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This paper presents a new mesh re-generation technique for free surface çow analysis based on
the interface-tracking method. The incompressible Navier-Stokes equation based on the arbitrary
Lagrangian-Eulerian description is used as the governing equation. The SUPG/PSPG formulation
is employed for the ånite element discretization. The coupled non-linear ånite element equation
systems are linearlized by the Newton-Raphson method. As numerical examples, the present
method is applied to the sloshing problem, the broken-dam problem and the fountain çow problem
in a rectangular tank. The eéciency of the present method is shown by these numerical results.
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1. INTRODUCTION

The accurate evaluations of the çuid motion
and the force acting to the structure are needed
for the planing and the designing of civil struc-
tures. Several numerical methods have been
presented to analyze the free surface çow prob-
lems. Based on the frame of reference used,
these approaches can be classiåed into two ap-
proaches: 1) Interface-capturing method us-
ing Eulerian stationary mesh and 2) Interface-
tracking method using Lagrangian moving mesh.
Both approaches have advantages and disadvan-
tages. The interface-capturing method such as
the VOF (Volume of çuid) method1)Ä3) or the
level-set method4) has the robustness in applica-
bility; for example, it can be usefully applied to
the problems with complicated free surface mo-
tion such as breaking waves. However, as the
position of free surface is treated indirectly and
determined by solving the advection equation for
the interface function, it is necessary to use a åne
mesh to obtain the solution with desired accuracy.
On the other hand, the interface-tracking method

such as the ALE (arbitrary Lagrangian-Eulerian)
method5)Ä9) or the space-time method10);11) is
accurate method compared with the interface-
capturing method, since the interface is treated
as lines or surfaces. However, the method of-
ten causes the numerical instability problems
when the strong mesh distortion is caused by
the complicated behavior of the moving free sur-
face. Thus, a useful mesh re-generation method
is required for the cases with complex free-surface
shape.

This paper presents a new mesh re-generation
method for free surface çow analysis based on the
interface tracking approach. A background mesh
is introduced in the mesh re-generation algorithm
to compute the complex free-surface çow prob-
lems. The incompressible Navier-Stokes equa-
tion based on the arbitrary Lagrangian-Eulerian
description is used as the governing equation.
The stabilized ånite element method based on
the SUPG/PSPG methods12) is used. The cou-
pled non-linear ånite element equation system
is linearlized by the Newton-Raphson iterative
method and the GMRES technique13) based on
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the matrix-free method14) is used to solve the
linear equation systems. The stabilized ALE å-
nite element method based on the present mesh
re-generation method is applied to the several
numerical examples; the sloshing problem, the
broken-dam problem and the fountain çow prob-
lem in a rectangular tank. The computed results
are compared with the experimental and conven-
tional numerical results to show the validity and
eéciency of the method.

2. GOVERNING EQUATIONS

The çuid çow can be governed by the unsteady
Navier-Stokes equation and the incompressible
condition. The momentum and continuity equa-
tions in the ALE description can be written as
follows:

ö

í
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@t
+ ñuÅruÄ f

ì
ÄrÅõ(u; p) = 0 on ä;(1)

rÅu = 0 on ä;(2)

where u(x; t) and p(x; t) represent the velocity
and pressure. The external body force is rep-
resented by f(x; t), ñu is the relative velocity in-
cluding the mesh velocity, ä is the çuid domain.
The density ö is assumed to be constant. The
stress tensor õ(u; p) can be decomposed into its
isotropic and deviatoric parts:

õ(u; p) = Äp I+ 2ñ"(u); (3)

"(u) =
1

2

ê
ru+ (ru)T

ë
; (4)

where ñ is the dynamic viscosity. The Dirichlet
and Neumann-type boundary conditions are rep-
resented as

u = g on Äg; (5)

nÅõ= h on Äh; (6)

where Äg and Äh are complementary subsets of
the boundary Ä, n is the unit outward normal
vector.
Boundary conditions imposed on the free sur-

face are kinematic and dynamic ones. The kine-
matic condition requires that the free surface is a
material surface; i.e. the çuid particles which are
at some time on the free surface stay always on
it. This condition is used to describe the motion
of the free surface.

uÅn = ûÅn on Äfs; (7)

where û is the mesh velocity. The free surface
tension is neglected, and the stress-free condition
is imposed as the dynamic condition on the free
surface.

3. FINITE ELEMENT FORMULA-

TIONS

(1) Stabilized ånite element method
The stabilized ånite element formulation based

on the SUPG/PSPG method12) for Eqs.(1) and
(2) can be written as follows:Z
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wherew and q are weighting functions for the mo-
mentum and continuity equations, respectively.
úsupg, úpspg and úcont are stabilization parameters
which are deåned as follows11):

úsupg =
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úpspg = úsupg; (10)

úcont =
he
2
jjujjò(Ree) ; (11)

where, Åt is the time increment, he is the ele-
ment length andRee is the element level Reynolds
number.
Using the P1P1 (continuous linear interpola-

tion both for velocity and pressure) element for
the spatial discretization of Eq.(8), the following
ånite element equations can be obtained:

(M+Mé)
@u

@t
+ (A+Aé)u

+ DuÄ (GÄGé) p = F+Fé; (12)

GTu+M"
@u

@t
+A"u+G"p = F"; (13)

where, M, A, D, G and F are the matrices for
the time-dependent, convection, viscous, pressure
gradient, and external force terms, respectively.
The subscripts éand " indicate the contribution
from SUPG and PSPG, respectively.
The full implicit scheme is used for the tem-

poral discretization of Eqs.(12), (13). The time
derivative term can be discritized as:

@u

@t
=
un+1 Ä un

Åt
; (14)
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where n and n+1 denote time levels n and n+1.
And the velocity u and pressure p are discritized
as follows:

u = ãun+1 + (1Äã)un; (15)

p = pn+1; (16)

where ã is the parameter which controls the tem-
poral stability and accuracy. (Nomarlly ã is as-
sume to be 0.5.)

(2) Iterative method
From the above discretization in space and

time, a non-linear equation system can be ob-
tained as:

R(dn+1) = 0; (17)

where, dn+1 is the nodal values of the unknowns
(u and p) corresponding to the time step level n+
1. The Eq.(17) is solved by the Newton-Raphson
iterations:

Jkn+1(Åd
k
n+1) = ÄR(dkn+1) (18)

where dkn+1 is the kth iteration value of dn+1,
Jkn+1 is the approximate derivative of R with re-
spect to dn+1, evaluated at dkn+1, and Åd

k
n+1 is

the correction computed for dkn+1. The GMRES
method13) based on the matrix-free method14) is
employed to solve Eq.(18).

(3) Mesh update method
In the interface tracking method, the ånite el-

ement mesh over the çuid domain must be de-
formed in accordance with the free-surface mo-
tion governed by kinematic free-surface condition
(7). In order to express the arbitrary free surface
shapes, the mesh velocity on the free surface is
deåned as follows:

û = (uÅn)n; (19)

The displacements of internal node v can be gov-
erned by the linear elasticity equation:

rÅõm(v) = 0; on ä; (20)

with the constitutive equation deåned as:

õm(v) = ïm (tr "m(v)) I+ 2ñm"m(v); (21)

"m(v) =
1

2

ê
rv + (rv)T

ë
; (22)

The following boundary conditions are employed
to solve for the displacement åeld;

v = gm on Ägm ; (23)

nÅõm = hm on Ähm : (24)

The standard Galerkin ånite element method
is applied to the spatial discretization of Eq.(20)
and the Element{by{Elelment SCG method is

Example model Background model

Fig.1 Example model and background mesh

Initial ånite element mesh Computed ånite element
mesh at time step level n

Fig.2 Initial ånite element mesh and computed ånite
element mesh at time step level n

Än

Deåned ånite
element mesh

Re-generated ånite
element mesh

Fig.3 Deåned and re-generated ånite element mesh

employed to solve the discretized linear elastic-
ity equation. The mesh update is carried out by
the relocation of nodes as follows:

xn+1 = xn + v: (25)

4. MESH RE-GENERATION ME-

THOD USING BACKGROUND

MESH

The mesh re-generation algorithm using a back-
ground mesh is introduced to compute the com-
plex free surface çow problems. We use an ex-
ample model shown in Fig.1(left) to explain the
mesh re-generation algorithm for free surface çow
problem. Fig.1(right) shows the background
mesh for this model. The computation was
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MESHn

MESHRG

d(xn)1

d(xRG)
d(xn)2

d(xn)3

L1

L3
L2

Fig.4 Model of the correction of physical values

started with the initial mesh shown in Fig.2(left),
and Fig.2(right) shows the computed ånite ele-
ment mesh at time step level n. We generate
a new ånite element mesh for the domain sur-
rounded by the boundary of the computed do-
main Än. The following procedures are applied
at every time step level to consider the shape of
free surface.

(1) Consideration of the free surface

(a) Deåning Step : The ånite element mesh is de-
åned to contain the boundary of çuid domain
at time step level n from the background
mesh shown in Fig.1(right). Fig.3(left)
shows the deåned ånite element mesh. In this
ågure, the bold line denotes the boundary of
the domain at time step level n.

(b) Fitting Step : The nodes on the bound-
ary of the deåned ånite element mesh (the
nodes are located outside the free surface
in Fig.3(left)) are åtted to the free surface
at time step level n. The position of in-
terior nodes are determined by solving the
linear elasticity equation (20). Fig.3(right)
shows the re-generated ånite element mesh
(MESHRG) used in the computation.

vo

Fig.5 Volume correction

(2) Correction of the physical value
The nodal values for the velocity and pres-

sure in the re-generated ånite element mesh
(MESHRG) must be corrected by using the com-
puted nodal values in the mesh at time step level
n (MESHn). In this correction, the cubic in-
terpolation based on CIVA scheme15) is used as
shown in Fig.4. The nodal values d(xRG) are
interpolated in the following form via the area
coodinates (L1; L2; L3):

d(xRG) =24 3X
i=1

aiLi + c
3X

j;k=1

bjk[L
2
jLk +

1

2
L1L2L3]

35åååååå
xn

;

(26)

ai = di; (27)

bjk = dj Ä dk + (xk Ä xj)Årdj ; (28)

where c is the parameter for the interpolation,
and served as the cubic interpolation in the case
of c = 1 and the linear interpolation in the case of
c = 0. The spatial derivatives of the nodal values
rd are recoverd using the least-squares approach.
From the above procedures, a new ånite ele-

ment mesh with the nodal values is re-generated.

5. VOLUME CORRECTION

METHOD

In order to satisfy the mass conservation of
çuid, the volume correction method is introduced
to oãset the error of volume at every time step
level. The error of volume is mainly caused by
the projection error occurred at the åtting step
in the mesh re-generation method. The oãset of
the error of volume is achieved by the node relo-
cation on the free surface as:

vo = çn; (29)

where vo denotes the node displacement on the
free surface, ç is the oãset parameter which can
be deåned as:

ç=
VT Ä VnR
Äfs
nÅn dÄ; (30)

where VT is the target volume of the çuid and Vn
is the computed volume at the nth time step level
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1) F.E. model 2) Input data

5) Find velocity and pressure of fluid
（Momentum and Continuity equation)

6) Mesh update
(Linear elasticity equation)

Output result

7) Newton-Raphson Iteration

8) Time step

3) Mesh re-generation　
A) Consideration of the free surface

a) Definig Step
b) Fitting Step

B) Correction of the physical value

4) Volume Correction

Fig.6 Flow chart of the computation

(see Fig.5). The position of interior nodes are de-
termined by solving the linear elasticity equation
(20).

6. ALGORITHM OF THE COMPU-

TATION

The çow chart of the computation is shown in
Fig.6. The algorithm can be written as follows:

1) A background mesh and the initial position
of the free surface are set.

2) The input data for the ånite element mesh,
the initial condition and the boundary con-
dition are given.

3) The ånite element mesh is re-generated using
the position of the free surface, and the nodal
values are corrected.

4) The node on the free surface is relocated to
oãset the error of volume of çuid.

5) Eq.(18) is solved by the GMRES method to
ånd the approximate solution for the velocity
u and pressure p.

6) The linear elasticity equation (20) is solved
by the E-By-E SCG method for mesh update.

7) The Newton-Raphson iteration loop 5)ò6) is
repeated until the convergence is realized.

8) The time step loop 3)ò7) is repeated until
the ånal time level.

1
.0

 m

0
.3

 m

1.0 m

Fig.7 Numerical model of rectangular tank

Time = 6.0[s] Time = 12.0[s]

Fig.8 Computed free surface shapes without mesh
re-generation

Time = 6.0[s] Time = 12.0[s]

Fig.9 Computed free surface shapes with mesh re-
generation

7. NUMERICAL EXAMPLES

The present method is applied to several nu-
merical examples; the sloshing problem, the
broken-dam problem, and the fountain çow prob-
lem in a rectangular tank.

(1) Sloshing problem in a rectangular
tank

In order to show the validity of the present
method, the method is applied to the two di-
mensional sloshing problem in a rectangular tank.
Fig.7 shows the numerical model and the whole
domain is discretized by an uniform ånite element
mesh with 40Ç40 elements (xÇy direction) as the
background mesh. The density and kinematic
viscosity of water are assumed to be 1:0 Ç 103
[kg/m3] and 1:0Ç 10Ä6 [m2/s], respectively. The
free-slip boundary condition is applied to the
walls. The sloshing wave is generated by applying
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Fig.10 Time history of water level at the left-side
wall
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Fig.11 Time history of volume conservation ratio
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Fig.12 Volume error ration at eatch time step

a horizontal body force to the tank as:

fx = A!
2 sin!t; (31)

where A is the amplitude and ! is the frequency
(A = 0:0093 [m], ! = 4:761 [rad/s]). The
time increment Åt is assumed to be 1:0 Ç 10Ä3
[s]. In order to check the validity of the present
mesh re-generation method, the computed re-
sults are compared with the results obtained by
the method without mesh re-generation. In the
case without mesh re-generation, the nodes on
the free surface are allowed to move in a ver-
tical direction only, and the volume correction
method is omitted. Fig.8 shows the computed

2L

L

Z

4L

3.
25

L

Fig.13 Numerical model

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

  Illegal element

Fig.14 Computated çuid domain without mesh re-
generation method

free surface shape without mesh re-generation,
and Fig.9 shows the computed free surface shape
with mesh re-generation at each time step level.
From these ågures, the computed results by the
present method are in good agreement with the
results without the mesh re-generation method.
Fig.10 shows the time history of the water level
at the left-side wall, the computed results with
the mesh re-generation method is also in good
agreement with the computed result without the
mesh re-generation method and the experimental
result by Okamoto5). From this ågure, it can be
recognized that the mesh re-generation method is
not needed in this example because the shape of
free surface is not so complicated.
Fig.11 shows the comparison of the time his-

tory of volume conservation ratio. From this åg-
ure, the conservation of volume is satisåed in
the case without the mesh re-generation and vol-
ume correction methods, and the result with the
mesh re-generation and volume correction meth-
ods. On the other hand, the case with mesh re-
generation and without volume correction can not
satisfy the concervation of volume. From this åg-
ure, it can be concluded that the volume correc-
tion method is needed if the mesh re-generation
method is employed. In order to investigate the
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Time= 0.3[s]

Time= 0.4[s]

Fig.15 Computed free surface shapes (left:present
method, right:CIVA/VOF method

cause of the volume error, Fig.12 shows the vol-
ume error ratio occured in the åtting step of mesh
re-generation (shown in the çow chart 3) A) b))
and in the mesh update (shown in the çow chart
6)) at each time step. From this ågure, the vol-
ume error is not found in the mesh update step
but in the åtting step. The accumulation of this
error at each time step leads to the volume error
as shown in Fig.11.

(2) Broken-dam problem

The present method is applied to the broken-
dam problem. The rectangular computational
domain is surrounded by solid walls, as shown in
Fig.13. The initial water column is assumed to
be L=0.146 [m] in width and 2L in height. The
computational domain is subdivided into a uni-
form mesh of 80Ç65 elements (xÇy direction) as
the background mesh. The time increment is as-

Time= 0.4[s]

Fig.16 Velocity vector and pressure contour

0 1 2 3
1

2

3

4

t(2g/L)1/2

Z/
L

  present method
  CIVA/VOF method
  Exp.(Martin, Moyce 1.125in)
  Exp.(Martin, Moyce 2.25 in)

Fig.17 Time history of the water front location

sumed to be 2:0Ç10Ä4 [s]. Fig.14 shows the ånite
element mesh without the mesh re-generation
method. The computation is stopped by the
occurrence of the illegal elements at the stage
shown in Fig.14. Fig.15 shows the computed re-
sult with the mesh re-generation method. From
this, it can be seen that the mesh re-generation
is needed for the simulation of free surface çows
with the large deformation of çuid. Fig.15 also
shows the computed results by the CIVA/VOF
method3), which is one of the interface-capturing
methods. From this ågure, the computed free
surface shape by the present method is in good
agreement with the computed results by the
CIVA/VOF method. The velocity vector and
pressure contours obtained by the present method
are shown in Fig.16. As can be seen from these
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Fig.19 Inçuence of the volume correction

ågures, the stable computation is realized by the
introduction of the mesh re-generation method.
Fig.17 shows the comparison of the time histo-
ries of the water front location. The solid line
shows the present numerical result and the dotted
line shows the result of CIVA/VOF method, and
the solid circles denote the experimental data16).
From this ågure, the computational result by the
present method is in good agreement with the ex-
perimental data and the result by the CIVA/VOF
method. The time history of the volume conser-
vation ratio is shown in Fig.18. From this, the
case without the volume correction method suf-
fers from the increase of the volume. On the other
hand, the case with volume correction satisåes
the volume conservation. Fig.19 shows the eãect
of volume correction to the free surface shape.
From this ågure, the volume correction method
does not give a bad eãect to the representation of
free surface shape.

(3) Fountain çow problem
Finally, the present method is applied to the

fountain çow problem as an application example.
Fig.20 shows the computational model. The in-
viscid çuid is assumed in this example. The grav-

Uin

g

2
.0

1.0

Fig.20 Numerical model
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-4 -2 0 2 4
0

1

2

3

4

Time = 2.0

Time = 3.0

Time = 4.0

Fig.21 Computed çuid domain

itational acceleration, and the vertical inçow ve-
locity are assumed to be g = 1:0, and Uin = 1:0,
respectively. The density and kinematic viscosity
of the çuid are assumed to be 1.0 and 0, respec-
tively. The evolution of the çuid domain and its
mesh is shown in Fig.21. It can be seen from this
ågure that the computation is carried out stably
for the free surface çow with the complicated free
surface shapes.

8. CONCLUSIONS

A new mesh re-generation method using a back-
ground mesh has been presented for free surface
çow analysis. The stabilized ALE ånite element
based on the SUPG/PSPG method has been ap-
plied to several numerical examples; the sloshing
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problem, the broken-dam problem and the foun-
tain çow problem in a rectangular tank. The fol-
lowing conclusions are obtained:
èThe computed results obtained by the
present method are in good agreement with
the experimental results and the numerical
results obtained by the conventional method
based on the interface-capturing method.

èBy introduction of the present mesh re-
generation method, the applicability and the
robustness of the method is improved.

èThe present method is useful to evaluate the
çuid forces since the boundary is expressed
directly compared with the interface captur-
ing method. This point has advantage for the
planning and designing of structure.

From the results obtained in this paper, it can
be concluded that the present method is a use-
ful method for the complicated free surface çow
problems. For the future works, we plan to inves-
tigate the projection error occured at the åtting
step, and to apply the present method for the
three dimensional analysis.
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