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ABSTRACT

The northwest corners of the major ocean basins are characterized by seaward jets, flanked by tight, nonlinear
gyres exhibiting closed potential vorticity contours. At deep levels, isolated from surface forcing, areas of ho-
mogeneous potential vorticity are apparent. A model is presented describing these “recirculation” regions,
extending the quasi-geostrophic layer models of Marshall and Nurser to the continuously stratified two-dimen-
sional case.

The study is diagnostic, concentrating on numerical inversions of idealized quasi-geostrophic potential vorticity
distributions in a vertical, meridional section through a free inertial gyre. An iterative approach is used to find
the “bowl” of the circulation: the free boundary between the deep recirculating homogenized water and the
stagnant water below.

It is shown that the homogenized recirculation has a finite depth penetration, possibly not extending to the
ocean floor. In cases where the flow reaches the bottom, the recirculation can be divided into two regions: a
““core” region, where bottom currents exist and a baroclinic “fringe™ to the south. The surface intensified part
of the eastward jet is recirculated in the broad, westward flowing fringe, while the component of the transport
returned within the core itself is largely depth independent. The enhanced mass transport of the Guif Stream
can be accounted for by the model. Its magnitude is sensitive to the upper-level potential vorticity imposed.
For realistic parameters, the core carries the greater proportion of the transport.

The structure of the recirculation is dependent on the value assumed for the deep homogeneous potential
vorticity. If a positive deep potential vorticity anomaly is imposed, the upper-level gyre interface moves northward
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while a cyclonic gyre becomes dominant in the abyssal flow. If the anomaly exceeds a certain limit, solutions

can no longer be found.

1. Introduction

Recently, a number of theoretical models has been
put forward, attempting to explain some of the ob-
served features of recirculating current systems such as
the Gulf Stream’s seaward extension. The enhanced
mass transport in such regions has been attributed to
the existence of free inertial gyres which are able to
spin up to far greater intensity than the wind-driven
Sverdrup circulation of the interior.

The classical example of such a gyre is the model
proposed by Fofonoff (1954), in which nonlinear terms
allow absolute vorticity contours to depart from lati-
tude lines and follow streamlines. Observations of the
potential vorticity, g, of the world’s oceans (Keffer
1985, see Fig. 1) show the existence of just such closed
g contours in tight recirculating gyres adjacent to the
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Gulf Stream front. At levels deep enough to be isolated
from surface forcing, Keffer’s maps show extensive
areas of homogeneous potential vorticity. This feature
is also very apparent in the subsurface layers of eddy
resolving numerical models (see Holland et al. 1984).
Such pools of uniform g are thought to be a conse-
quence of downgradient transfer of g by geostrophic
eddies within closed streamlines in regions isolated
from surface forcing (Rhines and Young 1982a). Un-
forced deep waters can be brought into motion through
the influence of a strongly circulating upper layer (or
thermocline) as shown in the simple quasi-geostrophic
model of Rhines and Young (1982b).

Marshall and Nurser (1986, hereafter MN) exploit
this idea in the inertial limit and generalize the Fofonoff
gyre to a multilayered baroclinic ocean. The upper layer
has a very low value of potential vorticity, characteristic
of thermocline waters which flank the Gulf Stream
where strong winter convection destroys the upper
stratification, creating a wedge of low ¢ “mode” water
(see McCartney 1982). In this region there is a depres-
sion in the main thermocline, which in turn allows the
abyssal potential vorticity contours to close off, In the
presence of these closed contours, the abyssal recir-
culation can be excited through the eddy homogeni-
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FiG. 1. North Atlantic potential vorticity taken from Keffer
(1985): (a) in the o, = 26.3-26.5 layer showing closed contours; (b)
in the o, = 26.5-27.0 layer, showing homogeneous regions.

zation of potential vorticity. The resulting description
of the vertical structure of these free inertial gyres com-
pares well with hydrographic sections taken across the
Gulf Stream’s seaward extension.

A feature of the solution is the form of the interface
between the deep recirculating, constant ¢ water and
the stagnant water below (the “bowl” of the circula-
tion ). Marshall and Nurser show that their stacked Fo-
fonoff gyres progressively shrink toward the latitude of
the eastward jet with increasing depth. If the deep flow
penetrates to the ocean floor, then the possibility of
barotropic (depth independent) flow arises, north of
where the bowl strikes the bottom. This has been ex-
plored by Greatbatch (1987), Marshall and Nurser
(1988, hereafter MN2) and Cessi (1988). In the ver-
tically continuous model of Greatbatch (1987) and the
layer model of MN2, vortex stretching is an important
process in controlling the extent of this barotropic re-
gion. Cessi, on the other hand, emphasizes the baro-
tropic “core” of the recirculation; with relative vorticity
balancing the beta effect, and the mass transport is pre-
dicted in terms of the value of the upper layer g, or
the meridional extent of this core region.

In this paper we present an extension of MN’s mul-
tilayer model to a vertically continuous one including
the full effects of relative vorticity. The problem is
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solved by imposing the quasi-geostrophic potential
vorticity field and numerically inverting an elliptic
equation. A free boundary, the bowl, marks the depth
to which the circulation penetrates. The position of
this boundary is determined by iteration, minimizing
the local geostrophic energy. In this way, the shape of
the bowl can be studied in detail and the structure and
strength of the flow assessed quantitatively, without
the limitations of crude vertical resolution. It will be
seen that the recirculation is likely to extend to the
ocean floor and that both the total transport and the
partition between barotropic and baroclinic transports
are controlled by the upper-level potential vorticity and
the stratification.

An introduction to the model is given in section 2
in the form of a review. Its continuous nature is dis-
cussed and the method of solution outlined. The results
obtained from numerical inversions are presented in
section 3, which also includes some comparisons with
simple theory. The relative importance of vortex
stretching and relative vorticity is discussed, and we
investigate the way in which the strength of the gyre is
determined by the parameters chosen. In section 4, the
consequences of varying the value of g to which the
deep water homogenizes are investigated. It is shown
that the strength and position of the abyssal flow is
sensitive to the value of the deep homogeneous g, and
over a realistic parameter range, there is a limit on this
value, beyond which solutions cannot be found. Con-
clusions and a summary are presented in section 5.

2. The model
a. Fofonoff gyres

The flow in the recirculating gyres under consider-
ation is described by the potential vorticity equation:

A v I =% - D

3 (1)

where ¢ is a streamfunction, g is the quasi-geostrophic
potential vorticity and J(i, ¢) is the Jacobian of y and
q,

T ox ay

and represents the advection of g. Terms F and D are
sources and sinks of potential vorticity, x is east y,
north and ¢, time. The definition of g is given by
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where f; and 8 are the values of planetary vorticity and
its meridional gradient and N is the Brunt-Viisilld
frequency. Equation (2) will be used in various forms
throughout.
In a Fofonoff gyre (Fig. 2), time derivatives, forcing
and dissipation are set to zero and q is a function of ¥

(_ 0 dq & 361)

(2)
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only. In such a steady, free solution, the strength of the
flow is arbitrary, depending on the assumed functional
relationship between ¢ and . As shown by Niiler
(1966), if weak forcing and dissipation is allowed, the
strength of the circulation and the (g, ¥) relationship
can be constrained and in principle, determined for
certain special forms of ¥ and 2. Fofonoff, Niiler and
MN adopted a linear (g, y) relationship:

g=q+cy

where g and ¢ are constants.

It is important to realize that only certain forms of
(g, ¥) relationship are consistent with the forms
adopted for F and D. For example, consider almost
free, steady flow, in which advection of potential vor-
ticity is balanced by weak forcing and dissipation. Now,
if vorticity forcing is through an imposed wind stress
curl at the surface and, within the recirculation, it is
balanced by down-gradient eddy transfer of g, then we
can write

(3)

z7=ik-(v><?)
Po

=-V-(kVq)

where p, is density, k is the vertical unit vector, 7 is
the wind stress and k is a positive transfer coefficient.
Substituting these expressions into (1) and integrating
over a closed streamline we obtain

| £ d
;;:¢T-dl=—d—z£kv-dl (4)
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FIG. 2. Fofonoff’s (1954) solution for free nonlinear barotropic
flow in a rectangular basin, Weak, westward flow prevails over most
of the gyre and relative vorticity is concentrated in the boundary
layers and in the eastward jet to the north. The dashed meridian is
a line of symmetry used as a section line in the baroclinic extensions
to this solution discussed in this paper.
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implying that if the sense of the circulation is to reflect
the sign of the vorticity input from the wind stress then
dq/dy, or ¢, must be negative. (In an anticyclonic gyre,
with anticyclonic forcing, eddies must transport cy-
clonic vorticity into the gyre to maintain equilibrium.
If this transfer is directed down the large-scale gradient
of g, and ¢ is a maximum at the gyre center then dg/
dy must be negative). However, in a barotropic Fo-
fonoff gyre, ¢ must be positive in order to ensure
boundary layer solutions to (2). Marshall and Nurser
therefore suggested that the vortex stretching term in
(2) is essential if the inertial solution is to be equili-
brated by downgradient eddy transfer of g with ¢ neg-
ative. A Fofonoff gyre with this type of equilibration
must have baroclinic structure. It is the precise nature
of this baroclinic structure that concerns us in this pa-
per. The constraints on dg/dy are discussed further in
section 3. Initially, however, we will concentrate on
the simpler case of uniform potential vorticity in re-
gions of flow.

b. Vertical structure in layer models

We are interested in the steady vertical structure of
the recirculation. Accordingly the model set out in the
following discussion is diagnostic, concentrating on a
meridional vertical section through the center of a Fo-
fonoff gyre, where zonal derivatives can be neglected.
If the potential vorticity is specified everywhere in this
section then the flow field can be obtained by inverting
the elliptic operator in (2) with appropriate boundary
conditions. »

The structure of the thermocline and the abyssal flow
beneath can be modeled most simply by imposing two
values of potential vorticity in the two regions. A low
value is imposed at upper levels in order to depress the
thermocline and represent the mode water found in
this region. Beneath the thermocline, it is assumed that
g homogenizes to the value of planetary vorticity at
the axis of the eastward jet. (The effects of relaxing this
assumption are considered in section 4.) In the context
of the barotropic Fofonoff gyre of Fig. 2 and its exten-
sion to the baroclinic case (see Fig. 3), this simply
means that g is set equal to zero in the abyssal flow
region. A value of — gL is chosen for the upper layer
q in the subtropical gyre (where L is the meridional
extent of the gyre ), to ensure continuity with planetary
vorticity at the southern edge of the gyre. The corre-
sponding value for the subpolar gyre is 8L, giving a
realistic front in g at upper levels near the Gulf Stream
(see Fig. 1).

Figure 3 is a schematic diagram of the quasi-geo-
strophic layer model used in MN and MN2. Layer 1
has moving fluid, with constant low potential vorticity
throughout the domain — L < y < 0. Its thickness in-
creases in a linear fashion on moving northwards, as
vortex stretching offsets planetary vorticity. Accord-
ingly, the interface between layers 1 and 2 (the ther-
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FIG. 3. The vertical structure in MN’s layer mode! of the recir-
culation. Regions of vortex “squashing” are shaded to represent the
bowl of the circulation. North of these regions, ¢ is homogeneous
and free flow exists.

mocline) is pushed down, progressively squashing the
still motionless layer 2. Thus the potential vorticity in
layer 2 increases at a faster rate than the beta effect and
SO ¢, reaches zero at y = —/,. This marks the southern
edge of the deep homogenized gyre. Contours of g, can
now close off between this latitude and y = 0, and ¢
can homogenize to a zero value. To maintain ¢, = 0
against the background planetary vorticity gradient,
layer 2 is now stretched until it regains its reference
thickness at y = 0. This results in a depression of the
interface between layers 2 and 3, implying motion in
layer 2 and also squashing layer 3 and bringing it into
motion at y = —/;. The /,s collectively define the bowl
of the circulation. Figure 3 shows the “hyperbolic
plunge” of the bowl described by MN, with the ho-
mogeneous gyres retreating northwards with depth, and
the penetration of the flow extending to infinity as the
axis of the eastward jet is approached. The inclusion
of relative vorticity will introduce curvature to these
layer interfaces and indeed it is essential in the eastward
jet, where isopycnals are brought back to their reference
levels at y = 0. To solve the problem fully, including
relative vorticity, Eq. (2) can be rewritten in layer form
and solved for N isopycnal layers of constant density
interval as a set of NV coupled equations:

a1 =By + V¥ + L, 72(Y2— ¥1) = ~BL + iy
Gn =By + V¥ + L, (Y1 — 2n + Yus1) = 0
anv = By + Vi
+anL, 2 (Yn-1 —¥n) =0 (or =ciw) (5)
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with all subsurface layers having g, = 0 where there is
flow. The subscript denotes layer number and L, is the
Rossby radius (=Vg'H,/f where g’ is the reduced
gravity and H, is the thickness of layer 1); «, is the
ratio of the upper layer thickness to the thickness of
layer n. In each abyssal layer, throughout the stagnant
region south of /,, ¥, = 0.

In the MN model, interior solutions are found for
the westward flowing baroclinic region far from the
eastward jet, and the V?y term is neglected. The values
of [, are found simply by matching the streamfunctions
at this latitude. An alternative treatment is to retain
the V2y term in (5) and apply additional, higher order
boundary conditions to locate /,. In a two-layer model
of this kind, Cessi (1988) chose to make velocity con-
tinuous, imposing dy/dy = 0 at y = —/,. To satisfy
this boundary condition, relative vorticity must play a
role right out to this latitude, resulting in a discontin-
uous jump in vorticity. This “no slip” condition elim-
inates “extrema” of vorticity at the gyre edge which
would otherwise arise (if the region to the south were
considered to be truly stagnant). Such extrema are in-
consistent with simple circulation integrals (for a full
discussion see Cessi, et al. 1987, hereafter C1Y). Mar-
shall and Nurser point out that the inclusion of relative
vorticity also modifies their solutions in terms of the
depth penetration of the flow, possibly arresting it at a
finite depth once the gyres have contracted to a width
comparable with the scale of the eastward jet at the
surface. If, however, the flow reaches the ocean floor
a depth independent component to the flow can arise.
The question remains as to what determines the
strength of this component. Since the vortex stretching
term disappears from the vertical integral of (2), the
depth integrated flow must be determined entirely from
the remaining terms in . These arise either through
relative vorticity or through nonzero values of dg/dy
(or ¢) appearing in the form chosen for g. In all cases,
relative vorticity is essential for the closure of the cir-
culation in the eastward jet to the north. Factors af-
fecting the depth penetration and the depth-indepen-
dent part of the recirculation will be quantified in sec-
tion 3 in terms of the continuous model described
below.

c¢. A vertically continuous model

To understand the vertically continuous extension
of Fig. 3, it is useful to ask what would happen if the
number of layers became very large. Figure 3 consists
of regions of stagnation, vortex squashing and stretch-
ing. As the number of layers is increased, the squashing
regions become narrower. In the continuous limit, they
are replaced by a line, the bowl, along which there is
a discontinuity in g. This discontinuity is not depen-
dent on the presence of relative vorticity, as is the dis-
continuity which results from the application of the
no slip boundary condition mentioned above. It is a
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discontinuity in the vortex stretching, arising from the
fact that the smooth, squashing regions found in the
layer models have collapsed onto a line. This line is
the boundary between motionless water, where g = Sy,
and recirculating water where the flow can maintain g
= 0 through vortex stretching and relative vorticity.
On this boundary, ¢ = 0 and isopycnals regain their
reference depth (dy//dz = 0). Since the surface bound-
ary condition is ¢, = 0, the vertical integral of vortex
stretching vanishes at the bowl.

These facts have been used by MN and Greatbatch
(1987) to find the depth of this interface as a contin-
uous function of latitude. The formulation of the
problem is shown in Fig. 4. The potential vorticity is
specified everywhere where there is flow as in the layer
model above. The surface is at z = 0 and the low ¢
water extends down to z = —m. The bowl is at z
= —D(y). There are three fixed boundaries with ap-
propriate conditions while the bowl is a free boundary
where extra information is needed to specify its posi-
tion. If (2) is integrated vertically from —D(y) to the
surface, the vortex stretching term vanishes and one
obtains

1 1|yl f 0 2 ]
=—|mL——-— \% .

H [ By o V@
If relative vorticity is neglected, then D(y) simply fol-
lows the hyperbolic-plunge described by MN. Note that
in this case, surprisingly, the depth profile is indepen-
dent of stratification. A natural question to ask is: can
the circulation really extend to infinite depths, and if
not, does it reach the ocean floor? Near the eastward
jet, the relative vorticity integral term in (6) becomes

D

F1G. 4. The formulation of the free boundary problem. Potential
vorticity is specified above the bowl and there is no flow below.
Boundary conditions are applied to close the problem and locate the
bowl.
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significant and positive, tending to make the bowl more
shallow. It is conceivable that the penetration of the
flow could be finite.

To answer this question, the full problem must be
solved by numerically inverting (2). An iterative ap-
proach has been used to find D(y), in which ¢ = 0 is
imposed everywhere along the bowl and solutions are
sought in which ¢, = O is also satisfied. This was
achieved by searching for vertical minima in the geo-
strophic energy (see appendix A). However, if it is the
case that the bowl intersects the bottom, some method
of finding the latitude of intersection, y = —/, must be
employed. The position of the bowl is normally found
through the knowledge that  and ¢, are zero. If sis a
coordinate along the direction of the bowl, then it fol-
lows from the chain rule that

dz Sdy_
0z ds OJy ds

on any ¥ contour, including the bowl. Since ¥, is zero
on the bowl, this implies that v, is also zero on the
bowl, provided only that the bowl is not vertical. So
the natural choice for the southern boundary condition
of the bottom flow is ¢, = 0. In fact, this is the only
condition which, when imposed at the ocean floor, can
allow it to connect smoothly onto the free boundary
above. It is consistent with the existence of stagnant
water everywhere south of y = —/, while satisfying the
extremum principle of CIY. Following Gill (1984 ) and
Nurser (1988), a vertical profile was used for N to allow
the stratification to diminish realistically with depth:

N = 5/2h,
N=s/(h-2z), (7)

where s and A are empirically derived constants (= 2.8
m s~ and 150 m). Full details of the method of solution
are given in appendix A.

0

z>—~h

z<-—h

3. Results
a. Inversions in a very deep ocean

In order to discover how deep the circulation could
be expected to penetrate, Eq. (2) was inverted with
realistic stratification, a meridional gyre extent of 1500
km and an upper low g layer 500 m deep. The values
of fand g pertaining to latitude 40°N were used. The
depth of the domain was allowed to become as large
as necessary in order to prevent the bowl from hitting
the bottom. Figure 5 shows the solution, which consists
of a strong, surface intensified eastward jet with a weak,
broad return flow to the south. Note that the y coor-
dinates have been stretched so that the eastward jet
region can be clearly seen (see appendix A). As sus-
pected, the bowl does indeed “bottom out”, the cir-
culation penetrating to a depth of 10 km below the
eastward jet. So it seems likely that the circulation ex-
tends to the bottom, although it must be stressed that
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F1G. S. Zonal velocity section from the solution for a deep ocean.
The flow extends down to 10 km. The contour interval is 1 cm s™!
and the maximum eastward velocity is 79 cm s~'. Note that the y
coordinates have been stretched to emphasize the region of the east-
ward jet (see appendix A).

the penetration depth is dependent on the parameters
used. Talley (1988) has presented evidence that in the
Pacific, a relatively poorly ventilated ocean with a shal-
low main thermocline, the homogeneous g region ex-
tends only to 2Y2 km depth (although it is possible that
it may penetrate deeper on a scale unresolved by these
data).

Figure 6 shows how variations in the depth, m, of
the upper layer affect the depth of penetration of the
flow, D (y = 0). As expected the bowl gets deeper as
the depth of the low ¢ layer increases. In fact this re-
lationship is one of simple proportionality. This can
be understood by recognizing that at y = 0, (2) reduces
to g = V. Substituting this into (6) leads to the pro-
portionality of D to m. The other parameter which can
be varied is the stratification, N2. This becomes an
important factor in determining both the strength of
the flow and the depth of the bowl, because it sets the
balance between the relative vorticity and vortex
stretching terms [this should be compared with the
analysis of section 2, where the value of N? has no
effect on the penetration depth unless the relative vor-
ticity term is included in (6)]. In the case where there
is uniform potential vorticity in the upper layer, and
the flow does not reach the ocean floor, the scale of
the inertial boundary layer, (U;/8)'/?, is equal to the
Rossby radius, L, (see MN), which in turn depends
on the stratification (U; is a westward interior velocity
scale). Figure 7 shows the dependence of the penetra-
tion depth on the (uniform) value of N2. In a strongly
stratified ocean, the boundary current becomes broader
and the gyre circulates rapidly. In this case the bowl
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becomes very shallow as its penetration is inhibited
beneath the relatively broad eastward jet. As N2 is de-
creased, the Rossby radius is reduced and the eastward
jet becomes narrower, so the penetration is only ar-
rested farther north at deeper levels. The finite flow
penetration results mainly from the action of relative
vorticity at upper levels, allowing the isopycnal at the
base of the upper layer to return to its reference depth
at y = 0, as illustrated in Fig. 3. These results are con-
sistent with layer model results (MN; Cessi 1988) which
show that the width of the lower gyre is dependent on
the strength of the upper forcing, the ratio of the layer
depths and, in cases where the relative vorticity plays
arole in determining the gyre width, the Rossby radius.

b. Inversions in an ocean of realistic depth

Given the likelihood of the flow penetrating to the
ocean floor, it is interesting to investigate the form and
meridional extent of the bottom currents and their ef-
fect on the structure and transport of the gyre above.
We shall consider two regions of the model: In the core
region, north of the latitude where the bowl hits the
bottom (y = —I[), a depth-independent flow is allowed,
which can enhance the transport. South of y = —/is a
purely baroclinic fringe region.

A similar inversion to that of Fig. 5 is shown in Fig.
8 except that in this case the ocean is 5 km deep and
the flow extends to the bottom. North of y = ~/, the
existence of a barotropic component is clear in the ve-
locity field of Fig. (8a). But, in general, the depth-de-
pendent form chosen for N? serves to concentrate the
strongest flow near the surface. Figure 8b shows the
potential vorticity field for reference and Fig. 8¢ shows

0 (km)
)

Depth of the bowl at y
~
T

A 1 -
0 1 2 3 4 5
M(100m)

FIG. 6. Maximum depth of the bowl plotted against the depth of
the surface (low ¢) layer (using realistic stratification).
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FIG. 7. Maximum depth of the bowl plotted against the stratifi-
cation, with a surface layer 500 m deep. A vertically uniform N2 has
been used for these inversions.

the vortex stretching term. By comparing these two it
can be seen that the stretching simply balances the beta
effect over most of the southern, westward flowing part
of the gyre. Vortex stretching is important at all depths,
although it disappears in the vertical integral, with neg-
ative values above z = —m canceling positive values
below. Vortex stretching is the dominant dynamical
process throughout the fringe and over significant re-
gions of the core. Figure 8d shows the ratio of relative
vorticity to vortex stretching; V?/ only dominates in
the upper reaches of the eastward jet (it is in this region
that isopycnals are brought back to their reference lev-
els, arresting the depth penetration of the flow far below
in the example of Fig. 5). However, while relative vor-
ticity is small in absolute magnitude over much of the
domain, it is crucial in controlling the structure of the
recirculating core. Its importance relative to vortex
stretching also has a minor peak in the deep flow at
the southern edge of the core, where the no-slip bound-
ary condition has been applied, implying a strong in-
fluence in the deep westward as well as eastward flow.

¢. Solutions for the barotropic mode

In the core, north of y = —/, the depth integral of ¢
does not vary with y (g is uniform in y for both the
upper layer and the abyssal region). Therefore, since
the depth integral of vortex stretching is zero, changes
in planetary vorticity must be offset by relative vorticity
in a depth integral sense. So integrating (2) vertically,
it becomes

g=y+dy, (8)
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where ¢ has been scaled by 8L, y by L and ¢ by 8L3;
¢ is the depth average of ¢, the barotropic mode
streamfunction, and 4 is the depth average of ¢, equal
to —m/H,where H is the depth of the ocean. Equation
(8) has solution

3

N G oL S G
¢= 6+qz+["2+6 1]

if ¢ =0aty=0, and ¢ is the value of ¢ at y = —/.
An additional boundary condition must be used to de-
termine /. In general, / will satisfy the relation

(9)

13 2

—+ql——ﬁpl+¢1r=0

3 2 (10)

obtained by differentiating (9) at y = —/ (i = — ¢, at
y = —I[). Differentiation of (9) also yields

2 1/2
=t | a5 -2 A
where Vmax 1S the position at which the depth integrated
streamfunction is a maximum, ¢m., the barotropic
mode transport. Assuming for simplicity that the baro-
clinic fringe can be neglected, i.e. ¢ = 0 and that 7
= 0 we obtain:

__ 3
) 54

Gmax = —0°/12 (= 2 P). (12)
Equation (12) recovers the results of CIY and Cessi
(1988) expressing the mass transport in terms of /.
Table 1 gives values for the total transport, the fringe
transport, and the meridional extent of the core pro-
vided by the analysis above and from the numerical
inversions. (Note that 1 Sv is equal to 106 m®s™!). It
can be seen that although the barotropic mode analysis
cannot capture the total transport of the model, it pro-
vides a fair approximation. It is also clear from Table
1 that this analysis accounts for more than just the
transport recirculated within the core itself (¢max — ¢F)
with the value calculated for / greater than that found
in the numerical inversion. In the latter, the fringe
transport is in fact substantial, indicating that ¢r = 7y
= 0 is not an appropriate boundary condition at the
southern edge of the core. For such quantities a
boundary condition applied at z = —H is not equivalent
to a boundary condition on the depth integrated flow.
If the values for ¢ and #ir are taken directly from the
numerical inversion then (10), (11) and (9) can be
used to calculate greatly improved estimates for / and
Pmax in turn. These are also given in Table 1.

To provide an estimate for ¢ which is independent
of the numerical inversions, the transport can be cal-
culated within the baroclinic fringe region, where ¥,
can be neglected. Thus (2) becomes
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FIG. 8. An inversion in a 5-km-deep ocean with the bowl intersecting the bottom. The core region has a latitudinal extent of 206 km.
(a) Zonal velocity (cm s™'). Maximum eastward velocity is 82 cm s~*; (b) Potential vorticity in units of 8L; (c) the vortex stretching term
in (2) in units of BL; (d) the ratio of relative vorticity to vortex stretching terms. y coordinates stretched as in appendix A.

F \bzz =q4—-Yy
where z is scaled by H and F = (fL/NH)? (constant

stratification is assumed for simplicity). Solving this
and integrating vertically, one obtains

m[1
6F|y

for the total fringe transport south of the latitude, y (m
has been scaled by H). This gives an estimate for ¢F:

q~3

C6F?"

¢=

Or ~

Obviously this estimate is sensitive to the value chosen
for the stratification; in fact, it is proportional to N2,
The depth average of N? for the profile given in (7) is
5.4 X 107® s72 giving a value of 144 for F. Taking
values of —0.1 for g and 0.2 for / this gives a conser-
vative estimate of ¢ ~ 3 X 1075 or ~9 Sv. It is there-
fore reasonable to suppose that a significant proportion
of the westward transport of the gyre can take place
south of y = —/in this case. Further details of the par-
tition of transport between fringe and core will be pre-
sented in the next section, where it will be seen that
these simple considerations of transport partition are
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TABLE 1. A comparison of the barotropic mode solutions with the numerical inversions. Numbers in parentheses are taken directly from
the numerical inversion and the corresponding value of i used in the improved barotropic analysis was 2.38 X 107 in nondimensional

units.
¢max ¢F 1
Gmax X 10° (Sv) or X 10° Sv) ! (km)
Barotropic analysis (Eq. (12)) 8.33 239 — — 0.15 225
Numerical inversion (Fig. (8)) 10.10 29.0 4.60 13.2 0.1374 206.1
Improved barotropic analysis
(Egs. (9), (10) and (11)) 9.98 28.7 (4.60) (13.2) 0.1375 206.3

modified considerably when ¢ varies with latitude, with
the core gaining in importance as the overall transport
is increased.

d. Inversions with a linear (q, ) relationship

The preceding analysis shows how the mass transport
is controlled by the depth-integrated g, and to a large
extent, the stratification. It is useful for comparing the
model with theory, but the inferred transports are weak
compared with eddy resolving quasi-geostrophic mod-
els and with observations. The potential vorticity of
the thermocline is not uniform, but exhibits a marked
minimum just south of the Gulf Stream. Therefore, if
the model is to represent the recirculation accurately,
it must be forced with a variable upper-layer g. In this
section, following Greatbatch (1987) and MN2, we
consider the effect of enhanced upper-layer forcing and
bottom friction, as represented by the linear (g, ¥)
relation in (3). MN2 presented a three-layer model
with dq/dy = c, in the upper layer and ¢; in the third
layer. We retain this notation but for the continuous
model, ¢, is applied where z > —m and c¢; decays ex-
ponentially upwards from the bottom with a height
scale of 500 m.

Before assessing the effects of ¢; and c; on the trans-
port of the model, we must first discuss the limits on
their values. Application of the theory embodied in (4)
(where Ekman dissipation replaces wind stress forcing
for the lower layers) leads to the simple constraints: ¢,
< 0; ¢3 = 0. Further analysis of the interior flow in the
three-layer model provides a limit on the strength of
the upper forcing: ¢, > — L,”?/2 and also a lower limit
on ¢;. As pointed out by MN2, these limits are only
meaningful if relative vorticity can be neglected. Such
a boundary layer approximation is clearly inappro-
priate in the current model; the core is a few Rossby
radii wide and ¢; has been set to zero in all the inver-
sions presented so far. However, the limit on the mag-
nitude of ¢, proves to be more relevant (the upper layer
extends throughout the baroclinic fringe where relative
vorticity is negligible). Indeed, as ¢; approaches a value
of about 1200/ L2, the matrix constructed from grid
point “molecules” loses diagonal dominance and the
inverter fails. An example of an inversion with nonzero
dq/dy is given in Fig. 9. The velocity and potential
vorticity fields are shown with ¢; = —800/L? and c;
= | ¢ | exp[(z + H)/500]. The transport is now 67
Sv, of which 42 Sv is depth independent.

The theory given in Greatbatch (1987) and MN2
shows that an increase in the magnitude of ¢; can be
expected to increase the mass transport of the gyre,
while increasing c¢; will inhibit the barotropic flow,
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FIG. 9. AsFig. 8a,b, but with ¢, = —800/L%and ¢; = | ¢;| exp[(z
+ H)/500]. Maximum eastward velocity is 110 cm s~! (note that
the contour interval is now 2 cm s™!). The core is 273 km wide. y
coordinates stretched as in appendix A.
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which is allowed when the gyre reaches the ocean floor.
The present model has been used to study the influence
of these parameters when relative vorticity is fully in-
cluded. Figure 10 shows the dependence of the trans-
port on ¢; and ¢;. The transport has been split into two
components: a purely baroclinic part, returned in the
fringe (south of y = —/) and supplied by the surface
intensified eastward jet, and the rest of the transport,
returned within the core (north of y = —/) and almost
exclusively barotropic in nature for all inversions car-
ried out. Transport is plotted against the cube of the
maximum magnitude of ¢ in the upper layer. The linear
dependence predicted in section 3c is still broadly ad-
hered to. A value of |g| 3. = 1 obviously corresponds
to ¢; = 0, and incremental changes in ¢, are denoted
by tick marks on the curve, illustrating a rapid increase
in transport as ¢; is increased. It can be seen immedi-
ately that the barotropic component, excited when the
bowl hits the bottom, is a major contributor to the
transport of the gyre. In general, as the magnitude of
¢, is increased, the proportion of the transport carried
by the core also increases. This is because the core be-
comes both wider and more intense.

Two curves are shown: one has ¢; = 0 while the
other has ¢c; = | ¢;| exp[(z + H)/500] (it is difficult
to make an informed judgement on the relative mag-
nitudes that ¢; and c; should have, but eddy resolving

©
o
1

Transport (Sv)
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FI1G. 10. Dependence of the transport on ¢, and c¢;. Transport
(Sv) is plotted against the cube of the maximum magnitude of the
upper ¢ (in units of BL). The curves represent the total transport
and the component carried by the core for two cases: ¢; = 0 (solid
lines)and ¢; = | ¢;| exp[(z + H)/500] (dot-dashed lines) ( the fringe
transport is indicated as the difference between these curves). Tick
marks denote increments of 200/L? in the value of c,.
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model results suggest that | ¢c3| does not exceed | ¢, |).
It can be seen that nonzero c¢; causes the barotropic
flow to become weaker. This is partly because the core
has shrunk slightly and partly because the bottom flow
has been retarded. But compared to the increase in
transport effected by ¢, the decrease due to a corre-
sponding value of ¢; is relatively small.

If the model is to represent the total transport of the
subtropical gyre, then the appropriate point to choose
on the graph shown in Fig. 10 should correspond to a
transport of ~75 Sv: the transport of one gyre in the
eddy resolving numerical integrations carried out by
Marshall et al. (1988, hereafter MNB). For this trans-
port, ¢, takes a value of ~ —800/L2, remarkably close
to the value found by MNB when rescaled to their
units. There are, however, differences between the in-
versions and the eddy resolving model. The flow in the
inversions is more barotropic for this level of transport,
with a wider, stronger core. This is partly due to a dif-
ference in the deep southern boundary condition. The
no slip boundary condition on the southern edge of
the deep westward flow is not appropriate for com-
parison with eddy resolving models such as that of
MNB, in which the westward velocity does not decrease
to zero at the gyre edge, but continues into an eddy
driven, counterrotating cyclonic gyre to the south. This
type of flow cannot be simulated by the inversions pre-
sented above. It should also be noted that the eddy
resolving model has a quite different upper-layer po-
tential vorticity profile with a stronger minimum in g
and stronger gradients of g at the southern edge where
g returns to a value of —BL. The similarity of values
of ¢, for comparable transports arises from the com-
bination of these two factors. Direct quantitative com-
parison of the two models is therefore more difficult
than one might expect, especially with the transport
so sensitively dependent on the depth integrated g.

Observational estimates for the transport of the re-
circulation vary considerably. In an analysis of the
time-mean Gulf Stream at 55°W, Richardson (1985)
estimates the eastward jet transport to be 93 Sv, of
which 70 are recirculated locally (41 to the north and
29 to the south). One third of this transport is baro-
tropic. Estimates of the synoptic transport (with which,
perhaps, this model should be compared) are appre-
ciably larger and current meter data (Hall and Bryden
1985) show the transport of the Gulf Stream to be 94
Sv and predominantly baroclinic at 68°W, before the
onset of a barotropically intensified recirculation. De-
tailed comparison of the model results with observa-
tional data is difficult because of the idealized nature
of the forcing and the restrictions of quasi-geostrophic
theory. A model based on a more realistic equation set
will be described in a subsequent contribution.

e. Summary

In summary, the model has been used to illuminate
the vertical structure of the recirculation. Despite the
apparent dominance of vortex stretching, relative vor-
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ticity has been shown to be of importance, either in
limiting the penetration depth or in controlling the
depth integrated balance in the barotropic core. Both
the overall transport of the gyre, and the partition of
transport between barotropic and baroclinic compo-
nents, has been shown to be dependent on the strength
of the negative ¢ anomaly in the upper layer. For a
gyre with realistic transport, the barotropic component
is greater but not predominant. It has been shown that
bottom friction is capable of retarding the barotropic
component of the flow, but has little effect on the over-
all transport compared to the considerable influence
of imposing an upper (g, ¥) relationship of the same
magnitude.

4. Inversions with anomalous deep potential vorticity

In the previous sections, the potential vorticity of
the deep recirculating gyres has been assumed to be
equal to the value of the planetary vorticity at the axis
of the eastward jet. However, it is very unlikely that
the entire deep homogeneous gyre should adhere
strictly to this value of ¢g. For example, it is well doc-
umented that the abyssal water of the western North
Atlantic can have remote origins such as the Norwegian
Sea (Hogg 1983) with very different values of f. Its
potential vorticity is also likely to be influenced by
convective and thermohaline processes at distant sites.
These considerations are not directly related to the po-
sition of the Gulf Stream.

It is difficult to infer a value for the abyssal potential
vorticity from hydrographic sections, which is appro-
priate to our idealized quasi-geostrophic model, al-
though observations suggest that the abyssal anomaly
1s positive (see Fig. 3 of McCartney 1982, where the
deep potential vorticity contours tend to swing south-
wards from the axis of the Gulf Stream into the abyss).
In this section we will examine the sensitivity of the
above solutions to changes in the deep g. It will be seen
that the structure of the solution can be modified con-
siderably by allowing the value of deep g to depart
from our reference value and, also, that there is a limit
on the strength of the abyssal g anomaly, above which
solutions can no longer be found.

a. Influence on the extent and position of deep gyres

Since the forcing of the subtropical /subpolar gyre
system is no longer antisymmetric, both gyres must
now be considered together. Furthermore, it is no
longer generally true that the latitude at which the up-
per layer streamfunction is equal to zero, marking the
interface between the subtropical and subpolar gyres,
is at y = 0. However, if potential vorticity is to be con-
served in steady, free flow, this gyre interface must co-
incide with the front in potential vorticity, where g
changes from a value of — L (subtropical gyre) to 8L
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(subpolar gyre). This condition is therefore imposed
in the models presented below; upper layer g is dis-
continuous and upper layer ¢ = 0 at latitude y = s.
The model formulation is shown in Fig. 11, with baro-
tropic flow in the region ¢ < y < p and baroclinic fringes
outside these latitudes.

The effect of a deep ¢ anomaly on the shape of the
bowl can be assessed by returning to Eq. (6). If a deep
potential vorticity anomaly, yB8L is assumed, where vy
is a variable parameter, then (6) becomes

o (=st _ \N_1[°
D—[mL(y_s 7) ﬂf_bvzwdz]/(y—yf,)

For positive v the bowl becomes deeper in the subpolar
gyre and shallower in the subtropical gyre. If relative
vorticity is neglected, the subpolar gyre now penetrates
to infinite depth at y = 4L and the solution for the
depth of the bowl in the region 0 < y < L is not
physically meaningful. However, relative vorticity
cannot be neglected here, and furthermore, we expect
the bowl to strike the bottom north of y = yL and
south of y = 0. Since the subpolar gyre now becomes
deeper and the sub-tropical gyre becomes more shallow,
the latitudes at which the bowl strikes the bottom might
be expected to migrate northwards. This phenomenon
is investigated below.

b. Solutions for the barotropic mode and the two-layer
problem

A similar analysis to that of section 3c can be carried
out to discern the structure of the depth average flow
in the core region, which now consists of two counter-
rotating gyres. The solutions discussed below are es-
sentially an extension of the solutions found by Cessi
(1988) to the double gyre case with a nonzero value
of g in the lower layer and an upper layer gyre interface
at the variable latitude, y = 5. Thus Eqgs. (5) become

y—’
-L t 0 p L
0 —
o |
s 1 a=BL
-m +
? |
[
z i
a=vBL |
|
|
w=0
-H

- COre —»

FIG. 11. Model formulation for the double gyre problem with
nonzero deep potential vorticity and variable upper-gyre interface
latitude. Boundary conditions as in Fig. 4.
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L 2
‘plyy+y_QI+(f) (‘I/Z_\bl):o

Yoyt — 7+a(—)(¢1 ¥2) =0, 1<y<p
(13a)
with boundary conditions
Yvi=0 at y=-—1,s,1
Y,=0 at y<t and y=p

VY2, =0 at y=¢,p (noslip)
and continuity of
¢29 \blys ¢/2y

where ¥ has been scaled by L3, yby Land ¢; = |y
— s|/(y — s) The boundary conditions, ( 13b) are suf-
ficient to solve ( 13a) and in addition, to determine the
values of ¢, p and s. Projecting onto the barotropic and
baroclinic modes,

¢ = (a1 +¥2)/(1 + @)
0= —¥2)/(1 +a).

Equations (13) can be rewritten as
W ty—al—¢ =0,
byt y—(qa+v)/(1 +a)=0
10y — (@ = /(1 + )]~ (1 +a)f = 0]

t<y<p (14)

(13b)

at y=s

—Isy<sgfp=sys<l

where ¢ = L,/ L. Equations (14) can be solved for ¢,
the barotropic mode in the case where ¢ is small, i.e.
the Rossby radius is much smaller than the gyre scale.
This leads, through the imposition of the no-slip
boundary conditions, to approximate solutions for ¢,
pand s:

3a
t=s———-——2(1+a)+0(e)
- 2 __
D= 2(l+ )+O(e) s (l+a)+o(€)'

Note that s < v, meaning that the deep ¢ anomaly is
truly positive relative to the latitude of the gyre inter-
face. These solutions satisfy ( 14) to zero order in ¢, at
which ¢, = 8 = 0. Therefore the direct impact of a
positive deep g anomaly on the depth average flow is
to shift both the counter rotating gyres northwards,
consistent with the analysis for the depth of the bowl
offered above.

To assess the baroclinic response to the introduction
of an abyssal ¢ anomaly, higher order terms in e must
be considered. Using the following expansions

NICHOLAS M. J. HALL

835

Vi =0+ XY+
0 =0,+ €%, +

for the upper level streamfunction in the fringes and
the baroclinic mode in the core region respectively,
immediately from (14) we have ;o = 6, = 0. Using
boundary layer approximations to match the interior
solutions for these modes at O(€?), condition (13b) at
y = syields

¢=—€201 = —

62‘)’ - 1 2)

(1 + a)? (1 + a)
indicating that ¥, is negative for positive v at y = s.
The values of ¢, s and p can be found to O(€?). They
are

) at y=s

2(1 + &) we
8v(1 + w) 21 2 3
+[—3a2 +3]e + O(¢”)
_ s 3a a
P=stoitat
8v(1 +w) 2X 3
NEIEE R
% 8'y(1+ou)2 3
= 1
s 0+ 9o + O(e’)  (15)

where w =1 + a + V1 + a and X = 6a(1 + a)/w?
+ (¢ —2)/w+ 2(1 + a)/a. It can further be calculated
that the latitude, r, at which ¥, = 0, marking the in-
terface between the abyssal gyres is given to O(e?) by

S RS Y
So the asymmetry between the abyssal gyres brought
on by the deep potential vorticity anomaly, <y, only
appears at O(e?), where an increase in v effects an
increase in both ¢ and p, meaning that both gyres start
to shift northwards relative to latitude, s, of the upper-
level gyre interface, which is also shifting northwards.
Furthermore, it can be seen that r — s is negative at
O(€?), implying that although the gyre interface moves
northwards on increasing v, it actually sweeps south-
wards with depth.

One can imagine a limit, for suitably baroclinic flows,
at which the relative (to s) northward migration of the
southern flank of the subtropical gyre (¢) catches up
with the relative southward migration of the abyssal
gyre interface (r) resulting in the extinction of the deep
subtropical gyre. Near this limit the Rossby radius scale
boundary layers of the baroclinic mode at ¢ and r in-
teract and it becomes necessary to solve (13) without
approximation. A numerical method has been used to
obtain such solutions. Details are given in appendix B.

Consider first of all, the case when vy = 0. We find

(16)
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that there are four exact solutions to the problem de-
scribed by (13). One is trivial ( = p = ), one is sym-
metric (¢ = —p, s = 0) and two are asymmetric and
complementary (in the sense that they map onto one
another on rotation through half of a circle about the
origin). Figure 12 shows the streamfunction and po-
tential vorticity for the symmetric solution and one of
the asymmetric solutions. The streamfunction shows
the familiar double-gyre pattern in the symmetric case,
but in the asyrnmetric cases, s is nonzero and there is
only one lower gyre that occupies the entire region ¢
< y < p. In the solution shown, s is positive and the
deep gyre is cyclonic. In the other solution (not shown)
s is negative and the deep gyre is anticyclonic. The
potential vorticity in the symmetric case shows the im-
posed uniform value in the region ¢ < y < p in layer
2, with discontinuities at ¢ and p. Outside this region
it returns almost linearly to the value of the planetary
vorticity at the edges of the domain. In contrast, the
asymmetric solution shows closed g, contours in the
stagnant region south of y = ¢. Invoking the extremum
principle, we should expect these closed contours of
potential vorticity to be eliminated by eddies, and hence
the solution to relax back to the symmetric state. We
argue, therefore, that it is only the symmetric, two-gyre
solution which can be maintained physically.

Figure 13 shows the double-gyre solution with v
= 0.25 and a = %2. With v > 0, again we find that the
front in g, shifts northwards (note that ¥ — s is again
positive). However, it can now be seen that although
the subtropical gyre has expanded in the upper layer,
the subpolar gyre is dominant in layer 2, with the gyre
interface moving southwards with depth. As before,
there is one double-gyre solution, and two single
(deep)-gyre solutions. As v increases to about 0.39,
the deep double-gyre becomes a single cyclonic gyre,
which can be identified with the already existing single-
gyre solution. At this limit, the merged solution has
no extremum in ¢,. If y is increased beyond this point,
then the solution disappears immediately and no so-
lution to the problem can be found.

The upper limit on vy, ymax, is sensitive to the other
two parameters of the problem, L/L, and «. Table 2
shows the values of v, as these parameters are varied.
It can be seen that v,,., can take values ranging from
very small to order unity. Also shown in this table is
the width of a single lower-layer gyre and the ratio, R,
of the maximum values of the streamfunction in the
two layers, ¥amax/¥1max- These latter two quantities are
calculated for the symmetric (v = 0) case. The quan-
tity, R, is equal to zero for purely baroclinic flow and
unity for barotropic flow. In some cases with a very
small Rossby radius and/or a relatively shallow lower
layer, identified by a — in the table, the deep subpolar
gyre extends northwards to the edge of the domain
before any limit in v is encountered, so the idea of a
limit on v cannot be applied. In general, as the Rossby
radius is increased the baroclinic mode becomes more
important and v, decreases, implying a more strin-
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gent limit on the deep g anomaly. We also find that as
the value of a becomes smaller, giving a deeper abyssal
layer, the core region shrinks (as one would expect
from the previous analysis) and the threshold value of
7 is again reduced (for very small values of L/L, and
« the bottom flow disappears altogether). This can be
understood in terms of Eqgs. (15) and (16), which in-
dicate that the tendency to extinguish one of the deep
gyres depends on the quantity e>y(1 + a)/o?. The
existence of a limit on the deep potential vorticity
anomaly is therefore observed for a moderate but re-
alistic range of parameters, with the actual threshold
value quite sensitive to these parameters. The response
of the continuous model, with its standard parameters,
to variations in v will be examined in the next sections.

¢. Solution structure in the numerical inversions

The behavior revealed above is also seen in the con-
tinuous model, in which a value of s was imposed and
the value of v gradually increased until precise corre-
spondence between the upper-layer g front and gyre
interface, given by ¥ = 0, was achieved. In fact, the
vertical structure of the flow was found to be very sen-
sitive to v, requiring this correspondence to be very
accurate for consistent results. The results from a
number of double gyre inversions show s and vy to be
proportional as predicted in section 4b. The constant
of proportionality is now slightly less than (1 + a)™',
or (1 — m), due to asymmetry between the baroclinic
fringes in accord with the expression for s given in
(15). The values of ¢ and p also increase linearly with
v. As s and « are increased, the Y = 0 contour, which
marks the interface between the deep gyres, sweeps in-
creasingly southwards with depth from the reference
latitude, s.

Figure 14 shows an inversion in which the upper-
layer g discontinuity has been moved north to s = 0.177
(corresponding to a shift of 265 km). The value of v
required to ensure conservation of upper-layer g was
found to be 0.205. The usual boundary conditions have
been applied to locate the bowl and to define the po-
sition of the core and for this figure the y coordinates
have not been stretched. It can be seen that the entire
deep homogenized region has shifted northwards to-
gether with the upper-layer gyre interface. The sub-
tropical gyre has become larger and also shallower,
while the subpolar gyre is deeper, and it is this cyclonic
gyre that dominates the bottom flow, with the ¢ = 0
contour sweeping southwards with depth. At the bot-
tom it has been displaced almost to the southern edge
of the core. This corresponds to the baroclinic structure
seen in the two-layer model result of Fig. 13.

As v is increased to about 0.225, the latitude where
¥ = 0, between the two bottom gyres, becomes coin-
cident with the southern extent of the bottom flow,
and only one gyre remains. For higher values of s and
v, it becomes impossible to satisfy the additional
boundary condition required, in order to specify this
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FIG. 13. Double deep-gyre solution corresponding to the solution shown
in Fig. 12a,b but with v = 0.25.

latitude. The horizontal iteration for the latitude at
which the bowl strikes the bottom fails, and the south-
ern extent of the core cannot be determined. This is
analogous to the response of the two layer model to
increasing -y, where the solution for layer 2 reached a
single gyre state and then disappeared.

d. Discussion

The above analysis reveals that one can expect the
strength, sense and position of the abyssal recirculation
to show considerable dependence not only on the sur-
face forcing, but also on the value assumed for the
deep potential vorticity. If the perturbation is positive,
as implied by the observations, then the upper-level
gyre interface, together with the front in potential vor-
ticity must migrate northwards. The deep flow region
follows the northward shift, but the cyclonic gyre be-

comes stronger and more extensive than the anticy-
clonic gyre at depth. This result is in agreement with
the abyssal recirculation scheme suggested by Hogg
(1983) in which the subpolar gyre is dominant and the
Gulf Stream sweeps southwards with depth.

The northward shift of the front in g can be explained
in terms of a global integral constraint. If (2) is inte-
grated over the domain of the model, we obtain

f(q—ﬂy)dAzmAﬁ (17)
where A is the difference between the average surface
layer velocities at y = L, — L, the only latitudes where
we do not have Neumann boundary conditions. If a
positive deep g anomaly is introduced, then there must
be an accompanying northward shift of the upper level
discontinuity in order to preserve the right-hand side
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TABLE 2. Parameter dependence of the two-layer model results.
Three diagnostics are shown: +y,,,; layer 2 single-gyre width, /,, and
the ratio, R, of the maximum values of the streamfunction in the
two layers, Yoma/¥imax. The latter two quantities are for y = 0.

a

1 12 I3 Va s

L/L,= 17

Ymax — 0.12 0.018 0.0035 0.00055

L 0.67 0.40 0.24 0.14 0.06

R 0.42 0.082 0.013 0.0016 0.00011
L/L, = 10

Ymax — 0.39 0.093 0.026 0.0080

b 0.70 0.45 0.31 0.22 0.15

R 0.64 0.23 0.067 0.019 0.0050
L/L, =15

Y max — —_ 0.35 0.13 0.053

b 0.72 0.47 0.34 0.26 0.21

R 0.81 0.46 0.21 0.090 0.038
L/L, =20

Ymax — — 0.76 0.31 0.14

I 0.73 0.48 0.36 0.28 0.23

R 0.89 0.62 0.36 0.19 0.098
L/L, =25

Ymax — — — 0.57 0.28

I 0.74 0.49 0.36 0.28 0.23

R 0.93 0.73 0.48 0.29 0.17

of (17) at a physical value. If there were no northward
shift, an anomaly of ¥ ~ 0.1 would require this term
to be orders of magnitude too large. It is clear from
(17) that the northward shift in the front is dependent
on the fact that the boundaries of the upper level gyres
are fixed at y = L, —L. It could be argued that this
assumption is artificial and that the boundaries of the
domain should also be determined by application of
further boundary conditions. This would, of course,
render the problem trivial, simply shifting the origin
to y = vL. A more reasonable alternative would be to
assume that the position of the eastward jet is prescribed
at a fixed latitude, allowing the domain to mutate to
accommodate (17). In terms of the baroclinic structure
of the flow, this option is probably equivalent to the
one pursued above.

The southward migration of the axis of the eastward
jet with depth is also consistent with a positive deep ¢
anomaly. The slope of a ¢ contour is given by

(E) - _ W
dy yeonst ‘pz

and if the abyssal gyre interface is to slope southwards
with depth, this quantity must be positive for the zero
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¥ contour. Now in the deep regions of the core, the
vortex stretching term in (2) is greater in magnitude
than the relative vorticity (see Fig. 8) and will therefore
have the same sign as ¢ — 8y. Since the bottom bound-
ary condition is ¢, = 0, ¥, will also have this sign.
Therefore, provided the flow is eastward, a positive deep
g anomaly (relative to the latitude, s) is likely to induce
a southward slope of the zero ¢ contour with depth.
Finally, it is significant that in the case where vy # 0,
solutions can only be found when the zero y contour
hits the bottom. As « is increased, the southern edge
of the core moves northwards and the subtropical gyre
becomes smaller. At a critical value of v, the zero ¥
contour hits the bottom at the southern edge of the
core. For larger values of v there is no solution. This
is because it is impossible for the zero  contour to
intersect the bowl south of y = ¢. In general, a zero ¢
contour cannot strike a free boundary (a zero stream-
line on which the first normal derivative of the stream-
function is zero) except at a point where the forcing
changes sign along that boundary. This result can be
proved by means of a Taylor expansion for y about a
point on the free boundary (P. Cessi, personal com-
munication 1987). Therefore, the only latitude at
which the ¢ = 0 contour is allowed to meet the bowl
is at y = yL, where ¢ — By changes sign. However, if
this contour slopes southward from y = sand s < yL,
the above condition cannot be satisfied. In the case
where v = 0, the ¢ = 0 contour may strike the bowl
at y = 0, but if the abyssal potential vorticity is nonzero,
then this can not happen and the flow in both gyres
must extend to the bottom. It appears, therefore, that
the symmetrical subpolar/subtropical gyre system, in
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FIG. 14, Streamfunction, y, (in units of 8L>) from a double-gyre
inversion with a deep g anomaly: y = 0.205; s = 0.177 (=265 km);
¢ = ¢; = 0; the widths of the subpolar and subtropical gyres are 330
and 65 km, respectively, at the bottom. y coordinates are not stretched.
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which the bowl bottoms out, is a singular case, for
which asymmetries in the potential vorticity field can-
not be supported. However, if the homogenized region
extends to the bottom, the model is more robust, and
can produce realistic asymmetric solutions.

In reality, bottom currents are observed in the re-
circulation regions of both the Atlantic and Pacific
oceans. In the Pacific the bottom currents do not appear
to relate systematically to the flow above, and probably
owe their existence to processes not addressed in our
simple model. The bottom currents in the Atlantic, on
the other hand, appear to have some qualitative agree-
ment with the above solutions, with a dominant cy-
clonic gyre at depth. The explanation offered above
depends on the idea of positive potential vorticity
anomalies being transported to the region from distant
sites at least in the creation if not the maintenance of
the steady state described by the model. The larger scale
abyssal flow is certainly capable of this (see McDowell
et al. 1982) and even though the process of potential
vorticity injection into gyres which circulate within
closed free streamlines can not be simulated in a steady
state model, it should not be ruled out.

An alternative model of the deep cyclonic flow is
given by Hogg and Stommel ( 1985), who simulate the
abyssal recirculation in terms of uniform potential
vorticity flow beneath a thermocline which surfaces.
The latitudinal variation of their abyssal layer thickness
implies that in order to conserve mass they must also
have a positive deep potential vorticity anomaly with
cyclonic deep flow beneath the Gulf Stream. In the
alternative offered here, the deep potential vorticity
anomaly is imposed, rather than deduced from the
gross features of the vertical extent of the deep water,
and both layers adjust to accommodate it. The con-
clusion of deep cyclonic flow is still reached if a small
positive anomaly is assumed.

5. Conclusion

A diagnostic model has been presented, offering an
interpretation of the current systems observed in the
northwestern corners of the world’s oceans in terms of
idealized potential vorticity distributions. Almost free
flow is assumed above the main thermocline, and a
low value of potential vorticity is imposed in order to
depress the main thermocline and represent mode wa-
ter south of the Gulf Stream front. Homogeneous po-
tential vorticity has been assigned to the abyssal flow.
A model built on these assumptions can capture the
essential character of the vertical and meridional struc-
ture of the recirculation regions, as revealed by hydro-
graphic and current meter measurements. The em-
phasis has been on diagnosis of steady, free states, rather
than on forcing mechanisms and their role in creating
and maintaining these flow patterns.

First, it has been shown that the abyssal flow has a
finite depth penetration, and that for oceanographic
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parameters this flow may not reach the bottom. This
is a consequence of relative vorticity, which must be
present to close any type of Fofonoff gyre. Such a pro-
cess may account for the shallow region of homoge-
neous potential vorticity observed in the Pacific, al-
though there are bottom currents in this region that
require further explanation. It should be pointed out
again that these solutions are not robust to small per-
turbations to the value of homogeneous potential vor-
ticity.

In regimes with stronger surface forcing, or weaker
stratification, the homogeneous flow penetrates to the
ocean floor. The immediate consequence of this is the
emergence of a strong barotropic component to the
flow. The existence of this barotropic component allows
us to define a partition in the mass transport of the
model, between the depth-independent part, and the
contribution made due to velocity shear from the bot-
tom upwards. It has been found that there is close cor-
respondence between this partition and a spatial par-
tition which demarkates the transport into core and
fringe regions. The eastward jet is very surface inten-
sified, but the recirculation immediately to the south
is only weakly depth dependent, the baroclinic part of
the jet being recirculated farther south in the fringe
where there are no bottom currents. The precise par-
tition of transport between fringe and core depends on
a number of factors. Again the degree of surface forcing
is important with more strongly forced flows tending
to be more barotropic. The strength of the stratification
also has some bearing on this balance with stronger
stratification tending to enhance the baroclinic com-
ponent. To achieve a realistic transport in the region
of 70 Sv, the maximum magnitude of upper-layer ¢
must be ~1.68L. In this case the core carries approx-
imately 2Y2 times the transport of the fringe.

The novel feature of the work has been the full in-
clusion of both relative vorticity and vortex stretching
components of the potential vorticity in a vertically
continuous model. An ability to study the importance
of these two terms has led to two conclusions:

1) The vortex stretching term is dominant in mag-
nitude over almost the whole of the recirculation, al-
though it disappears in vertical integral.

2) The relative vorticity term is vital, either in ar-
resting the depth penetration of the flow, or in cases
where bottom flow exists, in controlling the depth in-
tegral structure over the whole of the barotropic core
of the recirculation. The inversions generally demon-
strate that a decaying boundary layer type structure is
not applicable to the barotropic core.

Finally, these free, homogeneous recirculation sys-
tems show some sensitivity to the value chosen for the
abyssal potential vorticity. As the deep g anomaly be-
comes more positive, it is necessary for the upper level
front in potential vorticity to move northwards together
with the interface between the two gyres. The abyssal
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flow region also shifts northwards, while the axis of the
eastward jet sweeps southwards with depth. Therefore,
although the subtropical gyre has expanded at the sur-
face, the subpolar gyre is dominant at depth. Further-
more, we have seen that solutions can only be found
so long as there are two counterrotating gyres at the
bottom. There is an upper limit on the possible mag-
nitude of the deep ¢ anomaly, which corresponds to
the expansion of one of these gyres to a point where it
just fills the bottom flow region. The solutions shown
in section 4 are suggestive of the deep flow in the west-
ern North Atlantic and although the model is again
steady and diagnostic, and does not address the ques-
tion of the creation or maintenance of these flow pat-
terns, there is circumstantial evidence of a positive deep
g anomaly and ample opportunity for maintaining it
in the deep North Atlantic circulation.

The quasi-geostrophic framework of the model is its
chief limitation, making quantitative comparison with
observed potential vorticity distributions and hydro-
graphic sections difficult. Extensions of the present
work to an isopycnal model will be described in a sub-
sequent contribution. There is further potential to ex-
tend the work to include the east-west dimension, and
to study the effects of ventilation and bottom topog-
raphy.
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APPENDIX A
Numerical Details for the Inversions

1. The iteration scheme

The potential vorticity field is inverted with a free
boundary (the bowl) specified at each grid point po-
sition in the horizontal and between grid points in the
vertical. It is known that on this boundary, and on all
grid points below it, ¥ = 0 (see Fig. 4). In general, the
boundary will cut between grid points in the horizontal
and in the vertical, and this is taken into account in
the finite differencing above the boundary. Consider
the situation in Fig. (15). A set of grid points is shown
with the bowl passing between them. Outlying values
of ¥ can be expressed as Taylor expansions about the
central grid point where ¥ =

12
Yo =vo+ I+ 3 Yo + O()

212

0= Yo = alyo + =~ Yo + O(L).
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FIG. 15. Grid points in the numerical inversion with
the bowl passing between them.

Subscripts denote grid point positions as in Fig. (15),
! is the nondimensional grid spacing and « is the frac-
tion of / shown in Fig. (15). These expansions lead to
the following finite difference representations for first
and second derivatives at the central grid point:

Yo [a®Ps + (1 = a®)¢o] + O(?)

=a(1 + a)l

2
Yo = m [ar — (1 + a)¥o] + O()).

These are used to calculate quantities on grid points
just above the boundary.

The extra condition that must be satisfied at the bowl
is ¥, = 0. As discussed in section 3b, ¥, must also be
zero at each point on the bowl thus we can form the
following quantity,

2
5 ()7 + % (¥2)* (= KE + APE),
which must be zero on the bowl. This quantity has the
desirable properties of being positive definite and non-
zero everywhere except on the bowl. It is minimized
just above each individual boundary point in the fol-
lowing way: Contours of a vertical minimum are found
and the position of the bowl moved up to meet these
minima in decreasing increments. It was necessary to
sweep inward from the edges of the gyres towards y
= 0, while iterating upward for the bowl, because the
vertical positions of the energy minima near the east-
ward jet are sensitive to the solution in the interiors of
the gyres. The iteration stops when the bowl sits just
below an energy minimum at each horizontal grid po-
sition. Ideally, this quantity should be zero on the bowl,
and it was found to be negligible in all cases once the
bowl had been located to grid point accuracy. For cases
where the bowl intersects the bottom, a similar pro-
cedure was followed to find the latitudes bounding the
core. The position at which the bowl intersected the
bottom was moved inwards towards y = 0 until the
required lateral boundary condition (¢, = 0) was sat-
isfied to within one grid point.
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2. The coordinate stretching

It was necessary to use an irregular grid to provide
the model with sufficient resolution in the eastward
flow region. The following expression was used:

y = Su — 5.9253 tanh(0.82u)

where y, and u are the nondimensional northward co-
ordinates in physical space and grid space, respectively.
The numbers have been chosen such that the function
is monotonic; with finite derivatives at the boundaries;
with y and u equal at —1, 0 and 1 and able the stretch
the middle of the double gyre in a continuous manner.

APPENDIX B

Solution of the Two-Layer Double Gyre Model

Equations ( 13) have the following solutions in four
different regions:

—l<sy<t: Yyy=y+1+Asinh[(y+ 1)/¢]
¥=0

t<y<s:

13 — ’2
a¢x+¢z=“>\2[y—+{-——a 7+s]l}—+By'+C]

6 1+ a 2
1+
1= 2= (1) 11 = coshy)
+ a

+ A2C cosh\y' + (1 + a)D sinh\y’

SSy<p
/3 12
y aty y
+ = — ‘2 —_— e —— -— 4 !

ayy + ¥, )[6 {l+a S}Z By+C]

-1
b=va= (T3 ) 11 - ooy

+ A2C coshAy’ + (1 + &) D sinhAy’
p<y<l:y;=y—1+ Esinh[(y — 1)/¢]
¥2=0

wherey' =y —5,e=L,/L, A= (1 + a)"?", Y has
now been scaled by SL,2L and y by L. The above
solutions yield yy =0aty =1, —1, sand ¢ and ¢, are
matched at y = s in both layers.

Application of the further conditions that the normal
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modes, and their first derivatives must match at y = ¢,

p produces eight equations in the five arbitrary con-
stants, 4 to E, and cubic and hyperbolic functions of
t, pand s. Five of these equations were used in a linear
inversion to find the values of 4 to E. These values
were then used in the other three equations to provide
three residual functions which were then minimized
by varying ¢, p and s (each time recalculating A to E).
Mutual zeros of these three residual functions corre-
spond to the four types of solutions for ¢, p and s re-
ferred to in the text.
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