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ABSTRACT

The length of time an ocean model and its adjoint should be integrated in determining a steady state compatible
with observed data is investigated. The starting point is based upon a suggestion that only one time step is
required. This method fails to converge to an acceptable solution when applied to a general circulation model
(GCM) of the North Atlantic. Using a very coarse resolution GCM in an idealized geometry, the problem is
traced to the interplay of convective adjustment and the very short integration time.

The general assimilation technique is explored using a very simple model, a linear first-order equation with
forcing and damping. The model is unable to provide a dynamical coupling between the forcing and the model
response, owing to a mismatch of integration time and adjustment time scale. Coupling can be enforced in the
simple linear model through a careful choice of weighting factors, a strategy excluded in the GCM due to the
presence of very fast processes like convective adjustment. An integration over a sufficiently long time can avoid
the problems encountered. Experiments with the idealized GCM prove successful for longer integrations, and
a tentative upper limit of 50 years is given for inversions aiming at the main thermocline structure.

1. Introduction

Combining observed data with the conservation
principles underlying an oceanic circulation model, or,
in other words, the assimilation of observations into a
numerical ocean model, has received increasing atten-
tion in the past few years. Data assimilation makes
possible a systematic test of model dynamics against
observations; if a model is found to be compatible with
the data, one has obtained dynamically consistent es-
timates of the oceanic state and the surface fluxes that
drive the ocean circulation. Efforts are under way at
the Massachusetts Institute of Technology to determine
whether a state of the North Atlantic Ocean can be
estimated that is consistent both with the hydrographic
data obtained during the early 1980s and with a general
circulation model of the North Atlantic in dynamical
steady state. A solution so obtained (given its existence,
which is not a trivial determination) should provide
us with improved estimates of some of the climatically
most relevant quantities, such as the time.averaged
thermocline structure and circulation, meridional
transports of heat and fresh water, and air-sea ex-
changes of heat, fresh water, and momentum.

The North Atlantic inversion described in this paper
is an attempt to extend the work described by Tzip-
erman et al. (1990), using the same assimilation tech-
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nique (the “adjoint method,” described below) but us-
ing a more comprehensive dataset and a higher-reso-
lution model. Some fundamental methodological
problems arose, however, the nature and eventual ten-
tative solution of which are the focus of this paper. For
iltustration, a review of the method is now given, fol-
lowed by a brief account of some of Tziperman et al.’s
(1990) results.

The assimilation technique makes use of an ocean
model together with its “adjoint.” The equations con-
stituting the adjoint model can be derived as an ap-
plication of the Pontryagin minimum principle in
control theory (for derivations see, e.g., Talagrand and
Courtier 1987; Thacker and Long 1988; Wunsch
1988). The basic idea can be stated as follows. Given
a model prediction x™ for some ocean domain as a
function of assumed initial and boundary conditions,
the deviation of the model prediction can be measured
from observed data x°™ by the means of a quadratic
cost or objective function J defined as

J= %(xobs — xmodel)TwD(xobs — xmodel),

(1)

where W), is a weighting matrix, ideally the inverse of
the observation error covariance matrix. Qur aim is to
minimize the objective function, subject to the model
constraints, which are enforced ‘through a Lagrange
multiplier technique. In other words, we want to find
the combination of initial and boundary conditions
that results in the best fit of the model time trajectory
to the data. Given a first estimate of the independent



DECEMBER 1992

variables, initial state and boundary forcing, and con-
sequently a first-guess time history of the model, it may
be shown that the integration of the adjoint equations,
backward in time, yields the Lagrange multipliers used
to augment J in Eq. (1); the multipliers constitute the
gradient of the objective function with respect to all
the independent (or control) variables (see, e.g.,
Thacker and Long 1988). The merit of the adjoint
model thus resides in the gradient information it pro-
vides, which makes possible a very efficient minimi-
zation of the objective function, since the computa-
tional cost of an adjacent model run is usually no higher
than that of a forward model run.

The aforementioned description alludes to a time-
dependent problem. If, in contrast, a steady-state fit of
a model to a climatological dataset is sought, the most
straightforward manner of using an oceanic circulation
model would be to employ a steady model that cal-
culates the oceanic state as a function of the surface
forcing fields, which are wind stress, heat fluxes, and
freshwater fluxes, plus boundary conditions at open
lateral boundaries. Most general circulation models
currently in use, however, do not calculate the steady
state directly as a function of the forcing variables. In-
stead, they perform, a time stepping from some arbi-
trarily chosen initial state until all transients have been
damped by friction [e.g., see Bryan (1984 ) for details
of the technique, and Marotzke and Willebrand (1991)
for the uniqueness of solutions thus found]. Conse-
quently, Tziperman and Thacker (1989 ) proposed the
following strategy. The quality of the model fit to the
data is measured with an objective function penalizing
the quadratic deviation of the estimated fields from the
data, weighted with an appropriate covariance matrix.
To enforce steadiness, the cost function also includes
a term penalizing the quadratic difference between the
model state at the end of the integration period and
the initial state. The objective function now reads:

J= (xobs _ xmodel)TwD(xobs _ xmodel)

1
2
1

+ _2_ (x?odel — x(r)nodel)Tws(x?odel _ x(r)nodel)’

(2)
where xris the model state at the end of the integration
period, and x, the initial state; W is a weight matrix
specifying how stringently steadiness is demanded. As
before, J is minimized subject to the model constraints,
enforced through a Lagrange multiplier technique. The
approach employs the conservation equations govern-
ing the numerical model as ‘“strong constraints,”
whereas the demand for steadiness and a best fit with
the data are “weak constraints.” If a truly steady-state,
time-independent model were fitted to the data, both
the conservation equations and the steadiness demand
would be strong constraints.

Tziperman and Thacker (1989) suggested carrying
the integration over only a single time step, arguing
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that a steady state is sufficiently determined by de-
manding that the change over one time step be very
small. From a first-guess initial state, the model steps
forward in time for this one step, after which the cost
function is calculated. Then the adjoint of the model
is integrated backward for one time step, yielding the
gradient of the cost function with respect to the inde-
pendent variables: surface forcing and initial state. Us-
ing the efficiently determined gradient of the objective
function, a conjugate gradient descent algorithm is
employed to modify the control variables. This iterative
method gives a better estimate for the initial state and
the surface forcing for each subsequent iteration step;
the procedure is continued until a combination of ini-
tial and boundary conditions is found that is optimal
in the sense that it is both close to the data and yields
a state that changes very little over the one time step
under consideration. This solution is intended to be a
steady-state best fit to the observations.

The procedure produced the correct state of a baro-
tropic quasigeostrophic model in identical-twin exper-
iments, where the “data™ were chosen from a steady
state obtained through a time-stepping procedure
(Tziperman and Thacker 1989). Using the same strat-
egy, Tziperman et al. (1992a) were also able to recon-
struct, partially, the steady state of a general circulation
model (GCM) in an identical-twin experiment. When
applied to a model of the North Atlantic, using Levi-
tus’s (1982) climatology, however, the method did not
find a meaningful solution. The optimization resulted
in a state that was very close to the data but still far
away from a steady state; the best estimate exhibited
very large residual temporal drifts in the temperature
and salinity fields. For example, there were time rates
of change of temperature in the subsurface layer that
amounted to more than 10°C y ! in some areas. Con-
sequently, Tziperman et al. (1990) concluded that there
was no time-mean state of their model North Atlantic
compatible with the data.

Another possibility, however, is that this result
emerged not because the data and the model were in-
compatible with each other but because the optimi-
zation method had not succeeded in finding the min-
imum of the objective function. Consider Eq. (2),
which shows that the cost function J can be written as
the sum of two parts Jpata + Jsteapy, where Jpata
denotes the contributions due to the deviations of the
model from the data, and Jsreapy represents the pen-
alty due to temporal drifts. In the general case where
the constraints set by the data and the demand for
steadiness are not exactly compatible, minimizing J
means that a compromise is sought between the two
competing sets of constraints. A compromise would
be deemed reasonable if the respective penalties for
deviating from the two sets of constraints were almost
equally large, that is, Jpsta and Jsreapy should be ap-
proximately equal. If, additionally, both the residual
data misfits and the residual temporal drifts match their
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a priori estimates as expressed through the weighting
matrices, a compatible solution has been found. The
solution of the North Atlantic inversion, however, as
obtained by Tziperman et al. (1990), does not pass
the first of the two tests. The ratio Jsteapy:J/pata 1S
about 36:1, whereas a true compromise between the
competing constraints would deviate more from the
observed data, in order to make the model more steady.

Our own attempts at inverting North Atlantic data
with the help of a GCM have revealed very similar
problems and have motivated an investigation of how,
in general, a steady-state fit of a model to observations
can be found. We focus on the role of the integration
time over which a prognostic model must be run. The
paper is organized as follows. First, the practical diffi-
culties in the North Atlantic model inversions will be
described, suggesting that the mismatch between
Jsteapy and Jpara is the rule rather than the exception.
Using a very coarse resolution GCM in an idealized
geometry, we trace the problem to the interplay of con-
vective adjustment and the very short integration time
(section 2). The assimilation technique applied to the
GCM inversions is then tested using a very simple
model, a linear first-order equation with forcing and
damping. Attention is focused on consequences of in-
tegrating over times shorter than the principal adjust-
ment time scales of the model. Section 4 shows the
results obtained through longer integrations of the
GCM with the idealized geometry. A discussion follows
in section 5.

2. General circulation model: Problems with the one
time-step approach

The work described here started off by applying
Tziperman et al.’s (1990) model and inversion strategy
to a model with considerably higher spatial resolution,
and a more recent dataset. The original aim was to
produce an estimate of the North Atlantic in ‘steady
state, and within observation errors of the hydrography
from the early 1980s, and the estimates of the air-sea
fluxes of heat, fresh water, and momentum. A brief
description of the inverse model and a summary of the
North Atlantic experiments are given now.

The model extends from 9.5° to 59.5°N, 80° to
10°W with a resolution of 1° zonally, 2° meridionally,
and 24 levels vertically. For the initial experiments all
lateral walls are closed; in particular, there is no Straits
of Florida. Apart from minor modifications, the model
code of Tziperman et al. (1990, 1992a) is used in which
the forward model is the GCM developed at the Geo-
physical Fluid Dynamics Laboratory (GFDL) at
Princeton University (Bryan 1969; Cox 1984), in an
abridged version with simplified momentum equations
but the complete conservation equations for heat and
salt, including a convection parameterization to elim-
inate static instability. The adjoint to the GFDL GCM
was originally developed by W. Thacker, R. Long, and
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S. Hwang at the Atlantic Oceanographic and Meteo-
rological Laboratory (AOML) in Miami; the simpli-
fications to the model as used here are due to E. Tzip-
erman. For a more complete model description, see
Tziperman et al. (1990, 1992a) and Marotzke and
Wunsch (1992). Experience suggests that any ocean
model of comparable complexity would behave simi-
larly in the optimization. Thus, the model used here
serves as a prototype of any fairly realistic ocean model;
its details are not essential to the present discussion.

The data consist of the objectively analyzed tem-
perature and salinity fields compiled and described by
Fukumori and Wunsch (1991) and Fukumori et al.
(1991), the wind-stress data calculated from the Eu-
ropean Centre for Medium-Range Weather Forecasts
(ECMWF) analyses by Trenberth et al. (1989), the
evaporation minus precipitation (E — P) analysis by
Schmitt et al. (1989), and the surface heat flux esti-
mates by Isemer et al. (1989). The hydrographic and
wind-stress data cover the period of the first half of the
1980s; the other two datasets use data compiled over
a larger time span. If necessary, the data were subsam-
pled on, or interpolated to, the model grid, resulting
in one observation per model grid point.

The cost function to be minimized is formulated
schematically in Eq. (2); both the data and the steadi-
ness constraints are weak ones. It remains to specify
the strength of the constraint that there be only small
changes over the time step; that is, what weight factors
W5 should be chosen. Tziperman et al. (1990) give a
rationale for specifying the associated variances. If 6T
denotes a typical observation error at a certain depth,
the data cannot exclude a drift of oceanic temperatures
that is slower than 8T/, where 7 is of the order of the
time over which the measurements were taken. Thus,
it is reasonable to demand that the equilibrium to be
determined is steady only up to 67/ 7 (likewise for sa-
linity). This concept can be translated into a recipe of
how to specify Ws, provided the weighting matrix for
the data misfit part of the objective function is given.
The model computes time rates of change of temper-
ature and salinity over the one time-step integration,
that is, changes in temperature and salinity divided
by the length of the time step. These time rates of
change are then extrapolated over time 7, (xF°%
— x§°%!) 7 / At, where At is the time step. If the extrap-
olated drifts are smaller than the observation error, they
cannot be detected from the data and hence should
not be penalized heavily. Consequently, it is demanded
through the weight matrices that the rms values of these
extrapolated residual drifts should equal the rms errors
ascribed a priori to the measurements. In terms of the
matrices Wp and Wy introduced in Egs. (1) and (2),

(3)

T 2
wewZ).
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During each minimization, W,, W, and 7 are held
constant; furthermore, the larger 7, the more stringent
is the demand for steadiness because, loosely speaking,
7 marks the time that has to pass before a temporal
drift can be detected; * was chosen somewhat arbitrarily
as 15 years in Tziperman et al. (1990).

The matrices Wp and Wy are assumed diagonal and
normalized following Tziperman et al., that is, each
diagonal element of Wp consists of the inverse obser-
vation error variance, multiplied by the volume of the
grid cell under consideration and divided by the total
volume of the model ocean [compared to Wp, each
element of W contains a very large additional factor
(7/At)?, according to Eq. (3)]. The normalization gives
a simple rule of thumb for evaluating whether the out-
come of an inversion actually represents a compatible
solution.

The results of the North Atlantic experiments, which
employ a 7 varying between 1 and 15 years, can be
summarized -as follows:

1) Never did the minimization find a solution in
which the data misfit contribution to the final value of
the cost function was the same order of magnitude as
the steady-penalty contribution. The larger of Jsreapy
and JpaTa Was always much larger than unity.

2) Which of Jsreapy and Jpata Was the dominant
contributor to the final J depended on the first guess
of the initial conditions.

3) The minimization progressed much further if
static instability in the forward model was not removed
by a convection parameterization.

The minimization method did not find a real compro-
mise between the demand for steadiness and the data
constraint, which could mean that the optimization
failed to progress, as opposed to converged. The reason
could be a very jagged surface of the objective function,
caused by highly nonlinear processes in the physics of
the model, such as convective overturning.

To investigate this notion further, a “small” version
of the GFDL GCM (rectangular box, flat bottom, 6
X 6 interior horizontal grid points, 5° by 5° resolution,
four levels) is used to make a large number of fast tests
possible. A somewhat arbitrary set of “observed data”
is defined (Fig. 1), meaning to reflect that water gets
colder and fresher as one moves from lower to higher
latitudes (Fig. 1a), the principal zonal structure of the
subtropical gyre (Fig. 1b), and an idealized exponential
profile with depth (Fig. 1c). Some reasonable values
are assumed for the “observation error” of the synthetic
data; the weight matrices W, and Wy are constructed
in a way analogous to the North Atlantic model. A
deliberate decision was made not to use the results of
a forward model run as data (identical-twin experi-
ment), because both the method under investigation
here had proved successful in twin experiments and
the observed data are not likely to be fully compatible
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with the model physics. An identical-twin experiment
poses too easy a test.

In addition to the data, a second reference point in
state vector space is the steady state obtained through
a forward integration, using some reasonable forcing
functions (heat gain and freshwater loss linearly de-
creasing with latitude, a shift from easterly to westerly
winds as one moves south to north). Any linear com-
bination of these two points in state vector space defines
a plausible initial guess for subsequent minimizations.
The parameter u specifying each linear combination
is chosen such that 4 = 0 defines the data, and p = 1
the steady state obtained through the forward integra-
tion. The time 7 over which steadiness is demanded
and that enters Wy is set to 5 years. The result of the
minimizations is very unsatisfactory: close-neighbor
initial guesses produce very different final cost function
values, which at best are as high as 250 (Fig. 2).

Turning off convective adjustment leads to a reduc-
tion in cost to about 7, the data misfit and the steady
residuals having the same order of magnitude. Three
different starting points, however, produce three dif-
ferent end points, and it takes more than 1500 iteration
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FIG. 1. Principal structure of (a) meridional, (b) zonal, and (c)
depth dependence of the simulated data used for the box GCM.
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F1G. 2. Box GCM, with convective adjustment. (a) Initial and (b)
final value of the cost function for various starting points, which were
chosen by interpolating between the data displayed in Fig. 1 (p = 0)
and one reference steady state, obtained through a forward integration
(s =1); 7 =5 years.
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steps to reach them. From the cost function evaluated
between these three end points (marked A, B, C in Fig.
3), it seems that they form local minima in a “hilly”
environment (Fig. 3). A complete linearization of the
problem is achieved by turning off the dependence of
the velocity field on T and S, in addition to turning
off convective adjustment. That is, the first-guess flow
field is not changed in subsequent iterations, and the
inversion consists of a fit of the linear advection-dif-
fusion equations to the data shown in Fig. 1. Unlike
before, the same minimum is obtained from very dif-
ferent first-guess initial conditions, chosen again as Jin-
ear combinations of the data and the steady state of
the forward model run, with u ranging from —10 to
+10 {compare Fig. 2). The final cost function value is
35, much higher than in the nonlinear case, since the
model cannot produce a changed velocity field to ob-
tain a better fit.
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Convective adjustment made any reasonable prog-
ress impossible. To understand this result, imagine two
vertically adjacent boxes to be weakly, stably stratified.
If the gradient of the cost function suggests increasing
salinity in the upper box, the consequence is a decrease
in cost even if the stratification becomes unstable. Static
instability then leads to strong vertical mixing of the
two boxes (details of which depend on which convec-
tive adjustment scheme is employed), and a drastic
change occurs over just one time step, leading to a
steplike increase in steady cost, since 7 > Af. The model
will thus refrain from an increase in top salinity that
would cause convection. Such a behavior was observed
for one grid box in a case where convection was
switched on again, after a minimum had been found
without convection. It is not quite clear if this argument
is fully valid for a model with many degrees of freedom.
The aforementioned experiments show, however, that
a necessary physical ingredient of a general circulation
maodel, convective adjustment, inhibits any satisfactory
progress of the minimization, possibly because changes
of the model were considered over only one time step.
The model state cannot adjust to an increase in con-
vective activity, although this might eventually lead to
a better steady-state fit to the data. The role of the
adjustment time scales, as compared to the integration
time, will be investigated in a more general context in
the next section, using a very simple dynamical model
for which analytical solutions can readily be found.
We will return to the GCM, and the interplay between
convective overturning and the short integration times,
in the discussion of the results obtained using the simple
model.

3. Linear model with one degree of freedom

Following Willebrand (1991, private communica-
tion), a linear first-order equation with forcing and
damping will be considered. Observations are assumed
for the forcing and the model state, and both the exact

6x6x4
CB.I J

——————

—
44 35 28

A83 270 560 280 '

F1G. 3. Box GCM, without convective adjustment, 7 = 5 years.
A, B, and C are the end points of minimizations with three different
starting points. Shown is the cost function at points that were found
by interpolating between the points A, B, and C (i.e., between the

end points of three different minimizations).



DECEMBER 1992

solution of a steady-state fit and the solution obtained
through minimization of a cost function analogous to
Eq. (2) are calculated. Stated differently, the demand
for steadiness is treated once as a strong constraint and
once as a weak constraint. The dynamical model equa-
tion is always applied as a strong constraint. To obtain
a more general result, the time span under considera-
tion will not necessarily be confined to a single time
step.
The model equation reads

i1=—yu+f (4)

(the forcing f is not to be confused with the Coriolis
parameter), with a steady state given by
ot
Y
Given observations ¥°%, % a best fit of the steady-
state model Eq. (5) is found by setting to zero the partial
derivatives with respect to u, f, and A, of J, which is
defined as

— 4,0bs\2 _ {obs\2
J=l(u—u——) +l(f—gi—) + Nu~f171)

(5)

2 oy 2 r
(6)
A is the Lagrange multiplier. One finds the optimal
solution:
fobs + uobs( of )
v YOy
= (7a
1 +( 0'/' )2 )
YOou
/=i (7b)
A . 4,0b8\2 _ f{obsy 2
Jﬁnal=l = £ +—1'f f
2 oy 2 of
(fobs uobs 2
1 Y
e R A v I (7¢)
s
YOu

Alternatively, we can treat the demand for steadiness
as a weak constraint, first integrating the time-depen-
dent model up to some time ¢, giving

f
Y
where 1y = u(0). The cost function now contains a
term penalizing the difference between u; and wuy:

J:l(ﬁ;?"_‘”)z +l(f—f°b5)2+_1_(u)z

2 ay 2 or 2 Oa

uy=u(t)=we " +—=(1—-e™) (8)

+ Mu, — upe™ —%(1 —e "], (9)
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Again, A is the Lagrange multiplier. The one time-step
approach is readily seen as a special case. In (8) u, is
expressed as the explicit solution of the governing
equation, instead of stating it in terms of a numerical
scheme. If we assume ¢ <€ 1 and replace ¢ by At in
(8), a Taylor expansion to first order reduces (8) to
just one Euler forward time step.

The optimal solution is found by setting the partial
derivatives of J with respect to A, u,, 4y, and f to zero,
which yields, after some algebra,

f obs + uobs 0’} 9-__% e—2'yt
v v?e2  ai(l—e)?
= o} oi e™ (10)
1+ 55+ ——
vieh or(l—e )
Defining
2 2 24t
- gr or €
D=1 +726£ (=)’ (11)
(10) and (11) give
1 obs
ﬁl_uobs=_5|:f’y __uobs]. (12)
It can readily be shown that
1 0,2 1 fobs
obs S obs
—f = — = — - 13
f-r " aﬁp[ T ] (13)
2 -yt obs
n . ga 4 11f b
—_ - ——— e | — — obs 14
Uy U a%‘(l_e—-ﬂ)D[ ¥ ] ( )
The final cost function
J =l ﬁl_u°bsz+l f'_fosz
final P oy 2 or
A A2
+ % (“' ”°) (15)
Ta
takes the value
1 obs _ uobs 2
T = 2L WY (16)

2 oD ’

as can be seen using Eqgs. (11)-(14). The relative con-
tributions to the final value of J, from data misfit, forc-
ing misfit, and steady misfit [as they appear in (15)],
are (note that they sum to D)

data misfit: 1, (17a)
of
forcing misfit: ——, (17b)
Y Ou
2 24t
steady misfit: Ja__¢ (17¢)

ol (1 —e )’
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For any given o,, the solution (7) of the steady model
can be recovered exactly for large enough vi. The
steady misfit part (17c) of the final cost function will
tend to zero in this limit. Ironically, however, the total
final cost increases [the denominator D in (16) de-
creases].

Let us now turn to the special case ¥ < 1, which
includes the one time-step approach. As mentioned
before, replacing ¢ by At in Eq. (8) and a Taylor ex-
pansion to first order would reduce (8) to just one Euler
forward time step.

Expanding the exponentials in the solution (10)-
(14) to the lowest nonvanishing order yields

. 2 2
gr aga
D~1+—=L+——
vior  (yt)’o}
. 1 obs 2 2
PP AR R A S | BT
Y yiou (yt)oy

D
ai l fobs 3 uobs
(vt)’eiD| v ’

(18)

iy — 1t =~ (1) (20)

Obviously, the results depend on the choice of o,. No-
tice first that we set, according to Eq. (3),

oa=(1/7)0u (21)
because

Wp = o2 (22a)

W= 03°. (22b)

Equation (21) again expresses the demand that the
rms temporal drift during the integration time ¢, when
extrapolated over time 7, be just the rms observation
error. On specifying o4, or equivalently 7, three dif-
ferent regimes can be distinguished.

(i) oa < (y1)0oy, equivalent to y7 > 1
This result occurs if steadiness is demanded over a time
span much longer than the principal time scale of the
process under consideration. The results reduce to the
case of a steady model [Egs. (7a)-(7c)]. In the ex-
periments of section 2, 7 = O(10 yr); v ! could be the
adjustment time scale of the surface fields to changes
in the forcing. '

(ii) oo ~ (yt)a,0or yr ~ 1
Steadiness is demanded over the principal time scale
of the model, which for y™!' ~ 7 ~ 10 yr would be
the adjustment time scale of the main thermocline.
We obtain

2

D=2+ 7‘;{;2 (23)
. 1 fobs 0,12_
U = -5 {_’)_’_ + uObS[:y—za_,z, +1 (24)

obs
iy — d = (vt)—-[ —u°"5]. (25)
Y

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 22

Compared to the results from case (i), there is a relative
downweighting of the forcing observation in the de-
termination of #,. It is readily shown that there is a
corresponding downweighting of ©°% in the determi-
nation of f. It cannot generally be said which of the
two results, case (1) or case (il), is “better.” It may be
desirable to have a drift as expressed in (25) in the
model solution. If the measurements are taken over
the time 7, they produce no evidence that such a drift
can be excluded.
(i) o5 > (yt)o,0oryr <€ 1

Keeping 7 as before, y~! stands for the very long ad-
justment times of the deep ocean, that is, centuries or
millenia. Equation (18) is, in this limit,

2

D (26)

~ m‘g—g > 1.
From (19) and (13), respectively, neither #, nor f de-
viate much from the observations:

(27)
(28)

ﬁ] ~ uobs
f% fobs

There is essentially no dynamical coupling between
the measurements of model state and forcing, respec-
tively. We can improve neither of the measurements
because we cannot match the principal adjustment time
scale of the model.

In this simple model we can always make o, small
enough to enforce a coupling between forcing and
model response. We should, however, be aware of the
fact that we can infer improved estimates of the surface
fluxes only from the measurements that are influenced
by the fast processes, in the sense of cases (i) and (ii).
Measurements of the very slowly varying fields are
likely to remain inactive in the inversion.

The aforementioned considerations can readily be
extended to a model involving two linearly coupled
layers. The upper layer is assumed to have a short ad-
justment time scale y7!, the lower layer has a long
time scale 5. The algebra is straightforward but very
tedious and will not be presented here. The main con-
clusions can be summarized as follows. The time scale
7 entering the steady penalty weights has to be com-
pared to the time scales in each of the layers separately.
If the two adjustment time scales are very different, it
is possible for the upper layer to adjust in the sense
discussed in case (i), whereas the lower layer does not.
Specifically, if y,7 < 1, one finds that the lower layer
is essentially decoupled from the upper one and the
surface forcing, as the inversion proceeds. The lower
layer will not deviate from the observations, and the
analysis for the upper layer can be performed along
exactly the same path as for the one-layer model.

What can the linear models tell us about the GCM
inversion? Let us assume that we can make a separation
of time scales of several months for the surface, a decade
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TABLE 1. Box GCM, experiments | and 2. Initial guess, integration time ¢, and time 7 over which
steadiness is demanded, for the different stages of the experiments.

Experiment |

Experiment 2

la 1b Ic le 2a 2b 2c
First guess Data Data Expt. 1b Expt. 1b Expt. Id Data Expt. 2a Expt. 2b
t 10 days 2.7 years 16.4 years 54.8 years 274 years 2.7 years 54.8 years 274 years
T 50 years 50 years 50 years 50 years 300 years 10 years 50 years 300 years

for the thermocline, and a millenium for the deep
ocean. Applying the one time-step approach and de-
manding steadiness over 5-15 years, the preceding
analysis suggests that we might expect equilibrium be-
tween surface fields and forcing, a drift in the ther-
mocline, and a deep ocean that does not respond at
all to changes in the estimated surface fluxes, but re-
mains very close to the data.

In the linear model steadiness can be enforced by
making the o, arbitrarily small. For the GCM this
would cause at least two problems. There might be
numerical instabilities because the steadiness parts of
cost and gradient take very large numerical values; in
addition, we saw in section 2 that with reasonable
choices for 7 in order to adjust the thermocline, con-
vective adjustment inhibited a sensible progress in the
minimization.

The solution (10)-(14), however, suggests an al-
ternative if one wants to couple observations of the
ocean interior to estimates of the surface fluxes: the
residual temporal drift can be reduced not only by a
small ¢, but also by a longer integration time, which
would cause the exponential factor in (17¢) to diminish
rapidly. Instead of enforcing steadiness of these “slow
modes” through the weights, their time scales would
be resolved explicitly. Once the mismatch between in-
tegration and adjustment time scales is removed, the
data misfit weights W and the steadiness weights W
have the same order of magnitude [cf. Egs. (3), (21),
and (22)], and it can be expected that the surface of
the objective function is much less jagged. Notice also
that the discussion has been confined to the time scales
of the problem; in an ocean circulation model, another
aspect may enter because we also have to consider how
information propagates spatially. For example, the
model temperature somewhere in the deep thermocline
may not be compatible with the data. Ultimately, one
wants to adjust the surface fluxes so that the misfit
vanishes. How long must an integration of the adjoint
model last until the information about the model-data
misfit at great depths reaches the surface and, con-
versely, how long does it take the forward model to
give an improved estimate? Intuitively, it seems un-
likely that, even without convective adjustment and
with large steadiness weights, an integration over a few
days should yield the desired coupling. It seems inev-
itable that the integration must be performed over
much longer than just a single time step.

4. Box GCM calculations over more than
one time step

Encouraged by the foregoing analysis, the model of
Tziperman et al. (1990, 1992a) was extended to enable
a computation over an arbitrary number of time steps
for both the forward and the backward integration, thus
testing whether longer integrations could actually give
improved results. The surface fluxes are assumed in-
variant in time, and the objective function is the one
represented symbolically in Eq. (2). Notice that there
are a number of other possible choices for formulating
the steady penalty, corresponding to different weights;
the one adopted here was chosen for its simplicity.

The experiments are performed with the box (6 X 6)
GCM already described in section 2, with the same
artificial data (Fig. 1). In all experiments described
below, the wind field is assumed to be perfectly known,;
so the control variables are the initial conditions and
the surface heat and freshwater fluxes. The results of
two experiments will be presented here, which differ
in the parameterization of convective overturning and
in the modeling strategy. Experiment 1 uses a vertical
diffusion coefficient dependent on the Richardson
number, with a maximum value of 50 cm? s~ in case
of static instability. In experiment 2, this formulation
is changed to the standard GFDL convection scheme

100 A
500

1500 4

3500 T
20°N

T T
30°N 40° N S50°N

FIG. 4. Box GCM, experiment 1, meridional overturning stream-
function (Sv) as found by an almost purely geostrophic fit of the
velocity field to the data displayed in Fig. 1, which serve as a first-

guess initial state.



1564

1500+

1500+

that mixes neighboring boxes completely [but not the
entire unstable part of the water column, e.g., Marotzke
(1991)] in the case of static instability.

Experiments la and 1b (see Table 1) use the data
as a first guess and demand steadiness over 7 = 50
years. The integration times are 10 days (1 time step)
and 2.7 years in experiments la and 1b, respectively.
The results are displayed primarily by showing the
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FIG. 5. Box GCM, experiment 1, meridional overturning stream-
function (Sv) as resulting from the minimizations with (a) z = 10
days, 7 = 50 years; (b) ¢t = 2.7 years, 7 = 50 years; (¢) ¢ = 16.4 years,
7 = 50 years; (d) t = 54.8 years, + = 50 years; (e) t = 274 years, 7
= 300 years. In all cases, ¢ is the integration time, and 7 is the time
over which steadiness is demanded.

streamfunction of the meridional overturning, that is,
the zonally integrated flow in the latitude-depth plane.
Figure 4 shows the meridional overturning of the first-
guess initial state, that is, it represents the zonally in-
tegrated geostrophic flow field derived from the data.
We see a strong upwelling of 4 Sv (1 Sv = 10°m3s™!)
at the equatorward boundary and a weaker one of 1
Sv at the poleward boundary, with downwelling in be-
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tween. The one time-step minimization results in low-
latitude sinking and rising motion everywhere else, ex-
cept for the shallow, directly wind-driven circulation
cells (Fig. 5a).

Extending each forward and backward integration
over 2.7 years (experiment 1b) completely reverses the
meridional circulation (Fig. 5b); there is now sinking
at a rate of 3 Sv at high latitudes and rising everywhere
else. Experiments 1c and 1d each take the solution of
~ experiment 1b as the first guess and are run over 16.4
years and 54.8 years, respectively. Figures 5¢,d show
that we do not yet obtain a stable estimate; although
the direction of the meridional overturning does not
change, both the structure and the amplitude show clear

differences. Using the result of experiment 1d as a first

guess, experiment le integrates over 274 years and de-
mands steadiness over 300 years. The result is a very
sluggish thermohaline circulation (Fig. Se) with no ba-
sinwide coherent pattern.

The most important lesson to learn from experiment
1 is that the result is very sensitive to the integration
time. An objective measure of which of the five different
minimizations gives the “best” result is given by the
contributions to the final cost function. Figure 6 shows
rms values of the temperature residuals, for each layer
separately, and normalized with the variances entering
the respective weights, If the integration is extended
over only one time step (experiment la, Fig. 6a), the
steady misfits are much larger than the data misfits,

3
j t = 10 days IA\
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40 / \

26 /
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1 2 3 4
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FIG. 6. Box GCM, rms values of the temperature residuals, for
each layer separately and normalized with the a priori variances.
Solid line: model data misfit, dashed line: steady penalty. (a) Exper-
iment la, t = 10 days, 7 = 50 years; (b) experiment 1d, ¢ = 54.8
years, 7 = 50 years.
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except in the surface layer. In contrast, experiment 1d
results in nearly equal data and steady misfits, for each
layer individually (Fig. 6b). But one would have to
reject the hypothesis that the data are compatible with
a model changing significantly only over times as short
as 50 years, because both the steadiness and misfit terms
are too large; the rms values in the deepest layer, for
example, are about three standard deviations. Exper-
iment le (Fig. 5¢) shows that an even longer integra-
tion, together with a more stringent demand on steadi-
ness (£ = 274 yr, 7 = 300 yr), does not necessarily lead
to a more acceptable solution. It appears that the deep-
water formation processes are far too weak with the
Richardson number parameterization of convective
overturning. In the bottom layer, the rms temperature
residual of the final estimate exceeds six standard de-
viations for both data and steady misfit terms (not
shown).

The Richardson number convection parameteriza-
tion seems to be inadequate for the fit of the model to
the artificial data. Therefore, experiment 2 employs
the standard GFDL convection scheme in case of static
instability. Prior experience showed that convective
adjustment makes progress more difficult, so the mod-
eling strategy is modified ( Table 1 ). Starting from the
data as the first-guess initial state, the integration time
t and the time 7 entering the steady weights are in-
creased to 2.7 years and 10 years, respectively (exper-
iment 2a), then to, respectively, 54.8 years and 50 years
(experiment 2b), then to 274 years and 300 years, re-
spectively (experiment 2¢). Experiments 2b and 2c take
the results from 2a and 2b, respectively, as first-guess
initial states.

Figure 7, again displaying the meridional overturn-
ing streamfunction, shows that the results differ dras-
tically between experiments 2a and 2b, but that de-
manding steadiness over 50 years and 300 years, to-
gether with corresponding integration times, does not
alter the solution much. In Fig. 8, the rms temperature
residuals of experiment 2b are displayed, showing that
a more detailed analysis would be required before one
could conclude that model and data were incompatible.
The employment of convective adjustment, demanding
steadiness over 50 years (or more), and an integration
time that matches 7 yields the best (and roughly ac-
ceptable) model fit to the data represented in Fig. 1.
Note that we can judge the success of the inversion
only by the structure and magnitude of the residuals
of the model fit to the data, an overall measure of which
is the cost function (and its various parts). The me-
ridional overturning shown in Fig. 7c most likely does
not look very appealing, especially when compared to
what conventional wisdom holds about the North At-
lantic meridional circulation. The artificial data (Fig.
1) used here, however, chosen to represent a schematic
of a generic subtropical gyre hydrography, have no in-
formation built into them to prevent the final solution
from looking more like, for example, the North Pacific,
with practically no overturning.
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FIG. 7. Box GCM, experiment 2, meridional overturning stream-
function (Sv) as resulting from the minimizations with (a) ¢ = 2.7
years, 7 = 10 years; (b) ¢t = 54.8 years, 7 = 50 years; (c) t = 274
years, 7 = 300 years.

The minimization problem tackled in this section is
a very difficult one, because the data were constructed
using no dynamical principles at all. To pose an easier
problem, some identical-twin experiments (results not
shown here) are performed with the data taken from
the steady state represented by 4 = [ in Fig. 2 (see
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section 2). Convective adjustment is used, and the first-
guess initial state is biased, compared to the “true”
state, by specifying a u < 1. If p = 0.9, for example,
this means that, compared to the true state, the bottom-
layer initial-guess temperatures are biased by about 1
standard deviation of the assumed observation error.
The time 7 is set to 50 years in the experiments dis-
cussed here. Generally speaking, the results in the twin
experiments are less sensitive to the length of the in-
tegration time. For a moderately biased first-guess ini-
tial state (u = 0.8 or 0.9), integration times of order 5
years and longer are successful in reproducing the cor-
rect state within error bars; however, integrations over
one time step fail even in the experiments with a small
bias. A large bias (¢ = 0, starting from the data as the
first guess) does not lead to a compatible result, even
for an integration time of 54.8 years.

The results from the identical-twin experiments are
not described here in detail because, although they do
give confidence in that an assimilation technique does
in principle work (or not), they pose a misleadingly
simple assimilation problem. In an inversion using real
ocean data, we must face the possibility that the model
physics are incompatible with the data, a case which
is excluded in a (strictly) identical-twin experiment.
Rather than adding noise to the data in a twin exper-
iment, it was decided here to rely on artificial data that
were not obtained through a forward model run.

5. Discussion

Integration time must roughly match the time scale
of interest if one wants to obtain a meaningful mini-
mum of objective functions as those considered here.
Computations with the idealized box GCM and an ar-
tificial dataset (experiments 1 and 2) showed that re-
sults were sensitive to the length of the integration time.
Specifically, in experiment 1, the one time-step ap-
proach yielded a meridional overturning that showed
low-latitude sinking, in contrast to the longer runs that
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FIG. 8. Box GCM, rms values of the temperature residuals, for
each layer separately and normalized with the a priori variances for
experiment 2b, t = 54.8 years, r = 50 years. Solid line: model data
misfit; dashed line: steady penalty.
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formed deep water at high latitudes. A stable estimate
was obtained if the integration was carried over 50 years
and more (with a corresponding 7), provided an effi-
cient convective adjustment scheme was used (exper-
iment 2). Additionally, in the 50-year runs the residuals
of data misfit and time drift, respectively, had the same
order of magnitude.

In future attempts at performing a North Atlantic
inversion with a GCM, the most important question
is over how long we must integrate the model forward
and backward, before we can confidently state whether
the data are compatible with a steady-state assumption,
We anticipate that, in a North Atlantic inversion, a
time scale of interest will be that of the main ther-
mocline since this is important for near-term climate
problems. The time scale is thus set by either long in-
ternal Rossby waves (about 10 years), or by the ven-
tilation of the thermocline (about 20 years), or both.
Thus, we are forced to demand steadiness over at least
10 years, with a corresponding, or perhaps somewhat
shorter, integration time.

The results presented here give hope that 5-10 years
of integration may be sufficient, an estimate that is
supported by the impression that the threshold of about
50 years found in experiments | and 2 represents an
upper bound due to the severe nature of the minimi-
zation problem posed, and because the identical-twin
experiments proved successful for O(5 yr) integration
time. Substantially more than 10 years of integration
would make the GCM inversion computationally very
hard to perform; from preliminary tests with the North
Atlantic model it can be estimated that one typical
experiment would consume O(100) hours CPU on a
CRAY-2, if the integration is carried out over 10 model
years.

It may also be necessary to consider more carefully
how information propagates in the model. How do the
surface fluxes interact with, say, temperature and sa-
linity in the lower thermocline? Is it possible to convey
the information in less than the typical adjustment
time, for example, the travel time of baroclinic Rossby
waves or the ventilation time scale? This result is con-
ceivable since a partial adjustment is performed several
times at each conjugate-gradient iteration. Conversely,
how does the information about a model data misfit
reach the surface, in the adjoint model, to produce a
better estimate of the boundary conditions? Answers
to these questions must be found before one can hope
to find the computationally least expensive way to per-
form the GCM inversion.

In designing a modeling strategy one is also faced
with the question of how meaningful the concept of a
strictly steady-state ocean is in the presence of real data.
Quite apart from the fact that it is not clear how the
equations describing spatial and temporal averages
should be derived from the instantaneous conservation
equations, the ocean almost certainly undergoes drifts
on time scales of centuries or longer. It may not only
be impossible but also inappropriate to try a GCM
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inversion while demanding steadiness over more than
a few decades.

Note added in proof. Partly as a consequence of the results
described here, Tziperman et al. (1992b) have revised some
conclusions of Tziperman et al. (1990).
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