerical models can be determined.

1. Introduction

The Gulf Stream is a major source of eddy variance
in the Atlantic basin and the formation of waves,
meanders, and rings in its westward extension has been
intensively studied observationally, analytically, and
by numerical simulation (Robinson 1983). Eddies are
believed to arise primarily as a result of what is com-
monly referred to as “instability,” a term that distin-
guishes spontaneous transfer of energy between the
stream and perturbations from the influence of wind
stress, local heat fluxes, and topographic forcing. We
adopt this notion of instability but avoid the more usual
identification of instability with exponentially growing
normal-mode solutions to linear perturbation equa-
tions,

Energy transfer between the stream and perturba-
tions can be separated into two forms, referred to as
baroclinic and barotropic. Baroclinic energy is potential
energy and arises from density gradients in geostrophic
balanced flow; it is associated with depth shear of the
current and is released by downgradient perturbation
buoyancy fluxes. Barotropic energy is kinetic energy
of the stream arising from velocity gradients along
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density surfaces; it is released by downgradient pertur-
bation momentum fluxes. The Gulf Stream has a jet
structure with velocity varying both across the stream
and with depth, so that both of these sources of per-
turbation energy may be important depending on the
static stability and the relative strength of the baroclinic
and barotropic shear.

Observations reveal rapid growth of meanders in the
eastward extension of the Gulf Stream into the North
Atlantic basin. Eddy variance associated with these
meanders and their finite-amplitude development, re-
sulting in shedding of rings, constitutes a major source
of perturbation energy in the ocean. Theoretical un-
derstanding of meander growth at small amplitude has
traditionally proceeded from the assumption that the
stream is unstable to infinitesimal perturbations, and
that the growth of exponential modes results in the
initial development of meanders (Holland and Haid-
vogel 1980). However, recent work on the initial-value
problem approach to perturbation development has
revealed that disturbances of nonmodal form grow
much more rapidly than exponential modes over time
scales appropriate to observed variance increases in the
atmosphere (Farrell 1985, 1989). The assumption un-
derlying this approach is that a spectrum of small, but
not infinitesimal, disturbances exists in the flow, and
that some subset of this spectrum will be configured
favorably to rapidly transform the large source of baro-
clinic and barotropic energy of the mean jet into per-
turbation energy. As we cannot, in general, control the
form that perturbations take, it is not justified to assume
that they initially have the structure of an unstable ex-
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ponential mode. If it happened that the most rapidly
growing perturbation were of modal form, then the
instability problem for small, but finite, perturbations
could be understood through study of the eigenvalue
problem reduced to identification of the most rapidly
growing exponential mode. We show this is not the
case and exhibit perturbations that grow more rapidly.
Perhaps surprisingly, the perturbation that most effec-
tively excites the most rapidly growing exponential
mode itself is not of normal-mode form nor, as it turns
out, is it, in general, the fastest growing perturbation
we seek.

We study both a barotropic and a baroclinic qua-
sigeostrophic model of a Gulf Stream-like jet and find
the most rapidly growing exponental mode on this flow.
Having introduced a norm to measure perturbations,
we find the optimal excitation for the exponential mode
over an appropriate time interval, and the growth of
this perturbation is compared to the growth of the ex-
ponential mode. Finally, the most rapidly growing per-
turbation is found and its growth compared with that
of the exponential mode and its optimal excitation.

2. Theory of optimal excitation

Before proceeding, we must first decide in what sense
we will consider a perturbation to be optimal (i.e.,
whether the perturbation maximizes the growth rate
of perturbation energy, or some other quantity such as
squared perturbation streamfunction or perturbation
enstrophy). We then need to devise a mathematical
tool that will allow us to find the perturbations defined
by the growth rate of a given norm. We will show in
this section that one way to obtain the optimal exci-
tation for a particular flow regime is to consider the
adjoint of the physical system under consideration. The
advantage of this approach is that a number of groups
(NMC, ECMWF, METEO-France, and AOML, to
name a few) are currently developing the adjoints of
atmospheric and oceanic general circulation models,
which at this stage are mainly for data assimilation
purposes. However, as we will demonstrate, these ad-
joint models have an additional and potentially very
powerful application, namely, for the study of insta-
bilities in the atmosphere and ocean, and for investi-
gating the predictability of atmospheric and oceanic
forecasting systems.

At this point, a discussion of perturbation equations
and the properties of their adjoints is appropriate. The
following discussion is by no means exhaustive, and a
more extensive discussion can be found in Le Dimet
and Talagrand (1986) and Lacarra and Talagrand
(1988). Consider a nonlinear system with state vector
\

av

—‘?=L(\I’). (1)

The solution ¥(¢) corresponds to a trajectory in phase
space uniquely determined by specification of an initial
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condition ¥(¢,). Perturbations to this initial condition
result in deviations from the original trajectory, so that
the system follows a new trajectory W (#) = W(¢) + ¥(¢).
Sufficiently small deviations y(¢) are obtained by in-
tegrating the tangent linear perturbation equation:

dy

a A1),
obtained by linearizing (1) about the solution ¥(¢).
This system relates deviations from the original trajec-
tory to perturbations y(¢,) imposed at the initial time
t;. In general, A(z) is a linear but nonautonomous op-
erator; it is autonomous if ¥ is a stationary solution
of (1). There is a unique operator called the resolvent
that connects the initial conditions at time ¢, to the
solution at a later time ¢:

(1) = R, n)(n). (3)

Before we can define the adjoint of (3), we must first
define an inner product, namely,

(x,¥). (4)

Using this definition of the inner product, we can define
a norm that is a measure of the relative magnitude of
solutions, that is,

[ x| = {x, x)!2 (5)

The choice of an appropriate inner product and
norm is obviously important and should reflect some
physically meaningful quantity that will shed light upon
a particular aspect of perturbation growth and devel-
opment. The structure of a normal mode is time in-
variant; therefore, all of its norms will grow at the same
exponential growth rate. In other words, one norm is
as good as any other for assessing the growth of such
a mode. This, however, is not the case for optimal per-
turbations. The structure and growth rate of these per-
turbations depend upon the chosen norm. While un-
stable exponential modes imply a given structure for
a developing disturbance, transient growth arises from
a large subset of perturbations that may be the optimal
perturbations for many different norms. Therefore, the
freedom to choose a particular norm as a measure of
perturbation amplitude has physical significance, as
discussed in detail by Farrell (1989). We will reserve
our choice of inner product and norm appropriate for
this study until section 3. For now, our discussion is
sufficiently general to encompass any choice of norm
and inner product. With this in mind, we will now
introduce the concept of an adjoint operator.

For any linear operator M, there exists an adjoint
operator M*, such that,

(x,My) ={(M*x, y), (6)

(Courant and Hilbert 1962, Vol. II). In particular, there
exists for the resolvent (R) of our system an adjoint
resolvent (R*) with the property

(2)
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WD), YD) = (R, 1)), R(L, 1)¥(1))
= (R¥(ty, OR(L, t)(1y), Y1), (T)

where use has been made of (4). This adjoint resolvent
is obtained from S(¢y, ¢), the resolvent of the adjoint
of (2); that is,

dy*
dt

where A*(¢) is the adjoint of A(?). It is easy to show
that the inner product of any solution of the pertur-
bation equation (2) with a solution of the associated
adjoint equation (8) is constant, and particularly

(), S(t, (D)) = (R, 1)W(1), ¥*(2)). (9)

Recalling the definition of the adjoint (6), inspection
of (9) shows that the adjoint of the resolvent of the
perturbation equation between #, and ¢ is the resolvent
of the adjoint equation between ¢ and ¢,. Operationally,
the perturbation adjoint over a time interval ¢; can be
obtained by integrating its adjoint equation backward
in time over the same interval.

We are now equipped to find the most rapidly grow-
ing perturbation in the norm of the bracket inner
product (5) over a specified time interval. We will de-
fine a squared amplification factor A using (5) over a
time interval 7 as

X = (Rt + 7, )W), R(# + 7, 1))
Uty), W) '

Equation (10) can be rewritten using the property of
the adjoint (6) as,

\ = (R*, 64+ TR + 7, 6)¥(h), (1))
(W(n), 1))

The largest eigenvalue of the composite operator
R¥R,, where R, = R(¢, + 7, t;), will be associated
with the most rapidly growing eigenvector of the norm
(¥, ¥). The entire spectrum of the operator R*R, is
of interest if we wish to study the growth of variance
in the system (Farrell 1990), but for the present pur-
poses we only need the largest A and its associated ei-
genfunction. These can be obtained by a simple ap-
plication of the power method suggested by inspection
of (11) (e.g., Booth 1955, p. 85) as follows. First, in-
tegrate the first guess ¥(¢;) forward in time from ¢, to
t; + 7, integrate the result backward in time with the
adjoint equation from ¢, + 7 to ¢, and iterate this pro-
cedure until convergence to the perturbation of largest
A is isolated. This procedure is constructive in that it
provides both the amplification factor A'/2 and the
most rapidly growing perturbation. Clearly, the form
of the adjoint R* and the ultimate meaning of the def-
inition of A resides in our choice of inner product (4).
We must, therefore, choose carefully to ensure that we
can define a physically meaningful norm.

= —AX()Y*, (8)

(10)

. (1Y)
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If we restrict our attention to stationary solutions of
(1), the perturbation equation (2) is autonomous and
the most rapidly growing exponential mode is easily
found by integrating forward a random initial ¥ until
exponential growth is obtained and the leading eigen-
function emerges. The most effective excitation of the
most rapidly growing exponential mode can be found
by using the biorthogonality between modes of the
perturbation equation and its adjoint. Recalling the
property of adjoints (6), and that the spectrum of an
operator v; is identical to that of its adjoint, a biorthog-
onality relation can be found (Courant and Hilbert
1962):

(v — v)X¥7, ¥y = 0. (12)
An arbitrary initial ¢ can be projected onto the modes:

N—>oo
o= 2 a. (13)
i=1
Excitation of the jth mode, «;, is found using (12):
2%
o= (L (14)
J ¥

Clearly, in this case the maximum «; results from
choosing ¢ to be the adjoint of the target mode. While
for self-adjoint systems the optimal strategy for exciting
a mode is to introduce a perturbation with the structure
of that mode, this is not the case for nonself-adjoint
systems.

3. Description of the quasigeostrophic model and its
adjoint

In order to apply the method outlined in the previous
section for finding the most rapidly growing pertur-
bation associated with a particular norm, we require
the adjoint of the tangent linear system. As mentioned
earlier, a number of groups have developed such adjoint
models, including the Harvard Oceanography Group
{Moore 1991). Given the ready availability of this
model, we will use it and the corresponding tangent
linear model to explore the growth of instabilities in
flow regimes applicable to the Gulif Stream.

The adjoint model of Moore was derived from the
finite-element, quasigeostrophic, Harvard Open Ocean
Model, which is described in detail by Haidvogel et al.
(1980), Miller et al. (1981), and Robinson and Wal-
stad (1987). The nondimensional quasigeostrophic
equations of motion for streamfunction () and vor-
ticity (¢) are as follows:

a¢ ¥
6—[+aJ(¢,§)+t3&—0 (15)

o ( oy ~
VH21[/+F2(—9;(¢7£)—§'—0 (16)
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where
a o
=t S
dxdy dydx
Voto f?D? No?
a==2; B=BoDt; I =tem TN
—g9
N ="8%. £ 205sing,
p 0z

where Vy, to, D, and H are the scalings used for velocity,
time, horizontal distance, and height in the vertical,
respectively; O is the central latitude of the model do-
main; and Q is the angular velocity of the earth. The
values of these parameters appropriate for the Gulf
Stream (see Robinson et al. 1988) are as follows:

Vo=04ms™!, t,=4days, D =40km,
H=700m, ©,=396, N?=2X103s72
fo=93X107s7", B=2%X10""ms™". (17)

Note that in the calculations described later, we will
neglect the 3 effect and so 5, = 0

Of interest here is the tangent linear system of (15)
and (16) and their adjoints. If we perturb ¢ by a small
amount &y, and ¢ by 8¢, the first-order equations de-
scribing the evolution of 8y and &¢ are given by

9% 1 ad(, 50) + ad(39, §) + e ‘”

3 =0 (18)

oY

v,,25¢+r262( —)—5§=0. (19)

0z

Equations (18) and (19) are discretized in space on
an Arakawa B grid (Arakawa and Lamb 1977) with
grid spacing 7.5 km and solved numerically using the
finite-element method of Fix (1975). The model is dis-
cretized in time using an Adams-Bashford scheme and
a time step of 22%2 min. The model geometry forms a
flat-bottomed periodic zonal channel, 600 km in length
and 360 km wide. Periodic boundary conditions are
imposed upon 6y and 8¢ in the east-west direction,
and there are solid walls at the northern and southern
boundaries.

We can combine ( 18) and (19) into a single equation
for 8y, namely,

96
—a-lli + aL7'J(Y, LoY)
+ aL 7 J(8Y, LY) + BL™! % =0, (20)
where the operator L is defined as
d a
L=VZ+T*—(o—].
" 0z (“az) (21)
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Before we can derive the adjoint of (20), we must
choose an inner product that yields a norm suitable
for assessing the growth of an instability. To this end
we will define

(b, py =— f f f YLodxdydz. (22)
Consider now,
(o0, ) = — f f f Sy Loydxdydz
- f ff spotdxdydz.  (23)

For constant stratification (i.e., ¢ constant), the total
perturbation energy E of the tangent linear system is
given by

1
E =+ (&, o). (24)

Therefore, the advantage of using (20) is that it allows
us to use the rate of growth of energy norm as a physical
measure of perturbation growth.

Using (6) and (7), we can derive the adjoint of
equation (20), namely,

*
6(3;0 + aJ(Y, 8Y*) + oLV J(8Y*, Ly)
K
+ 8L —  90V% =0. (25)
Ox
We can rewrite (25) in the following form,
K
W b aslw tu=0 (26)
9 ou ady*
2 2 7 -\ _ %k — =
Viu+ T az("az) al(30%, §) = B2 =0,
(27)

Using (9), it is easy to show that

% fff dy*d¢dxdydz = 0. (28)

The boundary conditions for the adjoint equations
(26) and (27) required to satisfy (6 ) will depend upon
the boundary conditions applied to ¥ and ¢ when solv-
ing the linearized quasigeostrophic equations (18) and
(19). Equations (18) and (19) are solved subject to
the conditions that dy and 8¢ are periodic in x, &)
= 0 at the northern and southern walls, and d6y//dz
= 0 at the top and bottom of the ocean. In order for
(6) to be satisfied, we must solve the adjoint equations
(26) and (27) subject to the conditions that é¢* and
p are periodic in x, and 6y* = 0 and u = O at the
northern and southern walls, with d6y*/dz = 0 at the
top and bottom.

a * =
= (v, oy =
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In practice, the linearized perturbation equations
(18) and (19) are discretized and solved numerically
as described earlier. For consistency, therefore, we must
derive the adjoint of the discretized versions of (18)
and (19). (For further details regarding the derivation
of the discretized adjoint model, see Moore 1991.) The
discrete analog of (22) is found to be

(W, ¢y =—-2 2 2 YijuLijxdije  (29)

Pj ok
where the subscripts i, j, and k reference model grid
points in x, ¥, and z, respectively. The discrete analog
of the time-invariant inner product (28) can also be

derived, namely,
> 2 2 ol xb8i . = const. (30)

i j ok

Following the procedure outlined in section 2, we
can use the linearized quasigeostrophic model and its
adjoint to find the largest eigenvalue, and associated
eigenvector, of the discretized form of .the total per-
turbation energy operator given by (24) for systems
with constant stratification. In short, the procedure is
as follows: We first integrate (20) forward in time from
t=t tot =t + 7 starting from some arbitrary first-
guess field 6y¥(¢;). In the examples presented later, the
first-guess field is given by a field of random noise. The
adjoint model (25) is then run backward in time from
t =t; + 7 to t = t; with initial condition &y*(¢; + 7)
= 6Y(t; + 7). The linearized quasigeostrophic model
(20) is then integrated forward in time once more,
subject to the initial condition &y(#,) = é¢*(¢,), and
the backward—forward iteration of the adjoint model
(25) and linearized model (20) is repeated until the
fastest growing eigenfunction ‘emerges in 8y. The result
given by (30) ensures that the inner product of y*
and §¢ remains constant during each iteration.

The background flow field about which (15) and
(16) are assumed linearized is a zonal oceanic jet sim-
ilar in form to that used by Holland and Haidvogel
(1980). The horizontal structure of the jet is given by
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FIG. 1. Streamfunction of the most rapidly growing exponential
mode for a zonal barotropic jet. Perturbation streamfunction (with
contour interval 0.2) is superimposed on the jet streamfunction (with
contour interval 1.0). Dashed contours indicate negative values.
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FI1G. 2. Streamfunction of the optimal excitation of the most rapidly
growing exponential mode on the zonal barotropic jet shown in Fig.
1. Contour interval 0.2.

—ULﬁerf(VEy) G31)

wy) = 2‘/5 L

where U is the amplitude of the jet, L is the jet width,
and erf( ) is the error function. In all of the experi-
ments described in the next section, U = 1.6 m s~
and L = 56km, consistent with the Gulf Stream “fea-
ture models” used by Robinson et al. (1988). Note,
however, that the exponentially growing modes of the
system considered here will not necessarily be identical
to those of Holland and Haidvogel even with identical
flow parameters, because in our system the model do-
main is periodic, whereas in their model, the domain
is bounded on all sides by solid walls.

4. Results and discussion

The Gulf Stream has a jet structure with both baro-
clinic and barotropic shears, so that conversion from
basic-state available potential and kinetic energy to
perturbation energy can occur. For simplicity, our first
example is restricted to barotropic dynamics by retain-
ing only the first vertical structure mode in (20). In
Fig. 1, the basic-state streamfunction is superposed on
the most rapidly growing exponential mode obtained
by integrating (20) for a sufficient time for the mode
to appear. The growth rate is w = 5, corresponding to
1.25 days per e fold with the nondimensionalization
(17). The phase speed is ¢, = 0.12, corresponding to
63 cm s~!. The structure of this mode is similar to the
normal modes found by Holland and Haidvogel
(1980). Figure 2 shows the optimal excitation for the
mode in Fig. 1 obtained by integrating equation (25).
The structure of this optimal excitation for the most
rapidly growing exponential mode differs substantially
from the structure of the exponential mode itself. Fig-
ure 3 shows the evolution of the most rapidly growing
perturbation over the time interval ¢ = 0.25 corre-
sponding to 1 day, obtained by iterating the dynamic
equation and its adjoint 100 times in the manner dis-
cussed in section 3. The structure of this most rapidly
growing perturbation is clearly different from that of
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F1G. 3. Streamfunction of the most rapidly growing perturbation
over a time interval ¢ = 0.25, corresponding to 1 day. The top panel
shows the optimal perturbation at ¢ = 0 while the middle and bottom
panels show the perturbation at ¢ = 0.125 and ¢ = 0.25, respectively.
Contour interval 0.2.

both the previous disturbances. In Fig. 4 the growth
rate of the perturbation energy is shown for each of
the above perturbations as a function of time. The ex-
ponential mode grows the least, followed by the optimal

agnm
adnm

fgnm J

Normalised K.E.
o

9.¢ 6.1 0.2 9.3 6.4 0.5 9.6 0.7 9.8 0.9 1.9

Time (days)

FiG. 4. Normalized perturbation energy growth of the exponential
mode (ggnm), the optimal excitation (adnm), and the most rapidly
growing perturbation (fgnm) on the zonal barotropic jet.

FIG. §. Streamfunction of the most rapidly growing perturbation
over a time interval ¢t = 1, corresponding to 4 days. The top panel
shows the optimal perturbation at ¢t = 0 (with contour interval 0.2)
while the middle and bottom panels show the perturbation at ¢
= 0.5 (with contour interval = 1.0}, and ¢ = 1.0 (with contour interval
= 5.0), respectively.

excitation, while the most rapidly growing disturbance
exceeds both.

Figure 5 shows the evolution of the fastest growing
perturbation over the time interval ¢ = 1, corresponding
to 4 days. Compared to the fastest growing perturbation
over a l-day period (Fig. 3), the perturbation of Fig.
5 has increased in wavelength and has a north-south
structure similar to that of the optimal excitation shown
in Fig. 2. Figure 6 shows the growth rate of the per-
turbation energy of each perturbation considered above
over a 4-day period. Once again, the exponential mode
and its optimal excitation are the slowest growing
modes.

Our baroclinic example retains two modes in the
vertical, with model levels centered at 500 and 3000
m. Velocity and buoyancy frequency profiles are shown
in Fig. 7. The horizontal structure of the jet is the same
as that of the barotropic jet considered above, and
shown in Fig. 1. Even though the jet still has significant
horizontal shear, the small value of N? ensures that
amplitude of barotropic instabilities will be small (e.g.,
see Holland and Haidvogel 1980). The mode of max-
imum exponential growth rate has an e-fold time of
0.6 days and a phase speed of 29 cm s™!, and its struc-
ture in each model level is shown in Fig. 8. The optimal
excitation for this mode is shown in Fig. 9. The most
rapidly growing perturbation over 1 day is shown in
Fig. 10 after 100 iterations. Again it is seen that the
structure of this perturbation differs from the expo-
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FIG. 6. As Fig. 4 but for a 4-day period.

nential mode and its optimal excitation. The growth
of perturbation energy for each perturbation over 1
day is shown in Fig. 11; the most rapidly growing ex-
ponential mode again has the smallest growth rate.
The fastest growing perturbation over a 4-day period
is shown in Fig. 12. The fastest growing perturbation
and the optimal excitation (Fig. 9) are very similar.
Figure 13 shows the growth of perturbation energy over

Velocity (m/s)

7} 1 2
1 I

[\

1000

200@{

Depth (m)

3000

4000

Buoyancy Frequency (cph)

FI1G. 7. Velocity profile (solid line) and buoyancy frequency profile
(dashed line) for the baroclinic jet of the 2-level model.
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F1G. 8. Streamfunction of the most rapidly growing exponential
mode on the zonal baroclinic jet of Fig. 7. The mode is shown at
500 m (top panel) and 3000 m (bottom panel). Contour interval
0.1.

a 4-day period for the most rapidly growing exponential
mode, its optimal excitation, and the fastest growing
perturbation. The curves for the latter two perturba-
tions are indistinguishable. This can be understood if

FIG. 9. Streamfunction of the optimal excitation of the most rapidly
growing exponential mode on the zonal baroclinic jet of Fig. 7. The
mode is shown at 500 m (top panel) and 3000 m (bottom panel).
Contour interval 0.1.
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F1G. 10a. Streamfunction at 500 m of the most rapidly growing
perturbation on the baroclinic jet of Fig. 7 over a time interval ¢
= (.25, corresponding to 1 day. The top panel shows the optimal
perturbation at ¢ = 0 (with contour interval 0.2) while the middle
and bottom panels show the perturbation at ¢ = 0.125 (with contour
interval = 1.0) and ¢ = 0.25 (with contour interval = 2.0), respectively.

FiG. 10b. As in Fig. 10a, but for the streamfunction at 3000 m.
The top panel shows the optimal perturbation at ¢ = O while the
middle and bottom panels show the perturbation at ¢t = 0.125 and ¢
= (.25, respectively. The contour interval is 1.0.
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FIG. 11. Normalized perturbation energy growth of the most rapidly
growing exponential mode (qgnm), the optimal excitation of the
most rapidly growing exponential mode (adnm), and the most rapidly
growing perturbation over a time interval ¢ = 0.25 corresponding to
1 day (fgnm) on the zonal baroclinic jet of Fig. 7.

we consider that the exponentially growing mode is
the fastest growing disturbance over infinite time.
Therefore, as the time period of integration of the tan-
gent linear model and the adjoint model is increased,

FIG. 12a. Streamfunction at 500 m of the most rapidly growing
perturbation on the baroclinic jet of Fig. 7, over a time interval f
= 1, corresponding to 4 days. The top panel shows the optimal per-
turbation at ¢ = 0 (with contour interval 0.2) while the middle and
bottom panels show the perturbation at t = 0.5 (with contour interval
= 5.0) and ¢ = 1.0 (with contour interval = 20.0), respectively.
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FIG. 12b. As Fig. 12a but for streamfunction at 3000 m. The top
panel shows the optimal perturbation at ¢ = { (with contour interval
1.0) while the middle and bottom panels show the perturbation at ¢
= (.5 (with contour interval = 2.0) and ¢ = 1.0 (with contour interval
= 10.0), respectively.

the structure of the fastest growing perturbation will
approach that of the optimal excitation for the expo-
nential mode.

Finally, we consider an example in which both baro-
tropic and baroclinic instabilities are important. In this
case we retain four modes in the vertical, with model
levels centered at 150 m, 450 m, 800 m, and 2750 m,
and adopt a velocity profile applicable to the Gulf

See0 T T T T T T
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------ adnm ,
————— fgnm |
4167 |- |
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Q3333 | / e
o /
o /
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e
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2 1 e e = - 1 1 1
8.0 8.5 1.0 1.5 2,0 2.5 3.0 3.5 4.8 4.5 5.0
Time (days)

FIG. 13. As Fig. 11 but for a 4-day period.
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FiG. 14. Velocity profile (solid line) and buoyancy frequency
(dashed line) for a four-level jet.

Stream. The velocity and buoyancy profiles for this

model are shown in Fig. 14. The horizontal structure

of the jet is given by (3.15) and illustrated in Fig. 1.
The exponential mode with a maximum growth rate

FI1G. 15. Streamfunction of the most rapidly growing exponential
mode on the zonal jet of Fig. 14. The top panel shows the mode
structure at 150 m (with contour interval = 0.2), while the middle
and bottom panels show the structure at 800 m (with contour interval
= 0.1), and 2750 m (with contour interval = 0.002), respectively.
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FIG. 16. Streamfunction of the optimal excitation of the most
rapidly growing exponential mode on the zonal jet of Fig. 14. The
top panel shows the perturbation structure at 150 m (with contour
interval = 0.2), while the middle and bottom panels show the structure
at 800 m (with contour interval = 0.2), and 2750 m (with contour
interval = 0.04), respectively.

F1G. 17a. Streamfunction at ¢ = 0 of the perturbation giving optimal
growth over a period ¢ = 0.25 (1 day). The top panel shows the
perturbation structure at 150 m (with contour interval = 0.2), while
the middle and bottom panels show the structure at 800 m (with
contour interval = 0.2), and 2750 m (with contour interval = 0.01),
respectively.
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has an e-fold time of 1.2 days and a phase speed of 46
cm s~'. Its structure at 150 m, 800 m, and 2750 m is
shown in Fig. 15. The optimal excitation for this mode
is shown in Fig. 16. The fastest growing perturbation
over a period ¢t = 0.25 (1 day) is shown in Figs. 17a
and 17b. Vertical sections of the streamfunction along
the axis of the jet for the exponential mode, its optimal
excitation, and for the fastest growing perturbation are
shown in Fig. 18. The depth scale in Fig. 18 is stretched
so as to highlight the vertical structure of each pertur-
bation in the upper 1000 m. Figures 17 and 18 indicate
that the exponential mode with a maximum growth
rate is dominated by a baroclinic instability since the
streamlines lean backward upstream into the jet flow
field in the vertical plane and not in the horizontal
plane. Energy is therefore only extracted from the jet
flow field through the presence of vertical shear. The
fastest growing perturbation on the other hand has both
barotropic and baroclinic instability components. Fig.
17a shows that at ¢ = 0, the perturbation streamlines
lean back into the jet flow field in the horizontal plane,
thereby allowing energy to be extracted from the jet
through the presence of horizontal shear. In addition,
Fig. 18 shows that there is also an upstream tilt in the
streamlines in the vertical plane associated with the
fastest growing perturbation at 1 = 0. After 1 day (¢
= (.25) the upstream horizontal tilt and vertical tilt of
the streamlines of the fastest growing perturbation has
decreased (Figs. 17b and 18). The growth of pertur-

F1G. 17b. As Fig. 17a, but at t = 0.25. The top panel shows the
perturbation at 150 m (with contour interval = 1.0), while the middle
and bottom panels show the structure at 800 m (with contour interval
=0.5), and 2750 m (with contour interval = 0.01), respectively.
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Fi1G. 18. Vertical sections of streamfunction along the axis of the
zonal jet in Fig. 14 for the most rapidly growing exponential mode,
(with contour interval = 0.2), its optimal excitation (with contour
interval = 0.2), and the fastest growing perturbation which is shown
at ¢ = 0 (third panel, contour interval = 0.2), and at ¢t = 0.25 (fourth
panel, contour interval = 1.0).

bation energy for each perturbation on the four-level
jet of Fig. 14 is shown in Fig. 19.
5. Conclusions

We have studied the growth of small perturbations
in both a barotropic model and a multilevel quasigeo-
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strophic model for a flow regime similar to that of the
Gulf Stream and found that the most rapidly growing
exponential mode was not the fastest growing pertur-
bation. In fact, the exponential mode was found to be
suboptimal even for the task of exciting itself. Solution
for the most rapidly growing perturbation over a short
limited time interval produced a disturbance that in
general differed substantially from both the exponential
mode and its optimal excitation. For periods longer
than a day or two, the fastest growing mode and optimal
excitation are nearly identical for the baroclinic case.
Considering that the field of perturbations in the ocean
is of finite amplitude and not constrained to assume
the form of exponential modes, it is likely that distur-
bances with structure near to the optimal excitation
occur by chance and result in rapid development of
meanders.

Our use of stationary basic-state flows is a concession
to computational and heuristic convenience, and not
a fundamental constraint on the method that can as
well integrate the nonautonomous perturbation and
adjoint perturbation equations that result from a non-
stationary basic-state flow.

It has been observed in the atmosphere that seem-
ingly small changes in the basic-state flow can produce
large changes in the optimal excitation growth rate and
therefore the predictability of the flow (Palmer 1988).
Study of similar situations in the Gulf Stream may
reveal flow configurations that are particularly suscep-
tible to the formation of large meanders and subsequent
ring generation.

A prediction model that is designed to be valid over
a given interval of time should have sufficient hori-
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FI1G. 19. Normalized perturbation energy growth of the most rapidly
growing exponential mode (qgnm), the optimal excitation of the
exponential mode (adnm), and the fastest growing perturbation over
a time interval 1 = 0.25 corresponding to | day (fgnm) on the zonal
jet of Fig. 14.
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zontal and vertical resolution to capture the structure
of the most rapidly growing disturbances. This re-
quirement may be quite restrictive, particularly when
the background stratification is weak since, when this
is the case, the fastest growing perturbation wavelength
is shortest.

Extension of this work to flows with alongstream
variation and to flows that vary in time is straightfor-
ward. For example, stationary flows with localized jets
are found to have optimal excitations that exploit the
energy stored in the basic-state deformations associated
with confluence and diffluence (Farrell 1990). The in-
creasing availability of adjoints, which are being de-
veloped for the purpose of data assimilation in dynam-
ical models, will offer opportunities to extend the study
of optimal excitation in the future.
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