Black-Box Knowledge Extraction Revisited*

Universal Approach with Precise Bounds

Emilia Kisper!, Sven Laur?, and Helger Lipmaa?

! Katholieke Universiteit Leuven, Belgium
2 Helsinki University of Technology, Finland
3 University College London, UK

Abstract. Rewinding techniques form the essence of many security reductions including proofs for
identification and signature schemes. We propose a simple and modular approach for the construc-
tion of such proofs. Straightforward applications of our central result include, but are not limited
to, the security of identification schemes, generic signatures and ring signatures. These results are
well known, however, we generalise them in such a way that our technique can be used off-the-shelf
for future applications. We note that less is more: as a side-effect of our less complex analysis, all
our proofs are more precise; for example, we get a new proof of the forking lemma, that is 2*° times
more precise than the original result by Pointcheval and Stern. Finally, we give the first precise
security analysis of Blum’s coin flipping protocol with k-bit strings, as yet another example of the
strength of our results.
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1 Introduction

Many security proofs incorporate complicated black-box rewinding techniques to force certain
behaviour from the adversarial algorithm. Most notably, rewinding is the core part of protocol
soundness proofs, for example, it is used to prove the security of many signature schemes. Here,
the task is to somehow force the adversary to reveal the secret key, thus showing that nobody
can create a valid signature without knowing the secret. In this paper, our goal is to clarify
different black-box rewinding techniques and provide simple and exact proofs. We provide a
universal approach together with sharp bounds on running times and success probabilities of
rewinding algorithms. Our main contribution is a straightforward off-the-shelf technique that is
applicable in many contexts.

To provide a gentle introduction, we first explain our approach on simple examples and then
gradually generalise until we have covered all target rewinding scenarios. As an introductory
example, we consider the security of Schnorr identification protocol [Sch91].

Then, we move on to more sophisticated rewinding techniques and prove the security
of generic signature schemes. The corresponding result is already known as the forking
lemma [PS00]; on the other hand, our approach provides a straightforward and natural proof
with better time bounds. We prove one central result (Theorem 3) that allows us to immediately
conclude security results for generic signatures and generic ring signatures. We avoid both the
complex transform from strict non-uniform time to expected uniform time, and the use of impre-
cise auxiliary combinatorial results such as the so-called “splitting lemma”. Although efficiency
gain is not the main advantage of our approach, it is worth noting that our results are nearly
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optimal for the best known reduction technique (forking): a more specialised algorithm can be
less than two times faster. Thus, we sacrifice almost no efficiency for the sake of simplicity.

In the second part of this paper, we address the issue of soundness versus security. Namely,
the results obtained so far consider the security of a protocol w.r.t. a fixed key. In this context
it is not possible to obtain a true reduction to the underlying hard problem, say, the discrete
logarithm problem, since such problems are known to be hard only on average. We resolve this
issue by proving the second central result (Theorem 8) which quantifies the success probability of
the rewinding algorithm, taken over the random choice of the secret. Our result allows trade-offs
between the running time and the success probability € of the adversary; for the best trade-off
point, the time-success ratio of our reduction is a factor 4/¢ better than previous results.

Finally, we show the strength of our results by applying them in a completely different con-
text. Our final target is the security analysis of Blum’s coin flipping protocol [Blu81], which plays
a central role in many zero-knowledge proofs: it allows to guard honest-verifier zero-knowledge
protocols against malicious verifiers. The protocol uses computationally secure string commit-
ments to guarantee the randomness of the protocol output. However, security properties of
Blum’s protocol are not directly implied by classic definitions of binding and hiding if k-bit string
commitments are used instead of bit commitments. We again use rewinding techniques to reduce
the randomness guarantee on the protocol output to the binding property of the commitment
scheme. To sum up, we remark that similar collision finding problems arise in different areas in-
cluding timestamping [BS04,BL06] and manual authentication protocols [Vau05b,PV06,LN06G].

Road Map. In Sect. 2, we introduce basic notions needed to analyse the security of generic
signature schemes. Sect. 3 is devoted to rewinding techniques. Our starting point is the security
of Schnorr identification protocol (Sect. 3.1). In Sect. 3.2, we prove our first main result (Thm. 3)
and in the next subsection, we give two examples on how to apply the theorem to specific
protocols such as signature schemes. We then make an intermediate summary of our results. In
Sect. 4, we fill the gap between soundness and security and provide means to reduce the security
of the protocol to the underlying hard problem (Thm. 8). As an additional treat, we apply the
result to prove the security of Blum’s coin flipping protocol. Finally, Sect. 5 discusses some open
problems. Many technical results are included as appendices, since they are straightforward but
tedious to prove. We encourage to read them, as they give formal proofs to many intuitively
understandable claims.

2 Preliminaries

Notation. For a positive integer 4, let [i] = {1,...,i}. For an (s + 1)-dimensional array A, let
A(wp, - -.,ws) denote its corresponding element. Let §S be the cardinality of set S. Finally, to
avoid common confusion about convex and concave functions, we call a function f convex-cup
if f(%5Y) < M and convex-cap if f(ZHY) > M

Schnorr Identification Protocol. In the Schnorr identification protocol, a user P proves to
a verifier V that she knows the discrete logarithm of a public key y = ¢* where g is a generator
of a g-element group G. The corresponding protocol is the following: P chooses a < Z, and
sends o = g% to V. Verifier V sends a challenge 8 < Z, and P replies with v = a+ fz (mod g).
Verifier V accepts the transcript if g7 = ¢g¢t#% = o . b,

Special Soundness and Knowledge Extraction. The security of a protocol is proved by
showing that if a prover can provide accepting transcripts, then she indeed knows the secret



Black-Box Knowledge Extraction Revisited 3

z. In the case of Schnorr identification, it is straightforward to show that given two accepting
transcripts (o, 81,71) and (o, Ba2,72) with 81 # fBa, we can compute z = (82 — 1) (v2 — m1)
(mod ¢q). In general, such a property is known as special soundness. If a prover P succeeds
with probability higher than 1/¢, then the complete listing of all protocol transcripts contains
such colliding triples and these collisions can be found efficiently by rewinding P with different
challenges f3; this search is one example of knowledge extraction techniques.

Fiat-Shamir Heuristic and Schnorr Signatures. The interactive challenge-response iden-
tification protocol described above can be converted into a non-interactive signature scheme
using the so-called Fiat-Shamir heuristic [FS86]: the prover computes the random challenge of
the verifier herself by means of a one-way hash function h. In particular, Schnorr signatures
are quadruples (m,a,3,7) where 8 = h(m,a) and (a,,7) is an accepting transcript of the
corresponding identification scheme with public key pk = y and secret key sk = z. Heuristically,
if the hash function is “cryptographically strong”, then substituting 8 with h(m, @) should not
significantly decrease security.

Generic Signature Schemes and the Random Oracle Model. Many important signature
schemes can be formalised similarly; the corresponding generalisation is known as a generic
signature scheme. Namely, a generic signature is a tuple (m,q,3,7), where m € M is the
signed message, « is a random nonce chosen uniformly from some set D, 8 = h(m,«a) € T for
some fixed function A, and -y is a verification value that is computed from m, « and h using the
secret key sk. Verification consists of two steps: (a) the validity of +y is verified by evaluating a
pk-dependent predicate Verify, (m,a,(,7); (b) the connection between the signature and the
message is assured by testing that 8= h(m, ). However, a more formal security analysis is
accessible only in the random oracle model [BR93], where h is modelled as a black-box function
chosen uniformly from the set of all functions A : M x D — T . To compute h(m, «), one has to
make explicit oracle calls.

Security of Signature Schemes. A signature scheme is secure, if it is infeasible to obtain
a signature without knowledge of the secret key (a forgery). It is important to distinguish
existential and universal forgeries. In the case of universal forgery, an adversary must produce a
valid signature for a given message m, whereas for ezistential forgery, it is sufficient to produce
a single but new valid signature. A signature scheme is (,¢)-secure against existential forgeries
if any ¢-time adversary succeeds in existential forgery with probability less than e, where the
probability is taken over the coin tosses of all relevant algorithms including the key generation
algorithm.

Generic Ring Signature Schemes. In a ring signature scheme, any user belonging to a ring
can compute a signature on behalf of the entire ring, using only her private key and the public
keys of other members. An example of such a scheme is an extension of the single-user Schnorr
signature scheme [HS03]. However, we omit here the details how ring signatures are constructed
and only describe the generic model. A generic ring signature in a ring of n members is a tuple
(m,a,B,7), where a = (a1,...,0op) such that o; # «; for i # j; and 8 = (B1,--.,0n) such
that 8; = h(m, ;). The special soundness property of ring signatures then translates to the
following: given two valid signatures (m, o, 3,7), (m, a, 8',7') such that 3; # f; for exactly one
index 7 € [n], we can compute the secret key of one ring member. Schnorr ring signatures are
specially sound.
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3 Black-Box Knowledge Extraction

It is common to model knowledge extraction as a randomised search. In this section, we propose
a relatively simple randomised algorithm Rewind (Alg. 1 and 2) that provides solutions to many
knowledge extraction tasks. Recall that the idea behind knowledge extraction is to find related
protocol transcripts that reveal the secret. Thus, we abstract away from protocol details as much
as possible and simply label protocol transcripts in such a way that two random transcripts with
coinciding labels allow to extract the secret with high probability. Moreover, as a transcript is
completely determined by the random choices of the adversarial prover A and the verifier V,
we may identify each transcript with the underlying randomness. Throughout this paper, we
denote by w the randomness used in the protocol, and by A(w) the label on the corresponding
transcript.

For example, in the case of Schnorr identification scheme, w = (r, c) represents the random
choices of the adversarial prover and the verifier, respectively. We set A(w) = 1 if the tran-
script is accepting and A(w) = 0 otherwise, so A is simply a binary matrix. Then we can skip
implementation details and we are left with the problem of finding two ones in the same row
of matrix A. In the general case, we allow an arbitrary set of labels, but we always reserve the
label 0 to denote failure. Then, if A achieves advantage ¢, an e-fraction of transcripts w have
nonzero labels A(w) # 0.

Rewinding. In a nutshell, knowledge extraction techniques considered in this paper run the
adversarial prover multiple times with different challenges from the verifier; or experiment with
different random oracles in the non-interactive case. More formally, let w = (wy, . ..,ws) denote
the random variables as they are requested in the protocol. Then, rewinding is a search strategy
where wy, - ..,w;—1 are fixed but the remaining values are altered; index 7 is the corresponding
rewinding point. The crucial observation is that if we fix wyg, ..., w;_1, then all protocol messages
sent before some participant requests w; are the same, regardless of the values of w;, ..., ws. Ob-
viously, different knowledge extraction problems require different labelling, search and rewinding
criteria. Therefore, the general form of Rewind is quite complex for the reader that does not
know enough context. Hence, we derive the corresponding algorithm gradually starting from
simple examples and introduce new ideas until we reach the final form.

3.1 Security of the Schnorr Identification Protocol

In order to familiarise the reader with our concept, we start by proving the security of Schnorr
identification protocol. The result itself is not novel, but it helps us to introduce the notation.
Recall that the security of Schnorr identification protocol hinges on the special soundness prop-
erty: given two accepting transcripts (o, 81,71) and («, B2,72) with 81 # B2, we can efficiently
derive the secret key z. Now, let A be a 7-time adversary that achieves advantage ¢ against the
scheme, i.e., A acting as a prover manages to create «,7 so that an honest verifier V accepts
the transcript with probability . Let r be the randomness used by A and let ¢ = 8 be the
randomness used by V. Then we can label all protocol transcripts by 0 if V does not accept
and 1 otherwise. Let A be the corresponding matrix with entries A(r, c). W.l.o.g. we can assume
that € [m] and ¢ € [n]| are uniformly distributed. Then it is trivial to note that for fixed r, A
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Algorithm Rewind-Basic(A):
1. Probe random entries A(r,c) until A(r,c) # 0. Store w = (r,c).
2. Fix the row r. Probe random entries A(r,c’) in that row until A(r,c’) # 0. Store w’ = (r,¢).
3. Try to extract the secret from w, w'.
— If the extraction is successful return the secret = else return L.

Algorithm Rewind-Basic-Exp(A):

e Repeat Rewind-Basic(A) until it succeeds and returns z.

Algorithm 1: Rewinding algorithm Rewind-Basic and its extension Rewind-Basic-Exp.

always outputs the same message o and we have to find two different non-zero entries A(r, ¢),
A(r,c') in the same row'. The most obvious way to search such elements is the following:

— Probe random entries of A(r,c) until A(r,c) = 1.
— Probe random entries A(r, ) in the same row until A(r,c') = 1.
— Extract secret z using r,c,c if possible.

By random probing we mean that r € [m] and ¢ € [n] are chosen uniformly. In particular,
we do not require ¢ # ¢’ for otherwise this algorithm would never finish if it stumbled upon a
row with only one accepting transcript. This implies that the basic algorithm always has failure
probability pqi; > 0, so we may have to repeat the process.

The two algorithms are formalised as Algorithms Rewind-Basic and Rewind-Basic-Exp (see
Alg. 1). Probing one entry in matrix A corresponds to a single execution of the protocol. To
probe a second entry in the same row, we have to rewind A to the point where it receives .
Let probes; and probes, denote the number of probed elements during Step 1 and Step 2. First,
we compute the expected running time of Rewind-Basic. Note that by construction, € denotes
the success probability of A.

Lemma 1. For any matriz A with an e-fraction of nonzero entries, Rewind-Basic makes on
average E[probes,] = 1/e probes in the first and E[probesy| < 1/e probes in the second step.

Proof. Let A be an m x n matrix and let nz(r) be the number of nonzero entries in its rth
row, so emn = nz(1) + --- + nz(m). Since Step 1 and Step 2 sample elements until the first
success (i.e., according to a binary distribution), we get E[probes;] = 1/e and for any row r
with nz(r) > 0, E[probesy|r] = n/nz(r). Thus,

nz(r n
El[probes,| = Z Pr[r] - E[probes,|r] = Z % . )
rinz(r)>0 r:inz(r)>0
_ 1 f{r:nz(r) >0} <1
€ m e

O

! We could try to find colliding transcripts for different rows but then our chances are significantly smaller. In
fact, the adversary A may output a different o for each row. Therefore, the search criterion is optimal for
black-box reductions, as the search criterion must be independent of A.
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Failure probability and knowledge error. Although the transcripts found by Rewind-Basic
are accepting by construction, we sometimes cannot extract the secret, for example if w; = wj.
While this is the only possible cause of failure for the Schnorr protocol, in general there could be
other failing tuples. Let bad(w) = bad(r, ¢) denote the number of vectors w’ = (r, ') that lead
to failure and let nz(w) = nz(r,c) = §{c : A(r,c’) # 0} be the number of accepting transcripts
in a given row 7. For the Schnorr protocol, bad(w) = 1, as extraction fails only if ¢ = ¢/, but
nz(w) depends on the adversary. Now, it is straightforward to compute the failure probability
of Rewind-Basic

pse) = 3 Priw= (r,c)] -Pr[Rewind-Basic = Ljw] = —— . 3 220)
A@)0 emn A0 nz(w)

as the first tuple (7, ¢) is chosen uniformly among the nonzero entries of A. Let us define

bad(w)
o (1)

1
A AIP D
(w)#0
where the maximum is taken over all possible matrices for any €. Then we get an upper bound
on the failure probability pg; < k/e. For the Schnorr protocol, bad(w) = 1 and thus

1 1 1
K = — - max 5 =—,
mn A nz(w) n
Alw)=1

as the last sum counts the number of rows with nonzero entries. Observe that a lower bound
on k is determined by the maximal fraction kg of non-zero elements in A such that extraction
always fails, i.e., there exists an adversary with success probability ¢ that does not “know” the
secret. For many problems, k9 = x and thus it is appropriate to call k a knowledge error. Given
K, we can now estimate the average running-time of Rewind-Basic-Exp.

Theorem 1. For any matriz A with an e-fraction of nonzero entries and for knowledge error
k, Rewind-Exp makes on average E[probes] < 2/(e — k) if k < €. Asymptotically, the ezpected
number of probes behaves E[probes] < (2 4 o(1))/e in the process €/k — 0.

Proof. As all runs of Rewind-Basic are independent and the success probability of a single
finished run is 1 — pgu(e), we get E[probes] < (2/e)/(1 — pru(e)) = 2/(e — k). As 2/(e — k) =
2-(14 k/(e — K)) /e, the second claim follows. 0

If the challenge space of Schnorr identification protocol has size n = ¢, then we say that
k = log, q is the security parameter of the protocol. We conclude the following result.

Corollary 1. Consider Schnorr identification protocol with security parameter k. Let A be a
T-time forger whose input consists only of public data. If A produces an accepting transcript
with probability € > 27%, then there exists a knowledge extractor which extracts the secret in
expected time t < 27/(e — 27F).
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Lower bounds on average running-time. Note that Rewind-Exp discards some information
as it can probe some entries more than once. Still, the next theorem shows that the expected
number of probes, achieved by Rewind-Exp, is almost optimal when ¢ is reasonably large. Already
for € > 3k, Rewind is less than a factor of 2 away from the optimal time bound.

Theorem 2. For any black-box searching strategy S, there exists a status matriz A with emn
nonzero entries such that S makes E[probes| > 2(mn + 1)/(emn + 1) = 2(1 — o(1))/e probes.

Proof. See App. A.

3.2 Rewinding in the General Case

In the previous example, the rewinding strategy was straightforward. In general, knowledge
extraction can be more complex if there are many possible rewinding points and some choices
lead to the execution of different sub-protocols. As an illustrative toy example, we consider
an extension of Schnorr identification protocol where the prover has d chances to convince the
verifier, i.e., d protocol instances are run sequentially and the verifier accepts if at least one
sub-protocol leads to acceptance. Such a setting is closely connected to Schnorr signatures but
is somewhat easier to grasp. Now, the protocol transcript is a tuple (oq, 51,71, - - - @4, Bds Yd)
and we have to find two accepting sub-transcripts (i, 8i,i) and (e, B,7;) such that 8; # B
for some i € {1,...,d}.

Let w = (wo,w1, - - - ,wq), where wy is the randomness used by the malicious prover A and w;
is the ith challenge §;. Clearly, it makes sense to group accepting transcripts into equivalence
classes. Let A(w) = ¢ if the ith sub-transcript is the first accepting transcript and A(w) = 0
if no transcripts are accepting. To find suitable transcripts (o, 8i,v;) and (o, 8L,7;) we have
to fix all random coins that are used before f; is queried. The latter leads us to the following
simple algorithm:

— Probe random entries of A(w) until A(w) # 0. Set i = A(w).
— Probe random entries A(w’) with wy = wy, ..., wi—1 = w;_; until A(w) = A(w').
— Restore protocol transcripts and extract secret x using w and w'.

Moreover, the above algorithm can be generalised to any protocol that satisfies the following
two requirements:

1. Transcripts can be labelled in such a way that two random transcripts with coinciding labels
allow to extract the secret with high probability.
2. For all transcripts with the same label the set of reasonable rewinding points is the same.

Indeed, as we shall see in several examples, finding a proper labelling is the crucial point in
proving the desired result. The formalisation of the above idea is given as Alg. 2. Note that all
proofs trivially generalise to the case where the the rewinding point is chosen at random from a
set of reasonable candidates. For our example protocol, the rewinding point coincides with the
label: f(a) = a. We also emphasize that all proofs go through if the adversary halts with success
or failure before receiving all d challenges; or if the number of random bits she queries at any
time is unknown ahead of time. In this case, A is not an array, rather it is just a tree which is
not necessarily balanced; such a generalisation is considered in [Vau05a, p. 270]. Nevertheless,
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Algorithm Rewind(A):
1. Probe random entries A(w) until A(w) # 0.
Store the corresponding label a = A(w). Fix the rewinding point ¢ = f(a).

Set r = (wo, .. .,wi—1) and ¢ = (w4, . - . ,Wq)-
2. Probe random entries A(w') = A(r, ¢’) until labels coincide A(w’) = A(w).
3. Try to extract the secret from w = (wo, - - . ,Wi—1, Wi, --,wa) and w' = (Wo, - ., Wi—1, W}, ..., wy).

— If reconstruction is successful return the secret z else return L.

Algorithm Rewind-Exp(A):

e repeat Rewind(A) until succeeds and returns z.

Algorithm 2: Rewinding algorithm Rewind and its extension Rewind-Exp.

we can (a) fix the length of the queries by filling the gaps with random bits?; and (b) complete
the tree with random values so that it is balanced. We are now back at the original situation.

Lemma 2. Let {0,...,d} be the set of labels. For any array A with an e-fraction of nonzero
entries, Rewind takes on average E[probes| < (d + 1)/e probes.

Proof. Fix a label a > 0 and consider Step 2 under the constraint A(w) = a. As w is chosen
uniformly from accepting transcripts, then w is chosen uniformly under the condition A(w) = a
and the algorithm behaves exactly like Rewind-Basic on the matrix where all entries A(w) # a
are set to zeroes. Hence, Lemma 1 yields E[probesy|A(w) = a] < 1/e, where ¢, is the fraction
of a-labelled entries in A and

E|[probes,| = ZPr [A(w) = a] - E[probes,|A(w) = a] < E € 1 _d .
€ €

As Elprobes;| = 1/, the claim follows. O

Aggregated knowledge error. The failure probability pg.(¢) of Rewind is also averaged over
different labels. Let pf, (e,) denote the failure probability of Rewind-Basic in the matrix where
there are g,-fraction of nonzero entries and the rewinding point is chosen as f(a). Let k4 be the
corresponding knowledge error. Then the summary failure probability of Rewind is

€1+-teg=¢ E 3

d d
€ 1+t Ky
pfail(e) = max {Z ;‘1 pfaﬂ Sa } < : - _ -

In other words, we can decompose the complex analysis of initial failure probabilities into simple
sub-cases. Let K = k1 + - - - + K4 be the aggregated knowledge error. Now we can state the first
central theorem for knowledge extraction.

Theorem 3 (Dynamic Search). Let {0,...,d} be the set of labels and let k be the aggregated
knowledge error. For any array A with an e-fraction of nonzero entries, Rewind-Exp makes on
average E[probes] < (d + 1)/(e — k) probes if ¢ > k.

2 If there is no other bound, the number of random bits queried is certainly bounded by the running time of the
adversary.
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Proof. The proof coincides with the proof of Thm. 1. O

We conclude this subsection by showing how to compute the aggregated knowledge error in
the simple case where all transcripts w, w' such that A(w) = A(w’) and w; # w, (where i is
the rewinding point) allow to extract the secret. For this, we need to compute the knowledge
error k, for each submatrix with only a-labelled nonzero entries. Let wg € [m] and w; € [2¥] for

1 <i<d. For w = (wy,...,wq) with rewinding point f(a) = 4, extraction fails only if w} = w;,
so we get bad(w) = f {w’ = (wo, ... ,wi—1,w;, Wi, ..., W)} = 2(d=dk g4
bad _ 20d=dk 1 L
fra = m2‘7“C m’gx Z = ok TRT nz(w) =27
A(w)=a

as the last sum counts rows with a-labelled entries and there are m2(— 1k

aggregated knowledge error is

rows. Hence, the

I<L:I€1+...+I<&d:d-2_k. (2)

3.3 Universal Proofs for Forking-Lemma Type Knowledge Extractors

Security of Generic Signature Schemes. Next, we turn our attention to signature schemes.
Our results from the previous section allow us to obtain a straightforward proof of the infamous
forking lemma [PS00] that provides the security of generic signature schemes in the random
oracle model. We are going to (re)prove the strongest result, namely, security against existential
forgery. That is, we show that there exists no efficient adversary who is capable of producing
a valid new signature on any message m of her choice without knowing the secret z. Let A
be an adversary that tries to output a forged signature. To do so, she is allowed to query gy
hash queries h(m;, ;) from the random oracle before outputting a signature® (m, o, 8,). The
goal of the knowledge extractor is then to rewind A to produce two valid signatures (m, «, 3,7)
and (m,a, 8',7") such that 8 # (', since this allows to extract the secret z. Analogously to
identification schemes, we say that k is the security parameter of the scheme if k = log, |T|
quantifies the size of the hash function tag space 7. The following theorem bounds the expected
running time of the knowledge extractor.

Theorem 4 (Forking Lemma). Consider a generic signature scheme with security parameter
k. Let A be a T-time forger whose input consists only of public data. Let g be the number of
queries that A can ask from the random oracle. If A produces a valid signature with probability
at least € > K, then there exists a knowledge extractor which extracts the secret key in expected
time t < 7(qn +1)/(e — k), where k = (g + 1) - 27F is the knowledge error.

Proof. Let w = (wo,w1,...,wq,) be the used randomness, where wy is the public input of A and
w; is the oracle’s reply to the ith query h(m;, ;). Let A(w) =i if A outputs a valid signature
on the ith query (m;, ;) and let A(w) = 0 otherwise. Notice that we set A(w) = 0 also if
A outputs a valid signature without querying the corresponding hash value, so the fraction of
nonzero entries in A is ¢/ < e. Now, we can set the rewinding point to f(a) = a for a # 0

3 We assume that A never queries the same hash value twice. The assumption is perfectly reasonable as A gets
no additional knowledge from repeating queries.
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and apply the rewinding strategy of Alg. 2. In order to apply Thm. 3, we need to compute &’
and k. Notice that due to the randomness of oracle outputs, the probability that A outputs
a valid signature (m, a, 8,7) without querying h(m, a) is at most 27%, i.e., the probability of
guessing the hash h(m, ) at random?. Thus, the fraction of entries with nonzero labels A(w) is
g > e —27%. From (2), we get k = g5, - 27%. We now have everything we need to apply Thm. 3,
so we conclude

atl . gn +1

t<qr.o T2 .
=T g =T e (g r )2k

O

Security of Generic Ring Signature Schemes. Recall that a ring signature is a tuple
(m,a, B,7) and given two signatures (m,a,3,7), (m,a’,B',v) such that 8; # B, for exactly
one index 4, it is possible to extract the secret z; of ring member 4. As in the case of single-signer
signatures, we allow the adversary A to ask g queries from the random oracle and construct
from A a knowledge extractor that computes two suitably related signatures that reveal the
secret of some member. Apart from a more clever labelling and rewinding function f, the proof
is similar to that of Thm. 4 and quite straightforward, so we omit some details.

Theorem 5 (Forking Lemma for Ring Signatures). Consider a generic ring signature
scheme with n ring members and security parameter k. Let A be a T-time forger whose input
consists only of public data. Let q, > n be the number of queries that A can ask from the
random oracle. If A produces a valid ring signature with probability at least € > k, then there
exists a knowledge extractor which extracts the secret of some ring member in expected time
t < 7(V(gn,n) + 1)/(e — k), where V(gn,n) = qn(gn — 1)---(gn — n + 1) is the number of
n-permutations of qn elements and k = (V(qn,n) + n) - 27% is the knowledge error.

Proof. As above, let w = (wp, w1, . ..,ws,) be the used randomness, where wy is the public input
of A and w; is the oracle’s reply to the ith query h(m;, ;). Let A(w) = a = (a1,...,a,) if
A outputs a valid signature (m,a1,...,an,B1,...,Bn,7y) such that she queried (m, ;) as the

a;jth query; and let A(w) = 0 otherwise. The number of different labels is then V(gy,n) =
g(g—1)-+- (¢ —n+1). For A(w) # 0, set the rewinding point to i = f(ai,...,a,) = max;{a;}
and apply the rewinding strategy of Alg. 2. Then the adversary indeed queries all (m, ;) again,
as her view is unchanged before making the last query (m, «;). The probability that A outputs
a valid signature without querying even one of the hashes h(m, o) is at most n - 27k by the
union bound, so the fraction of transcripts with nonzero labels A(w) # 0 is &’ > € — n - 27,
Equation (2) again helps to find the aggregated knowledge error £ = V (g, n)-27% and Thm. 3
gives the claimed bound. O

3.4 From Average-Case Complexity to Strict Time-Bounds

Theorems 1 and 3 only bound the average running-time of the knowledge extractor. Conversely,
most security definitions are stated using strict time-bounds. Therefore, we use a standard
methodology to get knowledge extractors that run in strict time with negligible failure prob-
ability o > 0. Our construction is again uniform, i.e., the user does not need to specify the a
priori unknown success probability €, see Alg. 3.

* We may formalise this as follows: if A indeed outputs a signature (m,a, 8,7) such that h(m,a) was never
queried, the verifier can query the oracle himself and reject immediately if the oracle replies h(m, a) # 8.
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Rewind-Uni(A, o):
for:=1,2,3,... do
repeat at most [log, ] times
Execute Rewind-Exp(A) and stop if it executes more 2° probes.
if Rewind-Exp(A) succeeds in extracting the secret « halt with the output z.
continue
continue

Algorithm 3: Rewinding algorithm Rewind-Uni.

Theorem 6 (Uniform Knowledge Extraction in Strict Time). Let {0,1,...,d} be the
set of labels. For any array A with an e-fraction of nonzero entries and aggregated knowledge
error Kk, the algorithm Rewind-Uni(A, o) fails in the first 8(d + 1)(logy(1/0) + 1)/(e — k) probes
with probability less than o.

Proof. Note that if 2! > 2(d + 1)/(e — k) = 2 - E[probes] then Markov inequality Pr[X > o] <
E[X]/« assures that Rewind-Exp outputs a collision with probability at least 1/2 in the repeat
cycle. For ig = [logy(2(d+1)/(e—k))], the single repeat cycle makes at most 4(d+1)(logy(1/0)+
1)/(e—k) probes and fails with probability less than 0. As the number of probes in the ith repeat
cycle is 2°, the total complexity of the first ig invocations is at most 8(d+-1)(logy(1/0)+1)/(e—x).

O

3.5 Significance of Our Results

Specially sound proofs of knowledge. The security of specially sound proofs of knowledge
like Schnorr identification scheme is relatively well studied [Sch91,DF02,0098]. Yet, we are
the first to provide a knowledge-extraction algorithm that runs for all adversaries for whom
knowledge extraction is possible at all. That is, we remove the artificial constraints ¢ > cx for
some constant ¢ and prove the result for all ¢ > «. The expected running-time of our algorithm
2/(e — k) is approximately equal to the true lower bound when € > k. Previous analyses have
used so called “heavy row” techniques to obtain the results and are thus inherently imprecise.
In [DF02], the “heavy row” techniques lead to the bound E[probes] < 56/¢ when ¢ > 4k,
whereas we get the bound E[probes] < 8/(3 - €). The main reason behind the factor 21 drop in
this estimate is the simpler form of the new algorithm, which allows for a precise analysis.

Forking lemmata. Originally, forking lemma was derived in [PS00], where the authors
managed to analyse the case where ¢ > 7¢ - 27% and proved that their algorithm requires
E[probes] < 84480 - g/e probes on average. Our analysis gives a bound E|[probes] < 2.8-¢/e that
is several orders of magnitude better. However, the main advantage is the conceptual simplicity.
The forking lemma itself is a simple conclusion of Thm. 3 where the only non-trivial steps are
the choice of labels and the computation of aggregate knowledge error. The proof of Thm. 3
itself is straightforward compared to the original treatment in [PS00] that uses an auxiliary
“splitting lemma”. Moreover, Thm. 3 itself is a universal result, therefore, we do not need to
repeat the same technical steps to prove slightly different results. Rather, we only have to choose
proper labelling and estimate the aggregate knowledge error, which is in many cases a simple
function of the scheme security parameters and the number of labels. Therefore, we believe that
our approach provides a flexible and universal solution to many, not to say to all, knowledge
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extraction problems that require rewinding. For example, Thm. 3 can also be applied to prove
the security of multi-signatures [BNO6].

Finally, we explain why we have not considered security against an adversary that is also
allowed to make signature queries. This is not because our approach does not allow for such
proofs; on the contrary, existing results can be used to fill the gap easily and obtain new
and sharper bounds. We have omitted the details mainly because the missing step deals with
simulation and does not shed any new light to the rewinding problem.

Strict Time Bounds. Authors of the previous reductions always follow the same path: first,
they construct a non-uniform knowledge extractor that runs in some strict time with fixed
constant success probability. Then, they apply a complex transform to get a uniform knowl-
edge extractor with bounded expected running-time. We, on the other hand, take a different
approach and immediately construct a uniform expected-time algorithm. We can then apply
a simple transform to achieve a uniform knowledge extractor with strict running time for any
desired success probability. Of course, such a transform is possible also for the previous uni-
form knowledge extractors, but each additional transform comes at a cost of degradation in the
precision of bounds.

4 From Soundness to Security

The forking lemma, and its counterparts provide strong soundness guarantees: if somebody can
generate signatures with non-negligible probability, then she must know the secret key. However,
this result alone does not prove that the corresponding signature scheme is secure, as it might
be easy to find the secret key from public parameters. Of course, we cannot choose the public
parameters to attack the sub-primitive, e.g. the public key of the Schnorr signature is generated
only once and we cannot resample it. The underlying hard problem for Schnorr signatures is the
discrete logarithm problem, which is hard only on average. Thus, we want to show security for a
key chosen at random. To close the gap, we must show that if there exists an efficient algorithm
A that can forge signatures with probability e, then there exists an efficient algorithm B that
can solve discrete logarithm with high enough success probability. More precisely, if G = (g)
is a (7, &p)-secure DL-group, then we need to construct for any sufficiently successful adversary
A, a 7-time adversary B that attacks the discrete logarithm problem with success probability
Pr(z « Zg,y < ¢° : B(g,y) = z] > €.

Many authors [BP02,BN06] have addressed this problem by constructing from a ¢-time
adversary A another adversary B that runs in time 2¢; the corresponding result is known as
the reset lemma [BP02, p. 168]. In what follows, we give a large variety of similar knowledge
extraction techniques that provide tradeoffs in terms of required security parameters (7, ) from
the DL-group. For the best trade-off point, our reduction is a factor of /e sharper than the
reset lemma. Moreover, our reduction is applicable in different areas including time-stamping
schemes [BS04,BL06] and data-authentication [Vau05b,LNO6].

In the formal security proof, one defines a success matrix A similarly to previous examples
so that two coinciding labels A(w) = A(w') allow to extract the secret z with high probability.
In particular, we want to find a collision fast: approximately in ¢ = o(gin) probes. For such
a small number of probes, we cannot use our results for Rewind-Uni, so we have to start from
scratch. Also, the probability of finding even one nonzero element is o(1), so we derive bounds
only for Rewind-Basic and Rewind.
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As before, we start with the simple case where A(r, c) is a zero-one matrix. Let probes; and
probes, denote the number of probes in Step 1 and Step 2 of Rewind-Basic. Then the distribution
of probes; depends only on the fraction of nonzero entries e. However, the distribution of probes,
depends on how the nonzero elements are distributed. Let p, denote the probability of probing
a nonzero element in the rth row. Although p, € {%, ..., ~}, we consider relazed configurations
where p, € [0,1]. We assume only that the probability of getting a nonzero element in the
rth row is p, and that p; + - -+ + pp, = em. Intuitively, if p, varies over rows, then rows with
high p, are selected more likely. Hence, on average, the suitable nonzero element is found faster
compared to the uniform configuration p, = ¢ for all rows. Indeed, the configuration p, = ¢
maximizes the failure probability after the first £ < 1/e probes.

Lemma 3. Lete € (0,1] and £ < 1/e—1. Then Step 2 of algorithm Rewind-Basic fails to finish
in £ steps with probability at most Pr[probes, > £] < (1 — ¢)*.

Proof. To prove the claim, we have to show that Pr[probes, > /] as a function of p = (p1,...,pm)
is maximised at p, = (g,...,¢€). The proof itself is straightforward but technical and thus the
complete proof is given in Appendix B. O

Thm. 7 quantifies the probability that Rewind-Basic is successful, provided that a malicious
adversary achieves advantage € and we can freely choose the rows.

Theorem 7. Let ¢ € (0,1] and let Pr[probes < £ Asuccess| denote the probability that
Rewind-Basic returns the secret in £ steps. Let k be the knowledge error. If £ < 1/e then
Pr [probes < £ Asuccess] > #4(¢ — 1)e(e — k). If £ > 1/e, then Pr[probes < £ A success| >
1

1(1—=k/e).

Proof. Consider the failure probability of the Rewind-Basic algorithm after the first £ probes.
There are £+ 1 disjoint events that can cause failure: either we find A(r, ¢) # 0 at the ith probe
and then fail to reveal the second A(r,c’), or we cannot find the first nonzero element at all.
Thus,

¢
Pr [probes > /] = Z Pr [probes; = i] Pr[probesy > £ — i] 4+ Pr [probes; > £] .
i=1

Note that probing in Step 1 is uniform and each probe is successful with probability e. For
£<1/e,£—i<£—-1<1/e —1 and Lemma 3 assures that

12
Pr [probes > /] < Z(l —e) le(l—e) T+ (1 —e)f =te(1 —e) 1+ (1 —e)t .
i=1

A lower bound based on the third order Taylor expansion gives 1 — Pr [probes > ¢] > éﬁ(ﬁ —1)e?;
see Appendix D and Lemma 5 for the corresponding proof. If £ > 1/¢ then observe a new relaxed
configuration p] = é - pr. Then the corresponding average ¢’ = 1/£ and Rewind chooses the
rows 7 with the same probabilities as before. Since failure probabilities Pr [probes; > £|¢'] and
Pr [probes, > £|r,pl] only increase, we have obtained

Pr [probes < £]e] > Pr [probes < £]¢'] >1— (1-1)" = (1= 1) = g(0) ,
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as Lemma 3 holds for €. Since (1 — 7)%*~! < e™2, or equivalently, 2+ (2¢ —1)In(1 — ) < 0, we
get ¢g'(£) = —(1 — %)e/(ﬁ —1)-((2¢-1)1In(1 — %) +2) > 0 and Pr[probes < ¢] > ¢g(2) = 1/4 for
£>1/e. AS pra(e) < e/k, the inequalities about success probabilities follow. O

Now, we have a non-trivial bound for the success probability of the rewinding algorithm for
a small number of steps. The next theorem provides an adequate solution for reductions that
take into account the average advantage over the public key. Namely, in the following, let ¢;
denote the advantage of A for a given public key ¢?, and let € be the averaged advantage over
all keys.

Theorem 8. Let Aq{,..., A, be a collection of m X n matrices and let ¢; be the fraction of
nonzero entries in A;. Let k be the knowledge error and let ¢ = % -(e1+---+&y) be the average
fraction of nonzero elements. If 2 < £ < 1/e then for randomly chosen i € [u], Rewind-Basic(A;)
succeeds with probability Pr [i  [u] : probes < £ A success] > (¢ — k) - min {§, ¢ - £(£ — 1) }.

Proof. To prove the claim, we find the configuration of ; that minimises the average success
probability Adv = Pr[i < [u] : probes < £ A success]. More precisely, we use Thm. 7 to find a
lower bound for each ¢;. As usual, we allow relaxed matrix configurations, since this can only
decrease the lower bounds.

For a fixed /¢, there are three types of matrices. If ¢; < k then Thm. 7 provides no guarantees.
If &; > 1/¢ then the lower bound to success given in Thm. 7 is convex-cap and for remaining
cases the lower bound is convex-cup w.r.t. ¢;. Let Z, = {i:¢e; <k}, Iy = {i: k < g < 1/},
Z. ={i:e; =1/4} and Z; = {i: e; > 1/£} be the corresponding index sets. Since the bounds
of Thm. 7 are increasing w.r.t. ;, we may assume that Z, = ), for otherwise we could decrease
the lower bound by infinitesimally increasing ¢; for ¢ € Z,. Secondly, for the index set Z, U Z,,
the lower bound %(1 — E%) is convex-cap and it is straightforward to verify that the minimising
configuration for Z, U Zy consists of t. values €; = 1/, t4 values of ¢; = 1 and possibly from
a single value ¢;+ € (1/4,1). If we relax constraints and allow also fractional counts for ¢, and
tq, then in the optimal configuration, ¢; < 1/£ with probability py, &; = 1/¢ with probability p.
and €; = 1 with probability pg. Finally, as e(e — k) is convex-cup w.r.t. €, Jensen’s inequality
together with Thm. 7 gives

L0 —1 -
Pr[e; < 1/€ A probes < £ A success| > (P + pe)t( 6 Jea(e2 — k) ,
where g9 < 1/£ is the weighted average of the ¢; < 1/£. As a result, the minimising configuration
consists of p; = pg fraction of values ¢; = 1 and p2 = py + p. fraction of values ¢; = €3, so the
lower bound for Adv can be found as a minimising task f(p1,pe,€2) = %pl(l —K)+ %pgﬁ(é —

l)ea(e2 — k) — min w.rt. pr +p2 = 1, p1 + pee2 = €, 6 < g2 < 1/4, p1,p2 > 0. By applying
20(6-1)
3(1—k)

Lemma 4 with ¢ = and €, = % > ¢, we get the desired result

Adv > (1 — n)-min{Z(ll—_n),ce(e —k)}=(e— k) -min{g, g £(¢— 1)}
O

Note 1. One can verify that bounds derived in Lemmata 4 and 5 are at most three times away
from the true bounds and Thm. 8 underestimates the worst case probability at most three times.
Also, the Reset Lemma, is a special case of Thm. 8 with £ = 2.
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It is now relatively straightforward to generalise the result from the basic algorithm to
algorithm Rewind with multiple labels®.

Corollary 2. Let {0,1,...,d} be the set of labels. Let A1,...,A, be a collection of arrays
and let €; be the fraction of nonzero entries in A;. Let x be the mazimal knowledge er-
ror over labels and let ¢ = % - (e1 + -+ + €y4) be the average fraction of nonzero elements.

If 2 < ¢ < 1/e then for randomly chosen i € [u], Rewind(A;) succeeds with probability
Pr[i < [u] : probes < £ Asuccess] > (£ — k) -min {3, £ - £(¢ — 1)£}.

Proof. First, note that we can consider doubly indexed zero-one arrays AZ o Where A; 4(w) =1
iff Aj(w) = a. For fixed 4, Rewind chooses matrix A;, with probability lf’ where €; 4 is the
fraction of a labels in A;. When Rewind has chosen the A; , it behaves exactly like Rewind-Basic.
Since the dynamic change of the rewinding point does not change the analysis of Thm. 8 and
we know that for all A;, the corresponding knowledge error is smaller than k, we can apply
Thm. 8 for the collection of arrays {A; ,}. However, we need to recalculate the average success
probability for the collection {A; }

6’(1
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D>

=1 a=1

£ =E(g,) =

S
@I'—'
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d

as 21 5?,(1 > €2 /d by Jensen’s inequality. The claim follows, if we substitute ¢ with ¢’ in Thm. 8.
a=

a

Application to Schnorr Identification Scheme. To show the strength of Thm. 8, we
again consider the exact security of the Schnorr identification scheme. More precisely, let A be
an adversary that achieves ¢ average advantage against the protocol, where the public key is
chosen randomly, i.e., y = ¢g* for z + Z,.

Theorem 9. Let A be a t-time adversary that achieves average advantage € against the Schnorr
identification scheme over a g-element group G. Then there exists a T-time algorithm B that
computes discrete logarithm with success probability g where

To=4 2<0<1/
. <t<1/e .
g0 = (e—k)-min{§, $0(f—1)e},
Proof. Let ¢; be the advantage of adversary A against the public key iy = g*. By the construction
we know that € = %(604—- -++gg-1) and kg = ... = K41 = 1/q = 27F. Directly applying Thm. 8
gives

11
Prle  Zyy = s Blo.y) =21 2 (e~ 274) - min {3, (¢ - 1)

where B runs Rewind-Basic for £ probes to restore z. Note that the running-time of B is £t and
the claim follows. O

5 A more careful analysis would allow to obtain a reduction that loses a factor d instead of d?. However, this
would require reproving Thm. 8 with all its auxiliary results.
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Optimal time-success ratio. Thm. 9 shows that for £ > %, the worst case success probability
grows slowly and that reductions with £ € [2, %] are reasonable. Let £ > 2k = 27%+1_ If we have

a (t,e)-attack against the Schnorr identification protocol then we must have (t£,2 - £2¢2)-secure
DL-group G. In order to compare such reductions, we can observe the change in the time-success
ratio a = % The time-success ratio characterises the average number of computational steps an
adversary must do to break the primitive, if he is allowed to restart the attack, i.e, y is resampled.
Let ag be the best time-success ratio for finding the discrete logarithm in G and let a be the
time-success ratio of an attack on the protocol. Then, Thm. 9 gives 2 < 0.5 fe < O(+y/€) and
the number of probes really makes a difference. For example, let the desired success bound be
e = 2780 Then for the Resetting Lemma where £ = 2 the average guarantee for breaking time
decreases by 280, whereas for the optimal choice ¢ = \/z the average breaking time decreases
only 2*! times. Nevertheless, observe that the decrease O(y/€) is always quite significant. Hence,
such reduction techniques should be avoided if possible.

And Now For Something Completely Different...Fair Coin-Flipping. In order to
show the power of Thm. 8, we look at a completely different application. Namely, we analyse
the security of Blum’s coin flipping protocol [Blu81] for k-bit string commitments. The protocol
consists of four steps: (a) a trusted party uses a probabilistic algorithm Gen to fix the public
parameters pk of the commitment scheme; (b) Alice chooses a random k-bit string z and sends
a commitment Comp(z) to Bob; (¢) Bob sends a random b-bit string y to Alice; (d) Alice opens
the commitment to z and both compute z = = & y.

It is intuitively clear that Bob cannot control the value of z if the commitment is hiding and
Alice cannot control z if the commitment is binding. However, there is an important quantitative
difference. Reduction to hiding is straightforward, whereas reduction to the binding property
is more complex. The precise complexity of the latter reduction has been studied only for the
case of 1-bit strings. Recall that a commitment is (¢,¢)-binding if any #-time adversary B can
generate a commitment ¢ and then open it to two different values with probability less than ¢,
where the probability is taken over the random coins of B and Gen. Hence, we have to somehow
extract a double opening from malicious Alice.

Theorem 10. Let Z be an s-element subset of {0, 1}’c with an efficient membership test and let
the commitment scheme be (t1,e1)-binding. If Bob is honest, then a T-time malicious Alice can

force outcome z € Z with probability eo < s-27F 4 max{Ssl, Veﬁgf }, where £ = % In particular,
if T = 0O(t\/e1), then g3 < s - 27k 4 8.

Proof. Assume for the sake of contradiction that a 7-time Alice can force z € Z with probability
g2 > 5-27% + max{8e1,1/6e1/(£ —1)}. Let i € [u] be the randomness used by the Gen algorithm
and let A;(r, ¢) be the status matrix corresponding to pk;, where r is the randomness of Alice and
¢ = y is the reply of Bob. Let A;(r,¢) = 0 if Alice fails to open the commitment after receiving
y so that z @y € Z, and let A(r,c) = 1 otherwise. Note that x = s-27*, as for different values
of y, x ®y € Z must be different. Now, applying Thm. 8, we get that Rewind-Basic reveals a
double opening with probability at least (e2 — s-27%) -min {§, 1(¢ — 1)e2} > €1 after the first
£ probes. The result follows. O

Recent manual authentication schemes [Vau05b,PV06,LN06] that use Blum’s coin flipping
protocol as a sub-primitive indeed require such a property. A partial control over z such that
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z € Z allows to bypass security tests so that the protocol becomes insecure. Moreover, as all
To-time distinguishers D naturally define a set Z = {z: D(z) = 1}, we have obtained that the
protocol outcome is (g, £2)-pseudorandom—an expected result with precise security guarantees.

Similar reductions are done in [BS04] to prove the security of timestamping schemes. The
authors gave only a polynomial reduction for £ = 2. Our results allow to quantify the exact

security of a wide range of reductions. In particular, choosing £ = @(ﬁ) significantly decreases

the drop in the time-success ratio.

5 Open Questions

We derived bounds on black-box knowledge extraction, assuming that all e-fractional configu-
rations are achievable. However, it is relatively straightforward to verify that 7-time adversaries
cannot generate all possible matrix configurations, as there exist matrix configurations with
Kolmogorov complexity mn. Since the adversarial code must be shorter than 7 < mn, we get
that only a negligible fraction of possible configurations are realisable. It might be possible to
exploit this in knowledge extraction algorithms. Whether this is possible and what the biggest
possible gain in running-time can be, are theoretically very intriguing questions. Another inter-
esting question is whether white-box knowledge extraction, where one can exploit knowledge
about the internal structure of an adversarial algorithm, can achieve results that are dramati-
cally more efficient, e.g., possibly bypassing the quadratic computational blow-up in the case of
generic signatures.

Acknowledgments. We would like to thank Hendrik Nigul and Serge Vaudenay for useful
comments.
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A Proof of Optimality (Theorem 2)

Proof. Consider a simpler task: find two nonzero entries in the matrix and let S be a corre-
sponding deterministic probing strategy. Now, lets compute the average case probe complexity
of § over matrices with emn nonzero entries. W.l.o.g. we assume that S probes always new
entries. As S is deterministic and matrix chosen randomly, we can show that any new choice
of a new matrix entry is equivalent to random probing of A. In the following, we show that
random probing without repetition requires at least 2(mn + 1)/(emn + 1) probes on average.
Hence, the average case bound must hold also for all probabilistic algorithms. As the worst case
complexity is always as large as the average, then for some matrix Ag the bound holds.

More precisely, we show that if entries are probed randomly without resampling then the
expected number of probes that reveal two nonzero entries from a u-element list that contains v
nonzero entries is E[probes| = 2(u+1)/(v+1) = (2—o0(1))-u/v. Really, let probes be the number
of probes until two nonzero entries are revealed. Then by a simple combinatorial argument,

(u—v)--(u—v—L+1) viu—v)--(u—v—L+2)
we-(u—L+1) T u(u—L€+1)

=(",)/C) e Go)/G)

Pr [probes > /] =
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/)

€ Px 2p. 1

Fig. 1. Suboptimal matrix configuration aligned with f(p) = p(1 — p)*

as there are two mutually exclusive options: either the first £ entries are equal to 0, or there is
exactly one nonzero element among them. Hence, the average number of probes can be computed

u+1  u+1l  2u+1)
v+1 ov+1 w41

= (2-0(1))- =

v

o
E[probes] = Z Pr [probes > /] =
=1

7

using standard combinatorial equalities. O

B The Worst Matrix Configuration

Lemma 2. Let € € [0,1] and £ < 1/e — 1. Then the relazed configuration p, = ¢ for all rows
r € [m] mazimises the failure probability Pr [probesy, > £] for Rewind-Basic.

Proof. For a fixed configuration p = (p1,...,pm), express Pr[probes, > /] as

1 m
-P b /|R = — (1-p,
ZPr r [probes, > £|R = 7] - g Pr)

A tight upper bound on Pr[probes, > £] can be found by maximising Fy(p) with relaxed con-
straints p; € [0,1] and p1+- - -+py, = em. We call such points feasible. A feasible point is mazimal
if Fy(p) is maximal among all feasible points. Now, consider a function f(p) = p(1 — p)¢. From
flip) = (1 —p)1(1 —tp—p) and f"(p) = £(1 — p)*2(¢kp + p — 2), it is easy to see that f has
one local maximum point p, = 1/(£ + 1) in the interesting region [0, 1]. Also, f is convex-cap
in [0,2p,] and convex-cup in [2p,1]. The restriction £ < 1/e — 1 then implies ¢ < p,. Let
p = (p1,p2,---,Pm) be a maximal feasible point. W.Lo.g., assume that p; < ps < -+ < pp,.
Assume that p,, is in the convex-cup region, i.e., p, € [2ps,1]. Then, from p, > p. > ¢
and Z;’ll p; = em, we get that p; < €. Let 6 = min{e — p1,pm — e} > 0. Taking a feasible
Po = (p1+06,p25- - s Pm—1,Pm — 0) gives Fy(po) > Fy(p), a contradiction with the maximality of
p (See Fig. 1 as an illustrative example). Thus, all coordinates p1, p2, . . . , pm of maximal feasible
points lie in [0, 2p,]. Since f is convex-cap in [0, 2p,] Jensen’s inequality implies that there is a
unique maximum p; = «++ = ppy, = €. O
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C Analytical Optimisation Problem

The proof of Thm. 8 requires on analytical solution to the following optimisation task

f(p1,p2,€2) = p1 + cea(e2 — k) — min (F)
pr+p2=1, pi+peer =e, (@)
k<ey <€, P1,p220

for € < e, and ¢ = ¢(#) growing as a function of probes .
Lemma 4. For any ¢ > 0 and € > k, the minimisation task (F) — (£2) has a solution
% if%E(O,H—lﬁlQ) )
Ir}%nf(pl,pg,sg) =ql—-c(l-e)2—Kk—-2y/1—K—-1/c) if% €[k —K%2 —€?—kK,
ce(e — k) ifle(2e—e®—k,00) .
In particular, ming f(p1,p2,€2) > (¢ — k) min {ce, ﬁ}
Proof. First, note that €2 = (¢ + p — 1)/p2 and thus we have to minimise
c(l—¢)2 1
fon=1-ci-ae-r+ LLoc(1-n-1)p
D2 c
where {=¢ < py < 1. Note that g(z) = a/z + bz for a,b > 0 has a single minimum =z, = \/a/b
in the region z > 0 and g(z.) = 2vab and no minimum if a and b have different signs. Hence,
if 1 —x —1/c > 0, the minimum is achieved in the point p} = 11;51/ Note that pj is in the
—K— c

feasible region if k —k? < 1/c < 2e—e? —k and then f(p}) = 1—c(1—€)(2—k—21/1 — K — 1/c).
Otherwise f(p2) is minimised at the endpoints, i.e, f(p2) > min{(e¢ — k)/(1 — k), ce(e — k)}. As
(e—k)/(1—k) <cele—k)if L <e—exand Kk — k? <e— ke <2 —e? — Kk < 1—k the first
equation follows. Since at the limiting point of linear growth 1/c = 2¢ — €2 — k the ratio
ming f(p1,p2,€2)(1 — k) €(1 — k) S 1
E—K 22—k T2

and ming f(p1,pe, €2) is obviously growing if ¢ is growing, we get ming, f(p1,pe2, 2) > ﬁ if

% < 2¢ — €2 — k. The second claim follows. See Fig. 2 as an illustration. O

D Useful Approximation Formulas

The famous Taylor’s Theorem states that f(z) = f(0)+ @ T+ % "+ f((:j_—:)(',g) gt

for some & € [0,z] if f("*D(z) is continuous in the interval [0,z]. We use this fact to derive
some inequalities.

Lemma 5 (Third order Taylor expansion). For any ¢ € [0,1] and integer £ < 1/e, the
following inequality 1 — (1 — )t — Le(1 — )1 > 2£(¢ — 1)e® — 20(€ — 1)(£ — 2)e® > Z4(£ — 1)€?
holds.

Proof. Let f(g) = 1—(1—¢)¢—£e(1—¢)* 1. By straightforward computation, f(0) = 0, f'(0) = 0,
FO0) = £t —1), f®(0) = —26(£ - 1)(£ - 2) and fO(€) =£(£-1)(£-2)(£-3)1 -3 -
&0+ &) >0 for £ € [0,1/4]. The claim follows from Taylor’s Theorem. 0
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Fig. 2. Behaviour of ming f(p1,p2,e2) and the corresponding lower bound



