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ABSTRACT

A variational optimal control technique is used to assimilate both meteorological and oceanographic obser-
vations into an oceanic Ekman layer model. An identical twin experiment is discussed first in which the “ob-
servations” are created by the dynamic model. The field measurements from the LOTUS-3 (Long-Term Upper
Ocean Study-3) buoy are then analyzed. By fitting the model results to the data, the unknown boundary
condition (the wind stress drag coefficient) and the unknown vertical eddy viscosity distribution are deduced
simultaneously from the data, and an optimal estimate of the current field is obtained.

Though the model is simple, the results show that the variational assimilation technique is capable of extracting
from the available observations a reasonable wind stress drag coefficient and vertical eddy viscosity distribution.

1. Introduction

The wind-driven upper layer of the ocean plays an
important role in the general oceanic circulation. Un-
fortunately, our knowledge of the surface forcing and
mixing processes within this layer is far from complete,
and we are forced to rely on relatively simple param-
eterizations of those processes. For example, the surface
wind stress is often characterized by a surface drag coef-
ficient, while turbulent mixing is defined by an eddy
viscosity coefficient. In this paper, we demonstrate a
method for obtaining optimal estimates of the surface
drag coefficient and of the vertical distribution of eddy
viscosity from observations of wind velocity and cur-
rent velocity profiles within the water column. The re-
sults of such analyses should provide information useful
for improving the turbulent mixing parameterizations
in numerical ocean models.

The method uses variational optimal control tech-
niques in combination with a modified Ekman layer
maodel to simultaneously deduce the surface wind drag
coeflicient and the eddy viscosity distribution from ob-
served data. The variational optimal control technique
has been widely studied in meteorology and ocean-
ography since its introduction by Sasaki (1970). The
works by Derber (1985), Le Dimet and Talagrand
(1986), Talagrand and Courtier (1987), Thacker and
Long ( 1}9&8‘8), Wunsch (1987, 1988), Long and
Thacker (1989), and Sheinbaum and Anderson
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(1990), among others, have illustrated the feasibility
and potential usefulness of the variational method.

The basic idea of the variational optimal control
method is to define a cost function that quantifies the
discrepancy between the model results and the obser-
vations; at its simplest, the cost function might be the
sum of squared differences between observations and
their model equivalents. The cost function is then
minimized by varying the control parameters of the
problem, e.g., the drag and eddy viscosity coefficients
in the present application, while treating the dynamical
model as a strong constraint (Sasaki 1970). A system-
atic approach for solving problems of this type is to
define an augmented Lagrange function by using un-
determined Lagrange multipliers to enforce the model
constraints. The introduction of Lagrange multipliers
leads to a new set of equations, the adjoint equations,
that govern the multipliers. The adjoint equations ef-
fectively transform the model-data misfit into the gra-
dient of the cost function with respect to the control
parameters. The gradient can then be used within an
appropriate iterative descent method to search out the
optimal estimates of the control parameters.

In principal, the initial model state and all the pa-
rameters of the model dynamics can be determined by
the variational method if sufficient data are given. Un-
fortunately, ocean observations are sparse and noisy.
Therefore, theoretical knowledge is required to analyze
and process the model results (Thacker 1988). For
example, prior knowledge is used by Sheinbaum and
Anderson (1990) to choose a good first-guess initial
state not only to make the algorithm efficient, but also
to have a realistic representation of what the field may
be like in areas not constrained by the data. In our
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case, however, essentially continuous time series data
are available at each grid point, so that at any given
time the model control parameters can be completely
resolved and the final results do not depend on the
initial guess.

The plan of this paper is as follows. The methodology
is given in section 2, including the description of the
modified Ekman model, the problem of scaling, the
formation of variational formalism, and the numerical
scheme. In section 3, an identical twin experiment is
performed first by using the variational algorithm. The
observed meteorological and oceanographic fields are
analyzed and discussed in section 4. The data used are
taken from the LOTUS-3 (Long-Term Upper Ocean-
Study-3) records. A summary of the results and a dis-
cussion are given in section 5.

2. Problem specification
a. Model description and the problem of scaling

Consider a continuously stratified and horizontally
unbounded ocean surface layer with depth H. Take
the z-axis vertically upwards, with z = 0 at the surface.
The ocean is rotating about the z-axis, and the Coriolis
parameter, f, is taken to be constant. Neglecting the
changes of the ocean surface, the modified Ekman

model is
ow .. 9 ow
E)_l+lfw_az(A 62)

where horizontal velocity components u# and v (u pos-
itive to the east, v positive to the north) are combined
into one complex vector w = u + iv; the eddy viscosity
A(z), which is the parameter to be calculated, is a
function of depth.

This upper ocean satisfies the following boundary
conditions. At the surface, the forcing is given by the
wind stress 7 = 7° + i7¥ (7* in the x-direction, 7 in
the y-direction), i.e.,

(1.1)

3
oA L =7 at z=0 (1.2)

dz
where p,, is the density of water.

The wind stress is calculated from 7 = p,cp|w,| W,
where p, is the density of air; w, is the complex vector
of wind speed; and c¢p is the drag coefficient and the
other parameter to be determined.

At some depth H, the condition of no momentum
flux is assumed, i.e.,

aw

A—=0 at z=-H, (1.3)
az
The initial condition for this dynamic system is
w=w, at t=0. (1.4)

As mentioned above, we are going to estimate two
kinds of parameters. One is the drag coeflicient, which
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enters in the upper boundary condition in the dynamic
model. The other one is the eddy viscosity profile,
which represents a physical property of the flow and
varies with depth. Because of the physical nature of
these parameters, it is clear that the variables have dif-
ferent units and magnitudes. The scaling issue thus
arises (see Gill et al. 1981; Luenberger 1984). The basic
rule of variable scaling is to make all the variables in
the scaled problem of order unity, so that each variable
has a similar “weight” during the optimization.

Since the motions in the upper ocean are dominated
by the inertial oscillations, the inertial period O(f 1)
is chosen as the time scale. We introduce the following
nondimensional variables into Eqs. (1.1)-(1.4):

’ t ! W ! Z
r=—-, U ‘T D
Ty
A Cp w,
A,=_9 C,D=_> W,a=’—£
Sa SL‘ a

where

1 Sa 12 Pa ) U121
T/r=—=, D=\|— , and U={—s. .
Ty (f) <pw Vsof

Hence, the nondimensional problem takes the form
(after dropping all primes)

ow . 4 w
—a—l—-i-lw—aZ(A é)z) 2.1)
with
ow
A—=cp|lwylw, at z=0 (2.2)
az
aw H
— = =—— 2.3
Py 0 at =z D (2.3)
and
w=w, at t=0. (2.4)

b. Variational analysis

In variational analysis, the solution of the problem
is sought by minimizing the cost function, which mea-
sures the misfit between the model results and the data,
while the model equations serve as the constraints.
Considering the linear dynamics of our model, we
choose a least squares fitting for the cost function. The
cost function is then defined as

J(w,A,cD)=%Kmff(w—W)zdg‘dr

+%K,,Tf(A —A)Zd{+%KcTH(cD— )2 (3)

where the carat denotes the observations or estimates.
The coefficients K,,,, K, and K, are the Gauss precision
moduli controlling the best fits for each type of data
(Panchang and O’Brien 1988). The nondimensional
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parameters 7 and H represent the total integration time
and depth in the model.

The cost function (3) is composed of three terms.
The first one is called the data misfit, which is the
squared difference between the model solution and the
observations. The last two terms measure the closeness
of the estimated parameters between two iterations of
the descent algorithm. Since parameter estimation is
our main interest in this paper, the added terms rep-
resent prior information about the parameters that in-
crease the chance that the cost function will be convex
and therefore lead to a unique solution (Carrera and
Neuman 1986; Smedstad 1989). The model solution
resulting from minimizing the cost function will best
agree with the observed data. The new estimates of the
parameters will not deviate far from the values taken
by the parameters at the previous iteration. In this
sense, the parameters’ initial guess should be as rea-
sonable as possible so that the optimization process
can perform efficiently.

The dynamic model equations, which are treated as
the strong constraints, can be enforced by introducing
a set of undetermined Lagrange multipliers. This leads
to the formation of the augmented Lagrange function,
given as

L(w,A,cp, N\)
ow ow
= —+iw——|A— dr (4
J+J;£{>\’(BI w a(Aa))}d“()
where { , }isthe inner product of two vectors and

A = A, + i\, is the complex vector of the Lagrange
multipliers (A, for the #-component model equation,
A, for the v-component ). The boundary conditions do
not appear as a constraint with their own Lagrange
multipliers because they enter into the model equation
through the forcing term in the finite-difference for-
malism. The constrained optimization problem is now
replaced by a series of unconstrained problems with
respect to the variables w, A, ¢p and A. By doing so,
the problem of minimizing the cost function subject
to the model equations becomes a problem of finding
the stationary points of the augmented Lagrange func-
tion. This is equivalent to the determination of w, 4,
Cp, and A under the condition that the gradient of the
augmented Lagrange function vanishes, which yields
the following set of equations:

OL(w, A, cp, N) _

a =0 (5)
aL(W, A, Cp, A) .

ow =0 (6)
OL(w, A4, cp, N) :

% =0 (7
6L(W,A, Cp, >\)=0. (8)

aCD
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Equation (5) recovers the original model equation,
while Eq. (6) results in the adjoint equation, given by

G d 1)\ i

3 + iA +6 (A 62) K.(w—wW).
Note that the following natural boundary and initial
conditions have been used when deriving the adjoint
equation: the net flux of the adjoint variable X is re-
quired to be zero both at the top and at the bottom of
the chosen computational domain, i.e.,

3—2——0 at z=0 and zﬁ—b—

(9)

]

and the initial condition is

A=0 at t=T.

It is worth noting that the adjoint equation has a
similar form to the original model equation, except for
two important features. The friction term in the adjoint
equation has the opposite sign to that in the model
equation. The stability of the well-posed problem thus
requires the integration of the adjoint equation to be
backward in time. In addition, the driving factor for
the adjoint equation is the square root of the data misfit.
The Lagrange multipliers carry the information about
the data back to the initial time to influence the re-
construction of the model state.

Using Egs. (7) and (8), the gradient of the aug-
mented Lagrange function L with respect to A and ¢p
yields

j(lwalua Auz=o + | Wa| Vado=0)dr (10)
66‘1)

9/ _f Sud, vk,
aA '\ 9z oz 4

9z 0z
with Eq. (3), we can write:

(11)

A __ 1 o
="K TH 8cp
= ED + K THJ(]waluakuz =0 + ]walv,,)\vz_o)d'r
(12)
) aJ
A=A asz
~ udN, | o)
- K,,T %z 0z oz9z)%"
(13)

Equations (12)-(13) are for the control parameters,
from which 4 and cp can be determined by minimizing
the cost function by the descent method. If we define
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MK, =N, K./K,, = K, and K,/K,, = K}, the three
Gauss precision moduli K, K, and K, are replaced by
K, and K. In general, if one has » precision moduli,
the number can be reduced to n — 1 by scaling. Then
Egs. (9), (12) and (13) are simplified to (dropping all
the primes):

D ] aA

i+ (A= (w— 1
6+ +6(Aaz) (w—w) (14)
Cp = CD+KCTHJ:(|Wa|ua>\uz=0 + | Wal|VaAoz=0)dr
(15)

du d\, 808)\

= 1

KT (62 5z | oz oz )dT (16)

There are six unknowns, u(z, t), v(z, t), A(z), ¢p,
Au(z, t) and A, (z, t), and six equations, (2), (14),
(15), and (16); the system is closed. The parameters
A(2), ép, T, H, K, and K, must be specified. The nu-
merical scheme will be described in the following sub-
section.

¢. Numerical method

The numerical model is formulated using a finite
difference discretization on a grid with spatial incre-
ment Az and temporal increment Az, Its vertical struc-
ture is schematically shown in Fig. 1. The w points are
staggered in space with the 4 points. The Crank-Ni-
cholson scheme is employed (O’Brien 1986).

Our procedure for solving this system is

1) begin with a best initial estimate for the control
parameters 4 and cp;

2) integrate the model Eq. (2) forward in time and
calculate the value of the cost function by using Eq.
(3);

3) compute the data misfits (w — w);

A j=1 z=0
————————————— Wl mmmmm e IAz
j=2
_____________ W2 cmmmmm———-—-——
j=3
_____________ W3 mewecmcme——e—.
_____________ Wl mcccccccceaa.
A j=d
_____________ W cmmmmmmm————
Ain j=d+1 z=-H

FiG. 1. Diagram for the vertical structure of the numerical model.
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FIG. 2. The eddy viscosity profile used to create the “observations.”

4) integrate the adjoint Eq. (14) backward in time;

5) use Egs. (10) and (11) to calculate the compo-
nents of VJ (the gradients of the cost function) cor-
responding to ¢p and 4 with solutions for A and w from
steps 2) and 4);

6) with the gradient information, apply the uncon-
strained minimization descent algorithm to obtain the
new values of 4 and ¢p simultaneously;

7) check if the convergence criterion

|VJII/IVIe| <1072

for the minimization process is satisfied, where V Jj is
the value at the initial iteration; and

8) return to step 2) if the optimal solution is not
found.

This minimization determines the best fit of the data
when the optimal solution is approached. Many dif-
ferent minimization methods are available (Navon and
Legler 1987). The method we used is the limited-
memory quasi-Newton conjugate-gradient method,
which isimplemented in the Shanno and Phua’s (1980)
CONMIN algorithm. When dealing with the well-con-
ditioned problem, the conjugate gradient method pro-
vides fast functional reduction within the first few it-
erations. For linear dynamics, its convergence should
be achieved in at most M iterations, where M is the
number of the control variables. In fact, the rate of
convergence depends to a large extent on the quality
of the observations. Noisy observations poorly reflect
the model dynamics, so the conjugate gradient method
will converge slowly and all A iterations will be needed
to obtain the required accuracy.

3. The variational optimal control technique applied
to a simulated current field

The minimum of the cost function generally is not
expected to be equal to zero. The observations have
errors and the model is ideal, so the solution is not
exactly compatible with the observations. In a partic-
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experiments. In this section, an identical twin experi-
ment is discussed.

The current “observations” in this experiment are
obtained by running the original dynamic model for-
ward, using a sinusoidal wind pattern w = 10 sin(2#¢/
To) (m s™!), where Ty = 10 h. The wind stress coef-
ficient is set to 1.2 X 1073 (unscaled), and the eddy
viscosity profile is shown in Fig. 2. The initial state of
the system is at rest.

The model parameters in the dimensional form are
chosen as

-60
-70+
-80-

907 ugy b
-100 T T T T T

0 0.0t 0.02 0.03 0.04 0.05

Depth (m)

0.06

A (m?%/sec)

Drag Coefficient

0.0014
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0.0012
0.0011 J
0.001 4
0.0009 -

0.0008
[

0.0007 | B e e S
01 2 3 4 5 6

T T 1
7 8 9

T
10 11
Iteration

F1G. 3. Results from the identical twin experiment. (a) The vari-
ation of the cost function J/Jy, the norm of the gradient |g|/|gl,
and the data misfit (w — w)?2 with the number of iterations (scaled
by their own initial values); (b) The variation of the eddy viscosity
profile during the iterative process (the number denotes the iterations);
and (c) The variation of the drag coefficient with the number of
iterations.

ular case where a simulated field is used, the exact con-
sistency between the “observations” and the model
dynamics will make the optimal value of the cost func-
tion vanish. The model solution is therefore expected
to completely satisfy the characteristics of the “ob-
served” field in these test runs, called identical twin

Az=10m
At = 30 min
f=10"%s""
total model integration
time T = 10 days
data extension
depth H =—100 m
pa=12kgm™3
pw=1.025 X 103 kg m™3
5, =50%X1072m?s™!
s.=12x%x1073
U,=10ms™’
u (m/sec)
10
5 -
0
.5
-10 ] T T T Y T
0 40 80 120 160 200 240
Time (hours)
v (m/sec)
10
5 -
0
.53
-10 ] T T T T T
0 40 80 120 160 200 240

Time (hours)

FiG. 4. Time series of wind observations.
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FIG. 5. Current observations at (a) 5 m, (b) 25 m, and (¢) 50 m.

Both the wind stress parameter and eddy viscosity
are treated as unknowns and recovered simultaneously
by the optimization process. The initial estimates for
A and cp are given as 0.8 X 1072 m? s~! and 0.72
X 1073 (unscaled), respectively. Figure 3a shows the
values of the cost function, its gradient, and the data
misfit versus the number of iterations in the minimi-
zation procedure. All values have been normalized by
their own initial values to allow a direct comparison
of the convergence rate. As can be seen, the cost func-
tion drops rapidly in the first couple of iterations. The
ratio of the norm of the gradient | g|/|go|(| g| repre-
sents | V.J| hereafter) also experiences a sharp decrease
in the first two iterations. The convergence criterion is
satisfied after 11 iterations. The evolution of the eddy
viscosity distribution and the drag coefficient during
the optimization are displayed in Figs. 3b—c. There is
a sharp increase for the drag coeflicient (Fig. 3¢) during
the first iteration, but it overshoots. Corresponding to
this strong forcing, the eddy viscosity in the upper 50
meters has a relatively large value in comparison with
its true solution (Fig. 3b). This is partly because the
current field generated with the chosen initial estima-

tions for the control parameters, which are smaller than
their true values, produces a large data misfit in the
first iteration. The Lagrange multipliers computed from
the adjoint model, are being driven by this big data
misfit, and therefore, have a great effect on the calcu-
lation of the gradient of the cost function. Hence, a
strong correction is made to the previous estimates.
The drag coefficient tends towards its true solution after
the first iteration and the eddy viscosity is also adjusted
gradually. The bold line in Fig. 3b is the converged
solution. It shows a very good approximation to its
true value (see Fig. 2).

This experiment indicates that the variational adjoint
method makes it possible to determine the model un-
known parameter and the forcing parameter simulta-
neously. The wind forcing term is updated at each it-
eration because of the variation of the wind stress drag
coeflicient. Its new evolution gives a new model state,
which determines the closeness of the model data to
the observation. This controls the information the La-
grange multiplier carries, which in turn has a great in-
fluence on the new estimate for the wind stress drag
coefficient and the eddy viscosity distribution. The al-
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F1G. 5. (Continued)

gorithm permits the boundary condition and model to
adjust simultaneously and approach the best model-
data fit efficiently.

It is important to note that the choice of the initial
values for the control parameters is arbitrary; however,
the solution is independent of the initial guess. But as
discussed in section 2.b, for the efficiency of the opti-
mization process, the parameters’ initial guess should
be as reasonable as possible. For this reason, prior
knowledge of the physical background (i.e., the air-
sea condition, the oceanic instability, etc.) is desired to
help to obtain a good choice.

This experiment has been restricted to an identical
twin run, i.e., the “observations” are results from the
model without noise. In the following section, we will
apply this technique to a real, observed current field.

4. The variational optimal control technique applied
to an observed field

a. Data

The oceanographic and meterological field obser-
vations used for our analysis were acquired from the
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LOTUS-3 buoy by WHOI ( Tarbell et al. 1984; Bowers
et al. 1986). This deployment was located in the
northwestern Sargasso Sea (34°N, 70°W) during the
summer of 1982. In situ current measurements were
made by Vector Measuring Current Meters (VMCMs)
fixed at depths of 5, 10, 15, 20, 25, 35, 50, 65, 75, and

\ —JiJ0
0.8 1 — -glgo

----- data misfit
0.6 4 \

0.4 \

0.2 N

— -

4 5 6 7 8 9
Iteration

Eddy Viscosity
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0.00135
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0.00125
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FIG. 6. Real data assimilation. (a) The variation of the cost function
J/Jo, the norm of the gradient |g|/|go|, and the data misfit (w — w)?
with the number of iterations (scaled by their own initial values);
(b) The variation of the eddy viscosity profile during the iterative
process (the number denotes the iterations); and (c¢) The variation
of the drag coefficient with the number of iterations.
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F1G. 7. The variation of the correlation coefficient at different
depths with the number of iterations.

100 meters. The wind speeds were measured by the
Vector-Averaging Wind Recorder (VAWR ) which was
mounted on the tower of LOTUS-3. The sample in-
terval was 15 minutes. These data were kindly supplied
by Briscoe, Price, and Weller from WHOI.
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Ten days of data were chosen, from 30 June to 9
July 1982. The time series measurements of wind speed
are plotted in Fig. 4. The current observations at 5, 25,
and 50 m are shown in Figs. 5a—c. Inertial oscillations
are dominant at 5 and 25 m. At 50 m the inertial signal
is evident but obviously it is incoherent with the motion
in the upper layer. This inconsistency is, perhaps, due
to other physical phenomena (e.g., diurnal tides, in-
ternal waves) or the observation errors.

The measured currents contain the pressure-driven
currents (e.g., tides, geostrophic motions) in addition
to the locally wind-driven currents. The mean wind-
driven current has an amplitude of about 0.05 m s},
while the pressure-driven current has a root-mean-
square value about five times larger (Price et al. 1987).
Because we have observations at only one station, it is
impossible to compute the pressure-driven motions
from the observations. Considering that the time scale
of geostrophic motion is much longer than the period
of inertial oscillations, we process the data at each depth
by removing its trend to filter out the geostrophic com-
ponents.

Our numerical model has equally spaced grid points
in the vertical, but the data are not available at some
depths. Linear interpolation is used to fill the gaps.
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FI1G. 8. Comparisons of the modeled (solid) and observed (dashed) current
velocities at (a) 5 m, (b) 25 m, (¢) 35 m, and (d) 75 m.
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However, in principle, additional data is not needed
at grid points where there are no measurements.

b. Results

The observed field at starting time (30 June 1982)
is taken as the initial model state. Initial guesses for 4
and ¢p are 0.01 X 10> m?s™! and 1.34 X 1073, The
model is integrated for 10 days with a time step of 15
minutes, the same as the sample interval.

The variation of the cost function, the norm of the
gradient, and the data misfit with the number of iter-
ations are plotted in Fig. 6a. The cost function decreases
to about 53% of its initial value after 11 iterations. The
norm of the gradient has a rapid reduction during the
first few iterations. After 11 iterations, it drops to 5%
of its initial value and reaches a steady state. The eddy
viscosity profile (Fig. 6b) has a maximum value of 2.9
X 1073 m? s~ at the surface and decreases with depth
at iteration 11. The drag coefficient (Fig. 6¢) is adjusted
gradually and finally reaches 1.26 X 1073, Price et al.
(1987) inferred an effective viscosity A = 6.0 X 1073
m? s~! by separating the wind-driven current from the
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measured LOTUS-3 current and averaging over the
whole period. Our results are reasonably consistent with
those of Price et al.

The seasonal thermocline is between 20 to 50 meters
during this period (Tarbell et al. 1984; Bowers et al.
1986). Figure 6b shows that the eddy viscosity de-
creases greatly within these depths. This is because the
stratification suppresses the turbulent mixing in the
thermocline, so the degree of the turbulence, and
therefore the eddy viscosity, is much smaller than in
the mixed surface layer. Obviously, the physical effects
of the stratification are represented in the eddy viscosity
profile.

Consider the correlation coefficient that is defined
as

> qq’
t

Yy =

PN -
(23]

where g and ¢’ are the model results and the observa-
tions, respectively. The mean values have been re-
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moved from g and ¢'. The correlation coefficient de-
fined here represents the degree of fit between the ob-
servation and the model counterpart at the same depth.
Figure 7 is a plot of the correlation coefficient as a
function of iterations at depths 5, 25, 75, and 95 m. It
shows that the correlation coefficient has an increase
at all these depths with the largest at 5 m and the small-
est at 95 m; at 75 m it has the lowest value. This can
be understood because the motions in the upper 50m
are dominated by inertial oscillations. Below this level,
other dynamical processes and the observational errors
are superimposed on weak inertial oscillations to make
the observed current fields complicated. Our linear dy-
namical system successfully reproduces the motions in
the upper 50 m, but is only able to describe a portion
of the motions below 50 m due to the noisy data. The
comparisons of the time series of the modeled and ob-
served current fields are displayed in Figs. 8a~d. Ob-
viously, there is very good agreement between model
results and observations at 5 and 25 m. At 35 m, al-
though the amplitudes of the modeled current speeds
agree with those of the observations, the phases are
shifted. However, erratic changes of amplitude and
phase of the observations at 75 m are not reproduced
by the simple dynamic model. Undoubtedly, most of
the residual data misfits (Fig. 6¢) come from the lower
50 meters. Since both the cost function and its gradient
have a big decrease during the iterative process and
reach a steady state after 11 iterations and the estimates
of A and ¢p improve the model results, we conclude
that the solutions of 4 and ¢, at iteration 11 are the
best ones derived from these observations.

5. Discussion and summary

We have demonstrated the utility of a variational
optimal control technique to assimilate real observa-
tions from LOTUS-3 records. The wind stress repre-
sents the upper boundary condition in our model and
enters in the model equation as a forcing term in the
numerical formalism. The variational analysis allows
all the dynamics, boundary conditions, and observa-
tions to influence the model solution and thus, provides
a flexible approach to combining the model results with
the observations. By doing so, the wind-stress drag coef-
ficient and eddy viscosity profile have been determined
simultaneously and the optimal estimates of the model
fields have been obtained as well.

The optimal current field generated successfully re-
produces the observed fields in upper 50m, while they
are only able to describe part of the motion below 50m
due to the inconsistency between model dynamics and
data. Actually, no model can fully describe all phe-
nomena occurring in the ocean. The observed data can
always be divided into three parts: those that are con-
sistent with the model dynamics, those that are incon-
sistent with the model dynamics, and those that are
due to the observation errors. It is evident that the im-
portant characteristics of the variational optimal con-
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trol method are that it is capable of extracting from
the available observations that part which is consistent
with the model dynamics and adjusting the final model
state to the intrinsic dynamics.

Our dynamic model is a very simple modified Ek-
man model. The optimal control procedure was used
to determine eleven unknown model parameters. All
of these parameters are located in the vertical direction
of a horizontal station. The advantage of this research
is that we have a long, continuous record of measure-
ments with a small sample interval of 15 minutes. We
choose this 10-day period because we expected that the
data and the model dynamics were basically compat-
ible (i.e., at least in the upper layer where the inertial
motions are dominant). The length of the time-series
data ensures that the estimated parameters represent
the time-averaged values. The small time interval of
the measurements greatly improves the accuracy of the
estimated parameters since the dominant motion is
contained in the high frequency inertial oscillations.
The time-mean values of the parameters are the effec-
tive values during the chosen period. We expect that
these values will be slightly different if the length of the
data assimilation is changed.

The variational optimal control is conceptually sim-
ple and internally consistent. The adjoint model intro-
duced makes the computation of the gradient of the
cost function more efficient than the direct perturbation
method does. It is clear that the systematic and quan-
titative approach that the variational optimal control
technique provides can be utilized for a wide variety
of problems. It can adjust not only the initial conditions
of the model but also the lateral boundary conditions
(Le Dimet and Nouailler 1985), as in the case of a
limited area model, the upper boundary conditions
such as the surface forcing by momentum and heat
fluxes, as well as the various physical and numerical
parameters that enter the definition of the model.
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