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ABSTRACT

A theory for the generation of coastal-trapped waves (CTWs) by an oscillatory coastal flux through a strait
is extended so as to make velocity, pressure and energy flux everywhere continuous. This development is
achieved through the inclusion of Kelvin and Poincaré wave modes in a match for pressure leading to a system
of linear equations for the unknown amplitudes. A Kelvin wave incident on the eastern mouth of Bass Strait
for example is shown to preferentially scatter energy into CTW modes 2 and 1 on the shelf, as well as driving
a Poincaré wave field that results in a velocity jet trapped to the Victorian coast. Such coastal velocity jets are
also a feature of the scattering of CTWs incident on a strait. For a mode » incident CTW, the fraction of net
energy flux that enters the strait is also shown to be well approximated by hgb,? where A, is the strait depth and
b, a coupling coefficient. The scattering of the remaining energy among other CTW modes is detailed and
shown to become larger as the incident mode number or frequency is increased. Similar results are also found
for the scattering by a bay and while the net energy flux into a bay will in general be near zero, the coastal jets
on each side of the bay may significantly effect the local circulation.

1. Introduction

In recent years considerable progress has been made
in understanding how coastal-trapped waves (CTWs)
may be generated and scattered by straits and bays. In
a barotropic analysis, Buchwald and Kachoyan (1987)
have detailed the shelf wave response to forcing by a
prescribed oscillatory coastal flux through Bass Strait.
This analysis while valid at all subinertial frequencies
is restricted to an exponential shelf topography and
allows for both long and short wave modes. The results
obtained did suggest however that the response on the
east Australian shelf should be dominated by modes 2
and 1 as observed during the Australian Coastal Ex-
periment (Church et al. 1986). The importance of an
oscillatory coastal flux in driving CTWs has also been
demonstrated for the Hudson Strait/Labrador Shelf
region by Wright et al. (1987). In this barotropic anal-
ysis a step-shelf was assumed and only mode 1 and the
Kelvin wave were generated, although the results were
successful in predicting the coastal response of adjusted
sea level some 500 km south of the strait. For the ideal-
ized topography assumed, Wright et al. (1987) also
detailed how the energy of a mode 1 shelf wave may
be scattered into Hudson Strait and Bay and subse-
quently rescattered onto the Labrador Shelf. An ad-
ditional feature of this work was in showing how large
bays may be resonantly forced by atmospheric pressure
variations resulting in the coastal forcing of shelf waves.
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The scattering of shelf wave energy by rectangular
bays has also been addressed by Stocker and Johnson
(1989). In their barotropic analysis, exponential pro-
files of both the shelf and bay/shelf regions were as-
sumed and the scattering of incident energy into short
waves and standing trapped waves was detailed. Both
this and the barotropic analysis of Buchwald and Ka-
choyan (1987) assume the existence of short waves,
although such waves may not exist at low frequencies
in stratified seas (Chapman 1983) or in regions where
a mean alongshore current exists (Webster and Na-
rayanan 1988).

A scattering theory, which does not rely on the ex-
istence short waves, has been advanced by Middleton
(1988) who showed that the forcing of long CTWs by
an oscillatory coastal flux is directly analogous to forc-
ing by wind stress. Middleton (1988 ) was able to dem-
onstrate that the CTW response to a coastal flux may
be obtained for arbitrary shelf bathymetries in fric-
tional, stratified seas using existing theories for wind-
forced CTWs. This analysis was however restricted to
low frequencies where the long-wave approximation is
valid, and as with the work of Buchwald and Kachoyan
(1987), the coastal velocity flux was prescribed and no
account was taken of the dynamics of the strait or if
pressure was continuous across the strait mouth.

Most recently Middleton and Viera (1991 ) have ex-
amined sea level and current meter data from Bass
Strait (Fig. 1a) to show that local wind and CTWs
incident from the Great Australian Bight, are of equal
importance in driving an oscillatory flux through the
castern strait mouth, at a period of 240 h. The models
for forcing developed by Middleton and Viera (1991)
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F1G. 1a. The bathymetry of the Bass Strait region where depths are in meters and the solid
circles and crosses denote the site positions of sea level and current meter data that were

analyzed by Middleton and Viera (1991).

allowed for scattering of CTW energy into and out of
the strait by directly matching coastal sea level within
the strait (dominated by forced Kelvin waves) to sea
level on the adjacent shelves (dominated by the CTWs
there incident or generated ). This analysis, while rea-
sonably successful in predicting the variability of coastal

iy

CTWs
PP =0

VIC.

(-L,d)8
I=Iy+ [g—e

R -~

0| x

|
|
|
I
I
|
I
I
!
|
| TAS.
|

|

I
I
|
|
I
|
|
I
I
I
|
I

HG. 1b. The idealized bathymetry of Bass Strait of length L = 416
km, width & = 230 km, and depth A, = 70 m. Incident (/) and
reflected (R) Kelvin waves are indicated along with the direction of
CTW propagation. Note that the incident wave may be regarded as
consisting of two components I, and I where the former corresponds
to, say, a wave generated within the strait, and the latter to a wave
that is reflected at the western strait mouth for which pg + pj, =~ 0
atx =(—-L,d).

sea level within Bass Strait, was unable to adequately
describe the observations of current near the western
strait mouth. As we will see, this inadequacy arises in
part from the models developed, where pressure was
not matched at all points across the regions separating
the strait and adjacent shelves.

In the analysis below, the scattering theories of Mid-
dleton (1988) and Middleton and Viera (1991) are
extended so as to allow for continuity of velocity and
pressure across the strait mouths. In section 2, the the-
ory for the generation of CTWs by a coastal flux is
outlined through the inclusion of the Kelvin waves and
the Poincaré waves that may be supported within a
strait. For illustrative purposes we will consider (section
3) the case of Bass Strait, while in section 4 the problem
of scattering of CTW energy into the strait and also a
rectangular bay is addressed. Since we are here con-
cerned with elucidating the physics and solution tech-
niques for these problems, only the generation of long
barotropic waves is examined, although as will become
evident, the analysis may be extended to the scattering
of CTWs in a stratified ocean. For this reason long
barotropic shelf waves will be referred to as CTWs.

2. Scattering out of a strait: Theory

The governing equations for barotropic, linear mo-
tions in a frictional sea may be written as
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U — fo=—px/p—rulh (2.1a)
v, +fu=—p,/p—rv/h (2.1b)
P+ pgV - (hu) =0, (2.1¢)

where the (x, y) coordinate system is defined in Fig.
1band f= —9.15 X 107 sec”! denotes the Coriolis
parameter for the Bass Strait region. Within the strait
the depth 4 is taken as the constant /4y = 70 m while
on the shelf 2 = h(x). Bottom friction is incorporated
through the parameter r and in the following (u, v, p)
are assumed to be proportional to exp(—iwt), where
frequency w is positive.

At low frequencies, where terms of order (w/f)?
may be neglected, the equations for the strait may be
combined to yield

Vzp — azp =0, (2.2)
where
a™ = sgn()0Vgho! If | (2.3)

denotes the deformation radius modified by the effects
of friction through

8 = sgn(f)(1 + ir/why)'/?. 2.4)

Now, consider a Kelvin wave that is incident on the
eastern edge of the idealized strait (width &) as shown
in Fig. 1b. As a solution to (2.2) it may be written as

(2.5)

where I denotes a specified amplitude and [, = wf/

gho the wavenumber, assuming that | /)| < || and
v = 0 on the Victorian and Tasmanian coastal bound-
aries. Note that for Bass Strait fis negative so that the
incident wave propagates with the coast on its left as
shown in Fig. 1b. This wave will also scatter energy
onto the shelf as well as into a reflected wave

pr = Ie*” exp(—ilpx),

Dr = Re™ % exp(ilpx), (2.6)

where the coefficient R is to be determined. In addition,
we may expect a Poincaré wave field to be generated
near the inner edge of the strait. At the low frequencies
of interest these waves are evanescent in the x direction
and from (2.2) the nth mode may be derived as
x<0,

Dn(x,y) = sin(r,y + €)™, (2.7)

where r, = nw/d and € = —iw8?/f. Terms of order
(w/f)?and («/r,)* have been neglected and for Bass
Strait, |a™'| ~ 306 km and d = 230 km, so that |«/
rn|? ~ (n7)~% < 1. Note that the Poincaré wave con-
tribution to coastal pressure is from (2.7) of order ¢
~ |w/f|. For Bass Strait the energy containing band
has been identified as that corresponding to 240 h
(Middleton and Viera, 1991) so that e ~ 0.08 and the
Poincaré wave contribution to coastal pressure is small.
The velocity field associated with the Poincaré waves
is given by
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2.8
up = —(pf)"'r, cos(rpy)e™ (28

if again terms of order (w/f)? and (a/r,)? are ne-
glected.

Within the strait, the solution for the scattering of
the incident wave p; will be assumed to consist of the
reflected wave (2.6) and the Poincaré waves (2.7), so
thatat x = 0~

v = (pf ) 'rasin(ray)e™ }

p(0~,y)=1Ie*” + Re~ + > d,sin(r,y+e¢), (2.9)

1

where the d,, denote amplitudes to be determined. The
net time-averaged energy flux through the strait (sub-
script ) is given by

d

Ty = ihof [u*p + up*]dy,  (2.10)

(¢}
where the asterisk denotes the complex conjugate. It
may be shown that the evanescent Poincaré waves
make no contribution to T'y, and since the Kelvin wave

velocity u is in geostrophic balance, (2.10) may be
written as

Ty = —(ho/4pf) [ PxP %1% (2.11)

where pg is the pressure due to the Kelvin waves alone.

The incident Kelvin wave will also act to generate
CTWs on the shelf through the displacement of fluid
columns into deeper or shallower water. Such CTW
generation by a prescribed oscillatory velocity field at
a strait mouth has been examined by Middleton
(1988). The basis of the technique is to expand the
velocity field at the strait mouth,

U(y)=u(07,y) = u(0%, y) (2.12)

in terms of the eigenfunctions for CTW pressure F,(x),
where for the nth mode

Pr(X;¥) = Fo(X)$n()

and the ¢,(y) satisfy the forced long-wave equation

(—iw/Cn)dn + ¢ny +r Z Apm®m = —Pfhobn U(y):

m=0
(2.13)
where ¢, = w/k, is the phase speed,
by = Fu(0) (2.14)
a coupling coefhicient such that
ho X b =1 (2.15)

and the a,,, an infinite set of frictional damping coef-
ficients, (Brink 1982; Clarke and Van Gorder 1986).
For readers unfamiliar with the analysis of Middleton
(1988), the wave equation (2.13) for forcing by a
coastal flux is directly analogous to that of forcing by
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an alongshore component of wind stress 7 since if we
identify U = — 7/ pfhy, the velocity U then simply cor-
responds to the Ekman velocity at the coast that is
driven by the wind.

For illustrative purposes, we shall adopt a simpler
model for friction than that given in (2.13) and truncate
the sum to a,,¢. so that a,,, = 0 for m # n. In this
case (2.13) may be integrated immediately to obtain

y
6a() = —ofhobs fo U(De®6—Ddp  (2.16)

forO0 < y<d,where K, = k, + v,iand v, = ra,,. The
eigenfunctions F,, b,, K, etc., are all readily calculated
from the suite of CTW programs of Brink and Chap-
man (1985), and using their normalization for the ei-
genfunctions, the net energy flux crossing the cross-
shelf section at y = d is given by

Tn = —¢u(d)di(d)/40f. (2.17)

Note that for y = d the CTWs propagate as the free
waves

Pn(X, ) = ¢u(d) Fr(x)e™07D . (2.18)

For 0 < y < d, the total CTW pressure field at x
= 0" may now be written as

y
p(0%, ) = *pffo UG($—y)dE, (2.19)
where

G(§) = ho 3 b;le™ ™,

n=0

(2.20)

The velocity field U(y) at the strait mouth is by the
definition (2.12) equal to that on either side of the
strait mouth. Thus from the assumed Kelvin and
Poincaré wave expansion within the strait, it is given
by

—pfU(y) = a{le® — Re™} + 2 dpul'm cOS(rmy).
1

(2.21)

As (2.21) stands, U(y) is not prescribed since the coef-
ficients R and d,, are unknown. Indeed, their deter-
mination will result from the condition that pressure
match across the strait mouth which from (2.9), (2.19)
and (2.21) may be written as

Ie” + Re + 3 d, sin(r,y + ¢€)
1

Y ®©
= af [Ie“f - Re‘“‘+i 2 Aml'm COS(rm()}
1

0

X G(E—py)de=0. (2.22)

Solutions for R and the first N Poincaré wave ampli-
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tudes are to be obtained below from a matrix equation
that results by (i) truncating the sum in (2.22) to N
Poincaré modes and (ii) by evaluating (2.22) at the N
+ 1 points y;/d = i/(N + 2) for i = 1, N + 1; the
Collocation Method, (Brown, 1973). The N + 1 linear
equations in N + 1 unknowns may then be solved. A
finite number of (eleven) CTW modes will also be as-
sumed in the expression (2.20) for G. With the R and
d,, determined, the strait and shelf pressure and velocity
fields may then be constructed.

It should be noted that the above solution technique
is formally only valid at low frequencies (w/f)? < 1,
where the long-wave approximation is valid, and where
the strait width dis of order or less than the deformation
radius V% / |f1; the latter condition follows from the
assumption that | a/r,|? < 1. However, no restrictions
are made on the shelf topography /(x) and the analysis
may be immediately extended to forcing of CTWs in
a stratified ocean, (Middleton 1988). Quite simply, if
the eigenfunctions F,(x, z) of the dominant modes
generated in a stratified ocean are reasonably indepen-
dent of depth z near the coast, then F,(x) in the above
may simply be replaced by F,(x, z).

Finally, before presenting detailed solutions three
points may be made about the above analysis. The first
point is that the generated CTW pressure field (2.19)
vanishes at y = 0 and since energy can only propagate
forward of this site, y = 0 may be regarded as a “geo-
graphical origin”. The second point is that at very low
frequencies where € ~ |w/ f| is near zero, the coastal
pressure within the strait is dominated by the Kelvin
waves. Thus, from (2.9) the reflection coefficient may
be immediately determined as

R=-1I (2.23)

The final point to be made concerns the generation
of the CTW modes. If we consider the simplistic case
where the velocity flux is prescribed to be uniform U
= U, then following Middleton (1988), (2.17) reduces
toT, = — 4 pf(hodb,Us)? sinc*(k,d/2)in the inviscid
limit. Now if the velocity U, within the strait is also in
geostrophic balance, then the flux (2.11) out of the
strait may be written as Iy, = — 1 pfhod?U,* so that

T',/Ty = hob,” sinc?(k,d/2). (2.24)

The point here is that the modes which will be most
preferentially generated will be those for which hgb,>
is largest, i.e. those modes with the largest coupling
coefficient b,. As will be seen b, may be largest for
mode 2 rather than mode 1. The result (2.24) is as
best approximate since as will be shown the flux U
cannot be prescribed and may be far from uniform.

3. Scattering out of a strait: Results

In order to illustrate the scattering theory a shelf
bathymetry was chosen that is typical of both the west-
ern and eastern sides of Bass Strait. The first 11 long-
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TABLE 1. The long-wave phase speeds ¢,, friction coupling coef-
ficients a,, and “wind” coupling coefficient b,, expressed as /b,
where 4, = 70 m. The latter form is chosen as it is a measure of the
energy scattered into a strait (4.8) and out of a strait, (2.24).

CTW Cn aun X10°
mode (ms™) (sm™) hob,t X 107
0 40.86 0.002 1.3243
1 3.23 0.596 19.4986
2 1.70 3.509 50.2505
3 0.84 2228 8.0194
4 0.43 4.500 47983
5 0.29 7.176 4.2808
6 0.19 8.099 2.6049
7 0.15 29.240 8.8666
8 0.13 3.348 0.2933
9 0.10 2.907 0.0030
10 0.07 3.495 0.0004

wave eigenfunctions were then computed along with
the ¢,, a.. and b,, (Table 1). A friction parameter r
=4.6 X 107 m s~ was chosen as typifying both fric-
tion within the strait (Clarke 1987) and very crudely,
friction on the shelf resulting in a decay scale v, ! that
was at least 3k,”! (for modes 2 and 7) and generally
more, v, ! 2 6k,”! at the period of 240 h (10 days)
assumed. The friction parameter chosen for the shelf
is perhaps unrealistically large since the tidal velocities
upon which it is based will be much weaker on the
shelf than in the strait. However, since the model for
friction is itself only approximate and as results for r
= 0 will also be presented, we shall ignore this deficiency
in this illustrative analysis.

The validity of the CTW modes at the frequencies
of interest was also examined by determining the phase
speeds ¢, ¢; and ¢3 without resort to the long-wave
approximation. In particular, these c;, ¢; and ¢; were
found to be 20% less than their long-wave counterparts
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in Table 1 at periods of 7.3, 5.9 and 14.4 days, respec-
tively. Thus, even if all scattered energy resides in these
and the Kelvin wave modes, the results below will not
be formally valid for periods shorter than the 240 h or
10 days assumed here.

The scaled amplitudes d,,/I and R/I were obtained
from (2.22) using the Collocation Method for N = 11
Poincaré modes. The results both with and without
friction (r = Q) are presented in Table 2 and show that
the | d,,| decrease rapidly with m: |dyg|/| di| ~ 0.01.
The gravest four amplitudes were also found to differ
by less than 10% if the number of modes N was chosen
as 11 or 16, (see Table 2), and for the higher modes,
the differences in the | d,,| become larger but the am-
plitudes become smaller. The convergence and thus
validity of these results seems reasonable. The conver-
gence of the amplitudes of velocity r,,| d,| is slower
with rig| dig|/r1| di| = 0.08 t0 0.2. The reflected Kel-
vin wave amplitude R in all cases examined is also
close to that expected for the low frequency limit (2.23)
where R/I = —1.0 and only the Kelvin waves contrib-
ute to coastal pressure.

The pressure fields p(0~, y) and p(0*, y) were then
reconstructed and as shown in Fig. 2, the match in
both the inviscid and frictional cases is excellent. The
Collocation Method of course constrains the match to
be exact at the N + 1 = 12 points where the difference
equation for pressure (2.22) is evaluated. The results
shown were however plotted using 40 points between
y=0andy=d.

The results shown do differ substantially from those
obtained where no Poincaré waves were included and
exhibit a strong pressure gradient near y = d, with
a corresponding jet U(y) trapped to the Victorian
coast, Fig. 3, where U = p|f| dU/I denotes the non-
dimensional velocity. Observations of coastal sea level
from the east Victorian coast (site 3; Fig. 1a) show that

TABLE 2. The magnitudes of the Poincaré wave amplitudes |d,,| and R or T for the inviscid (» = 0) and frictional cases (r # 0). Each
amplitude has been normalized by the incident wave amplitude /. Results are shown for the modes associated with CTW generation by a
coastal flux and the scattering of a mode 1| CTW by a strait and a bay. Results for the case of a coastal flux with N = 16 Poincaré wave

modes and r # 0 are also shown.

Coastal flux Strait Bay -
Poincaré
mode r=90 r#0 N=16 r=90 r#0 r=0 r#0
1 9211 7228 7258 3974 3440 5241 4500
2 4125 2923 .2984 1158 .1092 1511 .1029
3 2416 1663 1736 .0655 .0615 .1082 .0951
4 1550 1018 1108 0638 .0455 0500 0356
§ 1042 0674 0770 0275 0231 0548 0415
6 .0702 .0441 .0548 .0283 .0206 .0208 .0139
7 0478 10297 0402 0131 0105 0257 .0190
8 0304 0184 0295 0121 .0087 0088 0055
9 0193 0153 0218 0053 0042 0104 0075
10 .0094 .0056 .0160 .0038 .0027 .0027 .0016
11 0047 0027 .0140 0013 0010 0025 0017
R (—1.00, .052) (—1.02, .054) —(1.02, .06) — — — —_
T — — —_ (1.27, .11) (1.18, .30) (.71, —.01) (.68, —.06)
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F1G. 2. The magnitude and phase difference of the pressure fields
within the strait (2.9) (the solid curves), and on the shelf (2.19),
(the dashed curves). Where no visible difference is apparent only the
solid curve is shown. The three sets of curves were obtained using N
Poincaré wave modes where for curves (a) N =0, curves (b) N= 11
and r = 0O (an inviscid sea) and curves (¢c) N= 1l and r # 0 (a
frictional sea). Note that pressure has been normalized by the incident
Kelvin wave amplitude 1.

p(07, d) = 0.1pg Pa for a period of 240 h, (Middleton
and Viera 1991). Since the Kelvin waves dominate
coastal sea level, p(0~, d) ~ px(0~, d) = I(e*? — e™*9)
so that  ~ 0.06pg Pa. In this case the velocity of the
jet trapped to the Victorian coast would be of order 47
cm s~! and 31 cm s~! in the inviscid and frictional
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FIG. 3. The nondimensional magnitude and phase of the coastal
flux velocity U = p |f| dU/I obtained using N Poincaré wave modes
where for curves (a) N = 0, curves (b) N = 1! and r = 0 and curves
(c)N=1land r+#0.
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cases, respectively. The existence of such a coastal-
trapped jet follows from the fact that the velocity v is
also implicitly matched in the region of the strait-shelf
boundary; such a jet deflects to the east the northward
excursion of water on the adjacent shelf that is driven
by the CTWs. These results are illustrated in Fig. 4
where the pressure field normalized by I has been con-
toured for the eastern region of the strait. Note that
the jet within the strait results in a shadow zone on the
coast of the continental shelf,

The net energy flux (2.17) for each mode was also
calculated at y = d and scaled by the total flux that is
directed through the eastern strait mouth, (2.11). The
results (Table 3) show that modes 2 and 1 are dominant
and indeed the flux magnitudes are similar to those
found for the case where no Poincaré waves were al-
lowed, (T'y, T;) = (0.18, 0.32)I'y,, and to those that
may be obtained from (2.24) where U was assumed
to be spatially uniform and I,/ T, oc kb, (Table 1).
Thus, to a first approximation, the energy flux carried
by each mode might be estimated simply from the ap-
proximate expression (2.24). Such estimates would at
least be useful in identifying the most energetic modes
that might be generated by straits before further com-
putation.

The similarity of the results obtained with and with-
out the Poincaré waves also supports the contention

by Middleton (1988) and Buchwald and Kachoyan

~1,2)

i
{0.0)

-1,01 (0-5,0)

FiG. 4. The nondimensional amplitude of pressure (normalized
by I) for the case of CTWs generated by an incident Kelvin wave
(period 240 h) assuming r = 0 and N = 11 Poincaré wave modes.
The geometry is as shown for Bass Strait in Fig. 1b and the (x, y)
coordinate values shown have been scaled by 4, the strait width, For
the most energetic CTW modes | and 2 a quarter-wavelength is equal
to 3.0d and 1.64, respectively.
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TABLE 3. The percentage of net energy flux for the five dominant CTW modes and the totals of all CTW modes in the inviscid (r = 0)
and frictional (r # 0) cases. Results are shown for the CTWs generated by a coastal flux and the scattering of a mode 1 CTW by a strait and
a bay. The net flux T, scattered into the strait and the bay is also shown.

Coastal flux Strait Bay

Mode r=0 r#0 .r=0 r#0 r=0 r#0

1 20.22 20.04 61.01 56.34 95.67 84.51

2 53.05 46.62 14.43 8.27 1.05 0.57

3 8.46 7.05 2.53 1.63 0.77 043

4 4.51 3.21 0.88 0.50 1.10 0.48

5 3.46 2.32 .0.14 0.13 0.77 0.27
CTW total 98.67 84.839 79.85 67.37 99.99 86.58
T, — — 20.13 19.58 0.00 0.10
Total 98.67 84.89 99.98 86.95 99.99 86.68

(1987) that the dominance of mode 2 found during
the Australian Coastal Experiment results from its
preferential generation by an oscillatory mass flux
through Bass Strait. The inclusion of the Poincaré
waves also leads to conservation of energy in the in-
viscid case, (Table 3), where the net flux of energy
carried by all 11 CTW modes is 98.67% of that leaving
the strait, I';,. With friction energy is no longer con-
served and around 15% is dissipated in the region of
the shelf between y = 0 and y = d. The flux of energy
associated with each of the CTW modes 1 to 5 in Table
3 is also changed by less than 1% if the number of
Poincaré wave modes is increased from 11 to 16. This

stability again suggests that the results are reasonably

convergent. In addition, the conservation of energy
found in the inviscid case as well as the dominance of
modes 2 and | suggests that the 11 CTW modes as-
sumed are sufficient.

In the above we have not inquired into the origin
of the incident Kelvin wave or the fate of the reflected
wave. For Bass Strait, Middleton and Viera (1991 ) have
shown that the incident wave may be the result of local
wind forcing or remote forcing by CTWs that scatter
energy into the western strait mouth. In either case the
reflected wave (2.6) is subsequently backscattered at
the western strait mouth, (Fig. 1b). The results here
may be immediately generalized to incorporate this
additional scattering, by splitting the incident wave
amplitude I into two components I, and I where the
former corresponds to say, a wave generated within the
strait, and the latter to the wave that is reflected from
the western strait mouth. The condition that pressure
must vanish at the northwest strait corner implies that
DPr + pr, = 0 which with (2.23) yields

I=1Io(1 + Bk, (3.1

where @ = exp(—ad). Thus with I, known, the (net)
incident wave amplitude I may be determined. (Note
that for Bass Strait | 82¢ 20| ~ 0.22.)

We may also consider the case where the strait is
connected to a large enclosed sea such as Hudson Bay.

Wright et al. (1987) have shown that atmospheric
pressure variations over that bay can lead to an oscil-
latory flux through Hudson Strait with a corresponding
sea-level signal 4 [their Eq. (14)] at x = (0, d) for our
geometry. The analysis here is again applicable since
by equating the Kelvin wave pressure field within
Hudson Strait to pgn we obtain an incident wave am-
plitude of

1= Bpi/(1 — B%). (3.2)

The bathymetry of Hudson Strait and the adjacent shelf
does differ considerably from that of the Bass Strait
region and in particular (bg, by, b)) = (1.7, 4.0, 1.5)
X 1073 cm™!/? so that mode 1 may be expected to be
dominant, (Middleton and Wright 1991).

4. Scattering into a strait or bay

Here we consider the problem of how an incident
CTW p;shown in Fig. 5 may scatter energy into a strait
or bay. We address the strait problem first and for-
mulate the solution for x < 0 as

p(x, y) = Te—(ay—ilox) + Reay—ix’ox

+ > d, sin(r,y + e)e™, (4.1)
1

where T and R now denote the amplitudes of Kelvin
waves (driven by the incident CTW) and the latter
wave is included so as to follow for possible reflection
at x = —L, the eastern strait mouth. Note that we
assume that the Poincaré wave field that is trapped at
the eastern strait mouth (x = —L) may be ignored at
the western mouth. For Bass Strait, L ~ 416 km and
the Poincaré wave fields decay by more than
e ™4 ~ 0.003 over the length of the strait. In addition,
we have also seen that the reflected Kelvin wave am-
plitude may be reasonably determined by ignoring the
Poincaré wave field and using the condition (here) that
pressure vanishes at x = (—L, d). In this case (4.1)
implies
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FIG. 5. A schematic illustration showing the idealized geometry
for the scattering of an incident CTW () into transmitted (7°) and
reflected (R) Kelvin waves. The sense of CTW propagation is indi-
cated. Note that the transmitted wave may be regarded as consisting
of two components Ty and 7 which respectively correspond to a
wave that is driven by the incident CTW field and a wave that results
from the scattering of the reflected wave by the western strait mouth.

R = _BzTe_ZiIOL,

where 3 = exp(—ad).

For a blocked strait or bay, the solution is again
formulated as (4.1) and the reflection coefficient may
also be determined if the Poincaré wave contribution
to coastal pressure is ignored. In this case, since there
can be no flow through the bay at x = — L, the Kelvin
wave pressure at x = (—L, 0) and x = (—L, d) must
be equal and from (4.1) we then obtain

R = BTe %hL, (4.2b)

In the inviscid limit there is no net flux of energy into
the bay. In addition, if the phase lag 2/, may be ig-
nored, and |2/, L| = 0.2 for Bass Strait at a period of
240 h, then the instantaneous net mass flux into the
bay is also zero.

Now, on the western shelf we assume that pres-
sure is determined by the incident wave p;(07, y)
= I exp(iK;y) and by the CTWs generated by the Kel-
vin and Poincaré wave fields within the strait as de-
scribed in the previous section. Thus, we have

(4.2a)

Yy
p(0%, y) = p(07, y) — pffo U(y)G(§ — y)ds,
(4.3)

where
—pfU($) = a(Re®” — Te ™) + 2 dul mm COS(rmY).
1

(4.4)

The unknown T, R and d,, are again to be determined
by matching the CTW pressure (4.4) to that within
the strait (4.1). At low frequencies where ¢ ~ 0, the
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amplitudes T and R may be immediately estimated
since the CTW coastal pressure at y = 0 is given by
pi(07", 0) = I and must be equal to that of the Kelvin
waves, px(0~, 0) = T + R so that

T =1I/(1 — B2e2ibL) (4.5a)

and is given by T = (1.24 + 0.007:{)I in the inviscid
case. (In this case the imaginary component of T arises
from the phase lag of the wave that is reflected by the
eastern shelf.) It is worth noting that the transmitted
wave may be split into two components of amplitude
Ty and T which respectively correspond to a wave
that is driven by the incident CTW field, in that coastal
pressure is equated and Ty = I, and a component of
the reflected wave that is backscattered by the western
strait mouth such that at the northwest corner pg
+ pr, = 0 and Tk = —R. This formulation, used by
Middleton and Viera (1991), is equivalent to that used
here and consistent with (4.2a) and (4.5a).

For the case of a bay, equating the incident CTW
and Kelvin wave pressure fields at the northwest corner
results in

T =I/(1 + Be 2iL) (4.5b)

and in the inviscid case is given by 7" = (0.69 — 0.05:)1.
More generally, T, R and d,, are to be obtained by
matching pressure across the strait mouth. The solution
technique is as before, and the following results were
obtained assuming the 11 gravest CTW modes, the
geometry of Bass Strait and a period of 240 h.

a. Results for Bass Strait

The Poincaré wave amplitudes shown in Table 2
were determined assuming a mode 1 incident CTW
and again show a rapid decrease with mode number
in both the inviscid and frictional cases. The coefficient
of the transmitted Kelvin wave is determined as 7°
~ (1.27 4+ 0.11{)1 in the inviscid case and close to that
given by (4.5a) which follows from equating the pres-
sure of incident CTW and transmitted Kelvin waves
at x = 0. The match for pressure in both the inviscid
and frictional cases is again very good (Fig. 6) and jets
trapped to both the Victorian and Tasmanian coasts
are now found, (Fig. 7). To estimate the magnitudes
of these jets we note that Middleton and Viera (1991)
have identified sea-level variations of 0.1 m at Port-
land (Fig. 1a) on the west Victorian coast. If we assume
these variations to be due to a mode 1 CTW, then 7
~ 0.1pg Pa and the dimensional amplitudes at the
Victorian and Tasmanian coasts are of order 13 cm
s~! and 26 cm s, respectively, with the latter lagging
the former by 65° or so. The magnitudes of these
coastal jets are in crude agreement with the velocity
data obtained from sites 10 and 7 (Fig. 1a), although
the agreement may be fortuitous since we have here
made no allowance for the effects of King Island. In
addition, there is as yet no data to support the as-
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FiG. 6. The magnitude and phase difference of the pressure fields
within the strait (4.1) (solid curves) and on the shelf (4.3) (dashed
curves) for the scattering of a mode 1 CTW incident on a strait.
Pressure has been normalized by 7 the incident wave amplitude.
Eleven Poincaré wave modes were assumed and curves (a) and (b)
pertain to the inviscid (r = 0) and frictional (r # 0) cases.

sumption that sea-level variations at Portland are in-
deed due to a mode 1 CTW.

Returning to the idealized calculations we note that
the total flux of energy in the inviscid case is conserved
to within 0.02% (Table 3) with modes 1 and 2 ac-
counting for 61% and 14% of that passing y = d, (Tas-
mania). In the frictional case 13% of the incident wave
energy is dissipated between ¥ = 0 and ¥y = d on the
shelf. In both cases however, nearly 20% of the incident
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FIG. 7. As in Fig. 6 but for the magnitude and phase of
the nondimensional velocity U = p |f| dU/I.
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FiG. 8. The nondimensional amplitude of pressure (normalized
by 1) for the scattering of a mode 1 CTW incident on the western
mouth of Bass Strait assuming r = 0 and N = 11 Poincaré wave
modes. A period of 240 h was assumed and the (X, y) coordinate
values shown have been scaled by d the strait width. For the most
energetic CTW modes 1 and 2 a quarter-wavelength is given by 3.04
and 1.6d, respectively.

CTW energy enters the strait. The results for the in-
viscid sea are also illustrated in Fig. 8 where the am-
plitude of the pressure field normalized by 7, has been
contoured for the western region of Bass Strait.

The dependency on frequency of the energy flux
carried by each CTW mode at y = d has also been
determined. In the inviscid limit, the net flux for mode
1 decreases with increasing frequency (Fig. 9a) with a
corresponding increase in the flux carried by mode 2:
more than 50% of the incident energy remains in mode
1. The total flux carried by all other CTW modes is
small, while around 20% of the incident energy is scat-
tered into the strait. With friction (Fig. 9b), the results
are similar except that the flux carried by modes 1 and
2 are reduced with the remaining 13% of the incident
energy now being dissipated on the shelf.

As noted earlier, the long-wave approximation as-
sumed is formally invalid for periods shorter than 10
days (240 h) so that the results presented for shorter
periods are at best only qualitatively correct.

Results for an incident mode 2 wave were also ob-
tained and as shown in Fig. 10, around 50% of the net
flux is now scattered into the strait as compared to 20%
for a mode 1 incident wave. To understand this result
we note that for a mode n incident CTW, the net flux
aty = 0 is from (2.17) given by

Ly = —1/(40fb}) (4.6)
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FI1G. 9. The fractions of net energy flux that is scattered into the
strait and into modes 1 and 2 at y = d for a mode 1 incident CTW.
(a) and (b) correspond to the inviscid (# = 0) and frictional cases (r
# 0), respectively.
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for p; = Ie™ ", Neglecting the phase lag of Kelvin wave
propagation within the strait also implies that (4.2)
reduces to R = — 32T and since p(— L, d) is zero, pres-
sure all along the Tasmanian coast must vanish and
p(0, d) = 0. In this case the net flux into the strait
(2.11) simplifies to

Ty = (ho/4pf)Pk(0, 0)pk(0,0),  (4.7)

and if the coastal Poincaré wave pressure field can be
ignored, then px(0, 0) = p;(0, 0) so that

Ty, = (ho/40f)P1(0, 0)p7 (0, 0).

In this form it is apparent that the net flux into the
strait depends principally on the coastal pressure of the
incident CTW field. Since I = p;(0, 0), the result may
also be rewritten as

Fsl = _hob12rl. (48)

For a mode 1 incident wave Agb,2 = 0.195 (Table 1)
while for a mode 2 wave Agb,> = 0.503 where both
estimates of 'y, are very close to those obtained in the
more general analysis; see Figs. 9 and 10.

The scattering of an incident Kelvin wave (mode 0)
was also investigated and only 1.3% of the flux was
found to be scattered into the strait and 1.3% into other
modes. The amount scattered into the strait was again,
to a good approximation, given by (4.8). While only
a small fraction of the incident Kelvin wave energy is
scattered, it should be noted that again, a jet was found
trapped to the Tasmanian coast, which is qualitatively
similar to that for a mode 1 incident CTW, (see Fig.
7). That little of the Kelvin wave energy is scattered is
a consequence of the fact that most of the energy flux
of this wave is carried in deep water far from the strait.

This result and those for CTWs 1 and 2 show that
the scattering of energy away from the incident mode
becomes more severe at higher mode number and fre-
quency and thus also for larger values of k;d. Such a
result might be expected since as the longshore scale
of the wave approaches the strait width d the scattering
should become more severe. As we have seen, the
amount scattered into the strait may be estimated from
(4.8). A similar simple rule for the scattering of energy
among the CTW modes does not seem evident.

b. Results for a bay

Finally, the scattering by a rectangular bay was also
investigated using the reflection coefficient (4.2b) and
the parameters for the strait. In the inviscid limit, the
net energy flux into the bay is zero although the Poin-
caré and Kelvin wave fields set up can act to scatter
energy of the incident wave.

The Poincaré wave amplitudes for an incident mode
1 CTW at the 240 h period were determined (Table
2)and those for the dominant four gravest modes were
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FIG. 10. As in Fig. 9 but for a mode 2 CTW incident on the strait.

found to vary by less than 5% if N = 16 or N = 11
modes were chosen; the fifth mode varied by 15%. For
the inviscid case, the transmission coefficient in Table
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2 is also very close to that expected if the incident CTW
and Kelvin wave pressure fields may be assumed to
match exactly where from (4.5b) 7" = (0.69 — 0.05/)1I.

The match for pressure in both the inviscid and fric-
tional cases (Fig. 11) is again very good and jets trapped
to both coasts at y = 0 and y = d are apparent (Fig.
12), and around 180° degrees out of phase. The net
mass flux into the bay is also close to zero since at low
frequencies u is geostrophic and pressure at the coast
is determined by the Kelvin waves. Results for the net
energy flux (Table 3) show that most energy remains
in the mode 1 incident wave although in the frictional
case about 13% is dissipated on the shelf between y
=0and y =d.

The dependence of the scattering on frequency and
bay width was also determined for the inviscid case
and as shown in Fig. 13, wider bays or higher frequen-
cies imply an increase in the scattering of energy of the
incident first mode amongst the other CTW modes.
The mode 1 flux is also shown for several values of k;d
and, as is apparent, the scattering of energy into other
modes increases as the incident wavelength decreases.
The net flux carried by mode 1 past y = dis dependent
both on k;d and frequency so that again no simple rule
for the scattering of the incident CTW is evident.

5. Summary and discussion

The low frequency scattering of long CTWs both
into and out of straits has been examined by extension
of the analysis of Middleton ( 1988) for the generation
of CTWs by a coastal flux. In that work, a prescribed
oscillatory flux U(y)e ™" through a strait was shown
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FIG. 11. The magnitude and phase difference of the pressure fields
within the strait (solid curves) and on the shelf (dashed curves) for
the scattering of a mode 1 CTW incident on a bay. Curves (a) and
(b) pertain to the inviscid (r = 0) and frictional (r # 0) cases.
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FIG. 12. As in Fig. 11 but for the magnitude and phase
of the nondimensional velocity U = p |f|dU/I.

to be analogous to forcing by wind stress so that a sim-
ple forced wave equation was obtained for each CTW
mode generated. Here the velocity flux U(y) and its
associated pressure field were not prescribed, but rather
expanded in terms of Kelvin wave and Poincaré wave
modes, the amplitude of which were determined
through the requirement that pressure be continuous
across the strait-shelf boundary. A Collocation Method
was used where the number of Poincaré (and CTW)
modes was assumed finite and pressure was evaluated
at sufficient points to determine all unknown am-
plitudes.

For the case of CTWs generated by a coastal flux,
specific results were obtained for a Kelvin wave incident
on the eastern mouth of Bass Strait, at a period of 240
h, the energy containing band, (Middleton and Viera
1991). Out of the 11 Poincaré wave modes assumed
in the analysis, the gravest four were found to be dom-
inant, resulting in a jet that is trapped to the Victorian
coast and of amplitude U(d) ~ 31 cm s™! for an in-
cident Kelvin wave amplitude I of 0.06pg Pa, (Mid-
dleton and Viera 1991). The jet is a manifestation of
the match for velocity and acts to drive northward ex-
cursions of fluid on the shelf away from the east Vic-
torian coast so that the northward component of ve-
locity v is locally zero and thus matches that on the
Victorian coast where v = 0.

The jet U(y) also acts to generate CTWs on the shelf,
and of the net energy flux leaving the strait I',, around
20% and 50% was found to be carried by the CTW
modes 1 and 2, respectively. These results are quali-
tatively similar to those predicted in the absence of the
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Poincaré wave field where for the nth CTW mode, the
flux is approximately given by

T,/Ty =~ hob,? sinc*(k,d/2). (5.1)

However, without the Poincaré waves pressure is not
continuous, and the total flux of energy given by (5.1)
1s not conserved: I'/ T, =~ 0.78. The inclusion of these
modes here results in an excellent match for pressure
with energy nearly conserved: I'/ Ty, =~ 0.98. The va-
lidity of these results was also supported by the con-
vergence of the Poincaré modal amplitudes where for
pressure, the amplitudes decayed rapidly with do/d,
=~ 0.01. In addition, the flux of energy was dominated
by contributions from modes 1 and 2 suggesting that
the total of 11 CTW modes assumed was adequate.
The problem of how CTW energy may be scattered
into a strait or a bay was also addressed. Pressure on
the shelf was assumed to consist of that due to the
incident wave p; as well as the CTWs generated by the
velocity flux U(y)e™“' that arises at the shelf-strait
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F1G. 13. The fraction of net energy flux in the mode 1 CTW after
scattering by a bay. Curves (a), {b) and (c) were obtained for a bay
of width d equal to 2dp, dp and dp/2 where dy = 230 km and r = 0.
The values next to the points indicated denote values of k;d and
show the severity of scattering as a function of the ratio of bay width
to the wavelength of the incident CTW mode.
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boundary. Within the strait or bay a scattered Kelvin
and Poincaré wave field was again assumed. At very
low frequencies where e ~ |w/f| < 1, the fraction of
net energy scattered into the strait was given by

Tw/Ty = _h0b12> (5.2)

where I'; denotes the net flux of the mode 7 incident
wave. This result and the approximate expression (5.1)
both underline the importance of the coupling coeffi-
cients b, in determining the importance of straits in
wave scattering and generation.

For the case of Bass Strait, the result (5.2) was also
shown to be reasonably valid at higher frequencies
where e is not negligible through the inclusion of the
Poincaré wave modes in the match for pressure. Indeed,
for the incident CTW modes 0, 1 and 2, the respective
percentage of energy scattered into the strait was esti-
mated at around 1.3%, 20%, and 50% and close to that
given by (5.2). Of the energy propagating past the strait,
the percentage associated with the incident wave de-
creases with increasing mode number. For modes 0, 1
and 2 the flux is reduced to 97.6%, 61% and 10% of
the incident wave so that mode 2 is most severely scat-
tered. An increase in scattering was also found to occur
at higher frequencies, and in both cases the scale of the
incident wave becomes smaller compared to the strait
width. However, no simple rule seems apparent for the
net flux carried by the scattered CTW modes.

In all cases examined, the scattering of CTW energy
into the strait resulted in jets U(y) trapped to both
coasts that bound the strait. For the western region of
Bass Strait, velocity variations of order 25 cm s~ have
been observed near the Tasmanian coast, which are
consistent with an assumed mode | incident CTW and
the observed coastal pressure variations of 0.1pg Pa at
a period of 240 h, (Middleton and Viera 1991). The
agreement here is perhaps fortuitous since the idealized
bathymetry assumed here makes no allowance for fea-
tures such as King Island, (Fig. 1a), which will act to
modify the Poincaré wave field determined here. Note
that the Kelvin wave field within the strait is not effected
by features such as King Island since energy is almost
completely transmitted past such obstacles, (Middleton
and Viera 1991).

The problem of how CTWs may be scattered into
western mouth of Bass Strait has also been examined
by Clarke (1987). In that analysis, a mode 1 incident
CTW was assumed to propagate past the strait as an
escarpment wave, the pressure field of which was de-
termined using a semi-infinite model for the strait itself.
The transmitted Kelvin wave and Poincaré wave fields
were not included in the analysis however, and indeed
the latter are excluded from his analysis since the model
strait assumed was of a semi-infinite width. Using the
escarpment wave pressure at x = (—L, 0) Clarke es-
timated that the net flux entering the strait should be
about 7% of the incident mode 1 wave. As shown here
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and by Middleton and Viera (1991), the net flux into
the strait is around 20% of an incident mode | CTW,
and the result is simply obtained by equating coastal
pressure with that of the Kelvin wave field within the
strait. The escarpment wave analysis of Clarke (1987),
while interesting in its own right, is perhaps not ap-
propriate to the scattering of CTW energy into Bass
Strait.

In the analysis here results were also obtained for
the scattering of incident CTW energy by a flat rectan-
gular bay. In the inviscid limit, the net energy flux into
the bay is zero although the Poincaré and Kelvin wave
fields can act to scatter incident energy among the
other CTW modes. Coastal jets U(y) were again found
on either side of the bay with a phase lag of around
180° that might be expected at very low frequencies,
since the net flux of mass into the bay must vanish.
The scattering of the incident wave was also found to
increase with both frequency and bay width although
no simple rule for the energy transferred between
modes was evident. A final result worth noting follows
from the fact that within the bay, coastal pressure will
vary little since it is determined by the large-scale Kel-
vin wave field, and will also be equal to that on the
immediate adjacent shelf. These results perhaps explain
why tide-gauge data from within bays can be a good
indicator of CTW activity on adjacent shelves.

The applicability of the above solution technique
and results is of course restricted by the long-wave as-
sumption where (w/f)? is required to be small and
the generated CTWs nondispersive. The latter condi-
tion need only pertain to those dominant energy con-
taining CTWs and can readily be checked by calculat-
ing the modes both with and without the longwave
approximation, (see Brink and Chapman 1985). The
long-wave approximation can be relaxed by inclusion
of Poincaré wave modes in the barotropic, subinertial
analysis of Buchwald and Kachoyan (1987) so as to
make pressure everywhere continuous, (Buchwald,
personal communication). However, in this analysis
the rigid-lid approximation and an idealized exponen-
tial shelf topography is assumed.

A further restriction on the analysis here is that the
width d of the strait or bay should be less than or equal
to the deformation radius of the strait since the ap-
proximate form of the Poincaré waves used here is then
only valid. For specific applications the effects of strat-
ification should also be included as outlined, as well
as a more realistic model for friction on the shelf. The
results are perhaps most severely restricted by the
idealized bathymetry chosen. For example, we have
implicitly assumed that the shelf depth at the coast is
equal to that of the strait s, and thus have not had to
enquire into how incident or generated CTWSs might
be scattered as they enter or leave the region of the
strait (see Middleton and Wright 1991). In addition
no allowance has been made for bays or straits of vari-
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able width or depth. However, the solution technique
is relatively simple and should prove useful in further-
ing our understanding of the scattering of CTWs in
and out of straits and bays.
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