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ABSTRACT

In this paper steadily rotating modons that are trapped over topographic features with finite horizontal length
scales are described. The quasigeostrophic equation over topography is transformed to a frame rotating with
angular frequency w, and steady solutions are sought that decay monotonically outside of a circle of radius, »
= r,. These conditions are imposed upon an isolated seamount or depression of the form n = hg[l — (7/rp)™]
(and n = 0 for r = r,) with primary focus on the m = 2 case. Two different scenarios result from this choice of
topography and correspond to 7,/r, = a'/2 = 1 or «'/? < 1. There are three solution regions compared with
the usual two for rectilinear modons. Both scenarios result in a countable infinity of both radial and azimuthal
modes. In addition, it is found that an axisymmetric flow with a particular form but arbitrary amplitude can
be added to the basic modon multipole solutions. The angular frequency is then found as a function of o and
this axisymmetric flow amplitude. Topographically trapped rotating modons can spin clockwise or anticlockwise.

1. Introduction

Modons are exact solutions to the nonlinear quasi-
geostrophic potential vorticity equation. Classical so-
lutions have two piecewise continuous regions in which
the potential vorticity and the streamfunction are
uniquely related. In a dissipationless ocean with a flat
bottom, they translate steadily without change in shape
or strength. Larichev and Reznik (1976) and Stern
(1975) studied the case of barotropic beta-plane sym-
metric-dipole modons with the streamfunction and
potential vorticity linearly related, and with a circular
dividing streamline between the inner and outer re-
gions. These studies established that modons propagate
eastward at any speed, or westward at speeds greater
than the long-wave speed.

The basic modon concept has been extended in a
number of ways. Berestov (1978) discovered that a
sort of three-dimensional modon can exist in a stratified
fluid and showed that, in principle, both two- and three-
dimensional modons with three distinct radial domains
were possible. Flierl et al. (1980) developed a wide
variety of solutions for a two-layer ocean and intro-
duced the idea of a rider: that is, an axisymmetric
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(monopolar) vortex superimposed on the azimuthal
part (the modon) that has a specific functional form
but an arbitrary amplitude. .

Although all of the works cited thus far deal with
modons on a beta plane, the concept is evidently quite
robust and can be readily adapted to different geom-
etries as well. Both Tribbia (1984 ) and Verkley (1984)
have shown that modons may exist in spherical ge-
ometry. Nof (1990) has extended the idea to produce
stationary modons in a circular gamma plane (where
f has a quadratic spatial dependence), which has ob-
vious relevance to polar regions.

Because these wave forms are essentially nonlinear
large-amplitude eddies that propagate steadily, the
question arises as to which commensurately strong
forcing mechanism(s) could be responsible for their
generation. McWilliams and Flierl (1979) showed that
a modon will arise quite readily from the nonlinear
evolution of a pure baroclinic eddy in a two-layer
ocean. In similar fashion, eastward-propagating mod-
ons have been observed to arise from a wide variety of
initial conditions (Mied and Lindemann 1982) when
oppositely signed vortices with separated centers are
placed in each of two layers and allowed to evolve.
Modons also can result from scenarios that do not start
with eddies. For example, Flierl et al. (1983) have
shown that in a rotating laboratory tank modon genesis
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can result from the impulsive injection of fluid from
the side into the body of the fluid. The modon consists
of a vortex pair of unequal strength that propagates
steadily along a curved trajectory. But the most in-
triguing example of modon formation has been dem-
onstrated by McWilliams (1983), who showed that a
southwest-propagating anticyclone and a northeast-
propagating cyclone can collide, rapidly adjust their
internal potential vorticity distributions, and “stick”
together to form a modon that propagates steadily
westward. A novel feature of the resulting modon is
that the potential vorticity is a nonlinear function of
the streamfunction, in contrast to the linear relation
in analytical modon studies.

Modons are generally quite robust and can propagate
for long periods of time without any substantial change.
In fact, Swaters and Flierl (1989) have used the ap-
proximate invariance of form to perform analytical
calculations for the decay of a propagating modon.
Their analytic results are in agreement with numerical
calculations that show that modons adjust their speed
and size to compensate for the loss in strength. There
may be cases, however, in which modon propagation
does not proceed in a slowly varying (WKB) sense.
For example, Hobson (1991) showed that westward-
propagating modons do not necessarily propagate in
straight lines. In that study the vortex pairs remained
coherent but the trajectories showed large excursions
from a straight-line path when the line of centers of
the vortices was only slightly perturbed.

A more stringent test of a modon’s longevity was
made by McWilliams et al. (1981), who showed that
when propagating in a field of externally imposed vor-
ticity noise, modons do not disintegrate until the mag-
nitude of the average vorticity inside the modon was
of the order of the external vorticity. Still another ex-
ample of a modon preserving its form while interacting
with an external field is the violent modon-modon in-
teractions described by Makino et al. (1981), Mc-
Williams and Zabusky (1982), and Larichev and Rez-
nik (1982, 1983). Both overtaking interactions and
frontal collisions were considered. Several types of be-
havior were observed; however, in many experiments
modons emerged from these strong interactions but
with altered potential vorticity-streamfunction rela-
tions (McWilliams and Zabusky 1982; McWilliams
1983). The robustness and general resistance to dis-
ruption has also made modons attractive candidates
for models of atmospheric blocks (McWilliams 1980;
Verkley 1987; Haines 1989).

Of interest in the present context are the ways that
barotropic modons can interact with bottom topog-
raphy. Carnevale et al. (1986) examined numerically
the interaction of modons with topography having a

wide range of scales. They found that large-scale to- -

pography with large amplitude could cause the modon
to fission but that smaller topographic amplitudes re-
sulted in topographic steering. A similar result was ob-

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 22

tained by Swaters (1986) who used WKB arguments
to calculate analytically the path of the modon over a
bottom ridge. His suggestion of the possibility of “cap-
ture” of the modon by certain topographic features is
particularly relevant here.

In this work, we investigate properties of topograph-
ically trapped modons. The form of trapping we con-
sider here does not result in a closed trajectory around
the seamount, as discovered by Reznik (1985), but
rather in a steady rotation of the modon over the center
of the seamount. The solution for the streamfunction-
potential vorticity relation will be shown to be piecewise
continuous, and the resultant topographically captured
modons generally require three-region solutions. Apart
from these two differences, the topographically trapped
modons have much in common with the more familiar
rectilinear forms.

2. Formulation

The problem studied here is that of inviscid baro-
tropic flow over an isolated submarine feature on an
Jfplane. As the emphasis is on local topographic effects,
the fplane restriction seems reasonable. For these con-
ditions, the potential vorticity equation for a fluid with
a rigid lid is written as

ft—’ V2V + J(¥, V2V + fh/H) = 0.
Here V is the barotropic streamfunction, f is the Co-
riolis parameter, 4 describes the seamount topography
above a flat bottom, H is the undisturbed ocean depth,
and V2 and J are the Laplacian and Jacobian operators.

In order to illustrate the essential physics with the
minimum of mathematical complexity, we assume the
topography radially symmetric with compact support.
Thus,

(1)

h=F(), r<rj

h =0, vz r.

(2)

Here F is a smooth, monotonic function of the radius
r' emanating from the center of the topographic feature
and r}, is the radial distance to its edge.

Solutions to (1) are sought of the form

¥ =¥(r,0,1),

where r = r', § = ¢’ — &t’, and ¢ = t’. Here ' and ¢’
refer to a fixed circular system originating at the center
of the topographic feature, while the unprimed system
(r, 8) is rotating at a steady rate, @ with respect to the
fixed system. Transforming ( 1) into this rotating system
and considering only steady solutions (/8¢ = 0), we
see that

J(V — &r?)2, V¥ + fh(r)/H) = 0, (3)

where the Jacobian is now expressed in polar coordi-
nates.
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Equation (3) can be solved by any functional relation
between the two arguments of J. In the spirit of most
modon work we divide the plane into two regions, r
< r, and r = r,, in which the arguments in (3) are
linearly related. Thus,

VA + fh(r)/H = —(¥ — &r? /2 + 0)S(r, — 1),
(4)

where 2 is a separation parameter, r, is the radius of
the modon region, Q is a constant, and S(a — x) is the
Heaviside function such that S = | for x < g and S
= 0 for x > a. Butchart et al. (1989) have noted the
importance of the value of the separation parameter
for atmospheric blocks in zonal flow. The implication
of their results for the rotary modons considered here
is not addressed. This issue may be relevant to the sta-
bility of our solutions.
Boundary conditions appropriate for (4) are

lim¥ = 0,

lim|¥(r)| < oo,

r— o
r— 0. (5)
In addition to (5), “patches” are required at r = r,,
rp. Appropriate patch conditions are

Him (¥, 9% /dr, 0¥ /a0) = ’l_ig}r(\lf, oV /or, 3¥ /06),

r—y—

(6)

where y = r,, r,,. The first condition ensures continuity
of the pressure, while the second and third imply con-
tinuity of the tangential and radial velocities.

In addition to (5) and (6) prior modon solutions of
which we are aware have also assumed that the circle
r = r, is a dividing streamline with a specified value.
This specification ensures continuity of the riderless
modon vorticity across the streamline. Of course, ra-
dially symmetric rider solutions are compatible with
the basic modon solutions, and the rider vorticity need
not be continuous across the dividing streamline.

Here a different approach is taken. The a priori
specification is the amplitude of the axisymmetric
modon rider instead of the value of a bounding
streamline. This has the appealing property that the
azimuthal mode is arbitrary, but the price for this flex-
ibility is that the vorticity is not continuous across the
modon boundary r = r,. However, as the modon par-
adigm is inviscid, there is no physical or mathematical
reason of which we are aware that requires continuity
of the vorticity everywhere.

Convenient nondimensional scalings for r and ¥
are r, and fi3, respectively. We also introduce the fol-
lowing nondimensional parameters:

w=8/f, BVP=kry, a=(r.r)s
v=F(0)/H, Q= Q/fi}.

It should be noted that the sign of v distinguishes be-
tween mountains (v > 0) and depressions (y < 0). As
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will be seen, the solution forms are independent of the
sign of y. The analysis and example below are phrased
for v > 0, both for convenience of the reader and be-
cause this case has more potential for application.

With the above nondimensionalization, two possible
scenarios emerge: @'/2 < 1 and a'/? = 1. The physical
significance of «'/? < 1 is that the modon region is
situated entirely within the domain of the mountain
(see Fig. 1). For a'/? > 1, the modon domain extends
beyond the mountain region. Each scenario requires a
separate analysis; however, the solutions are shown to
reduce to the same form when a!/? = 1.

In either scenario there are three different flow re-
gimes. When o'/ < 1, regime I designates the modon
region centered over the mountain, while regime II
refers to the annulus between the modon region and
the edge of the mountain. Regime III is then the region
outside the mountain. When «'/2 > 1, the regime I
refers to the position of the modon region centered
over the mountain, while regime II comprises the an-
nulus between the edge of the mountain and the
boundary of the modon region. Regime III is then ex-
terior to the modon region.

3. Solution

Solutions to (4) for arbitrary F(r) are developed in
the following. It is found that when F(r) is of the form

F(ry=(1—=r"S(1 —r) (7)

(a)

-MODON~-+
m II 1 i Il —= H
z
/frrﬂ'm-,;?’,
'b fa 0 fa o
(b)
MODON
- —! 11 I I I —= H
z
h‘r)
fa My 0 b fa

FIG. 1. A vertical slice through the dimensional topography A
= h(r), r<r,and h =0, r = r, showing its finite lateral extent. (a)
The small modon case (r,/r, = a'/?> < 1) in which the modon radius
is less than the mountain length scale. (b) The large modon case (r,/
rp = «'? > 1) in which the modon extends beyond the edge of the
mountain,
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and m is a positive, even integer, closed-form solutions
are obtainable. For reasons of mathematical simplicity,
the m = 2 case is treated in detail for both the small
(«"? < 1) and large («'/?> > 1) modon cases.
a. Small modon case (a'/? < 1)
The nondimensional version of (4) becomes
T+ W8+ yF(r) = [(wr?/2 + Q)/B], r < a'/?
VA + yF(r) = 0,
Vz\I’I” = 0

a?<r<i

r=1,

(8)

For each of the equations (8), we may write the
solutions as a sum of particular solutions and homo-
geneous solutions obtained by standard separation of
variables. Thus,

W= G(r)+ AL(B~2r) + 2 bLJ,(B7'/?r) sin né,
n=1

r<al/?

V' =1(ry+ 3 [bHr™ + clr"]sinng, a'/*<r<t

n=1

Wi = > plly=n gin ng,

n=1

1<r,

(9)

where J,, is the Bessel function of the first kind of order
n, G(r) is the particular solution governed by

G 146G .
dr* r ar /8
= wr’/28+ Q/B — vF(r) = F(r), (10)
and I(r) is the particular solution governed by
d*r tdl
E}‘fﬁ‘;zﬁ"yF(r)—O. (11)

In obtaining (9) the Y, solutions were discarded be-
cause of (5), and as will emerge in the following, no
loss of generality results from the neglect of the cosnf
terms.

The particular solution to (10) is readily obtained
by variation of parameters on the Y, and J; solutions
to the homogeneous problem

G= (w/z)[—Jo(ﬁ‘”zr) f xF (x)Yo(B™"2x)dx

+ Yo(B872r) fr x?(x)Jo(B’”zx)dx} . (12)

Here Y, is the Bessel function of the second kind and -

the symbol f' denotes an indefinite integration followed
by replacement of the dummy parameter x by r
(Bender and Orzag 1978).

It is convenient to divide G into two parts: a dis-
persive component Gp that depends only upon w and
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Q and a topographic part Gy that depends only on
F(r). Thus,
G= GT + GD.
After integration of (12) it is found that

Gp(r) = @ + o(r?/2 — 26) (13)

Gr(r)=(mv/2) f’ XF()[Jo(8712r) Yo (87" %x)

= Jo(B71?X)Yo(B7?r)]dx. (14)

The integration of (14) for functions of the form given
by (7)is facilitated by a useful Bessel integral recursion
formula,

f’ x*T1Z (ex)dx = {r““Z,,H(cr)
+ [ — )/l Z,(cr)] — [(u* — v?)/c]
X JV x“"‘Z,(cx)dx]/c, (15)

where Z, is a Bessel function of either the first or second
kind of order ». In the present case, » = 0, and for u
=0, 2, -+, (15) may be written in the closed form:

r u/2
f x** N Zo(ex)dx = {(X A,r*P)rZ(cr)
p=0
u/2
+ (2 B,r*")Zo(cr)}/c,

p=0

(16)

where the 4, and B, are readily determined recursively
from (15).
Using (7) in (16) gives

Gr= —Bv{l + 2 [ s rnvs )

—Jo(ﬁ‘”ZX)Yo(B_”Zr)]dx} (17)

so that the complete particular sclution G(r) in region
I is given by the sum of (13) and (17).

The solution for I(r) in (11) is obtained by direct
integration:

rd X
1=1‘1—7{f —x’ff yF(y)a’y—I‘zlnr). (18)

The complete solution to the small modon problem
is now given in principle by (9) with Gp, Gr, and 1
given by (13), (14) or (17), and (18). The arbitrary
constants in this solution are determined by applying
the boundary conditions (5) and the patching condi-
tions (6) at the I/1I and II/III boundaries. Note also
that these solutions are valid for both v = 0.

Consider first the patch of the azimuthally dependent
solutions. The six patch conditions, (6), yield four lin-
ear homogeneous equations for b%, b, ¢, and bI":
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biJu(a) = bla™2 — clla? = 0
bil—na"?J(a) + B~ J,-1(a)]
+ na(—n+l)/2b{l1 _ na("‘”/ch,’ = O
B+ clf — bl = 0
—nbl! + ncl’ + nb!" = 0, (19)

where a = (a/8)"/2.

The consistency requirement that the homogeneous
linear system (19) possesses a nontrivial solution is
that the determinant of this system vanish. This yields

J,,_l(a) =0. (20)

Thus, a = (a/8)'/? is the pth root of J,_,. It is then
found that
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by = a"*J,(a)b;,
=0

b = a2 J,(a)b]. (21)
It is seen that (20) can only be imposed upon a single
mode. Thus, (20) specifies a, so that for a given «,
is known. An attempt to enforce (20) on each sin n6
mode in (9) results in an overspecification of a, so
(20) limits the available azimuthal modes in (9) to
only one. This is the reason that the cos nf terms were
neglected earlier.

It has become commonplace in the modon literature
to focus almost exclusively on dipolar solutions. Here,
however, we include the higher-mode solutions because
they are superficially similar to the tripoles and quad-

Small Modons ( o <1); ¥, = 0.0
Azimuthal Modes

sin 20

sin 36 sin 40

Radial Modes

FIG. 2. Streamfunction (¥) contours for the small modon case (« = 0.5) with 4] = 1.0 and v = 0.25 and no axisymmetric part (¥,
= (). The first four azimuthal modes (sinn8, n = 1, - - -, 4) and the three lowest-order radial modes (p = 1, 2, 3) are shown. Solid lines
are positive contours, dashed are negative, and solid/dashed are zero. The contour interval is given in the lower right of each panel.
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rapoles observed by Kloosterzeil and van Heijst (1991)
in their rotating tank experiments dealing with the sta-
bility of elongated cyclones and anticyclones.
Consider now the axisymmetric parts of the solution
(9). The patch conditions (6) atr = 1 give [ from (18)]

r, = VU‘ d;xfxyF(y)dy]

i
Iy = f YF(y)dy (22)

so that 7 may be compactly written as

ld X 1
1= [ S [ row e [ ros]. @

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 22

There are three conditions on G(r): the two patch
conditions (6) at r = «'/? and the specification for the
nontopographic part that satisfies (5) at r = 0:

GD(O) + A= ‘I/().

These three conditions are used to determine Q, w,
and 4. Applying these conditions to (13) and (14)
yields the system:
0 — 28w + A = ¥(0) — Gr(0) = ¥,
0+ (a/2 - 2B)w + Jo(a)A4
= —Gr(a'?) + I(a''?) = R}

ow — aJl(a)A

= —a'?[dGr(a'/?)/dr — dI(«'/?)/dr] = R3. (24)

Small Modons ( o* <1); ¥ = 0.5
Azimuthal Modes

Radial Modes

FIG. 3a. As in Fig. 2 but for ¥, = +0.5.
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The solution to (24) is straightforward:
0As = —a{(¥o)[a(1/2 — 2a2)Ji(a) + Jo(a)]
+ R{[2a""Ji(a) — 1]
+ R5[2a7%Jp(a) + (1/2 — 2a™)]}
wAs = —{aJi(a)(R] — ¥) + R3[Jo(a) — 11}
AAg = (¥ — RY + R5/2), (25)
where
As = —al[Jo(a) + (a/2)Ji(a) - 1].  (26)

For parabolic topography, Gr(r) and I(r) are sub-
stantially simplified:

Gr(r) = —By(1 +48—1r?)
I(r).= (v/#)[3/4 + Inr— r’(1 — r?/4)].

(27)
(28)
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For this special case it is also found that
RV =~v{B(1+48—a)
+(1/4)[3/4+(1/2)Ina — ]l — a/4)]}
R3 = (v/4)(1 = a)* — 2apy. (29)

To summarize for o !/? < 1, the solution can be written
as

W = Qo+ w(r?)2 — 2B) + AJO(B_”Zr)
+ G(r) + bLJ,(87/%r) sin né,
Y= I1(r) + bla™?*J,(a)r™" sin né,

Vi = pLam'2 ] (a)r™" sin né,

r<a'/?

a?<r<|
(30)

where G(r), I(r), Q, A, and w are given, respectively,
for general topography by (14) or (17), (23), and (25).
For the special case of paraboloid topography (m = 2

I1<r,

Small Modons ( o* <1); ¥, = 2.0
Azimuthal Modes

sin @ sin 20

sin 30

N /

N
n
Q

Radial Modes

F1G. 3b. As in Fig. 2 but for ¥, = +2.0.
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in (7)), Gr and I are given by (27) and (28), while
(29) can be used to simplify (25). Of course, in either
case a is specified by J,-;(a) = 0.

b. Large modon case (a'/? > 1)

Attention is now directed to the scenario o'/2 = 1.
Allowing for the possibility of independent separation
constants for the two regions

rz1,
the nondimensional version of (4) now takes the form
VA + W8 = ~yF(r) + (wr?*/2 + Q)/B, r<1
VU 4+ W18, = (wr?/2 + 0)/Bs, 12
2y =,

I<r<a
(31)

Reference to Fig. 1 reveals that in both the large and
small modon cases, region I describes the area where
the modon lies over the seamount. Region III pertains
to the flow external to the modon over a flat bottom,
which is also relevant to both small and large modon
cases. For these reasons, the general solutions for ¥’
and V" are the same as in the previous scenario (9)
except that 8 is now replaced by 8, in the expression
¥/, For ¥ the general solution is readily found to be

V= Q + (=26, + r’/2) + [BiJo(B2'"r)
+ BYo(83'2N]+ Z b7 J.(B2' 1)

n=1

al?<r,

+ d!Y,(B85"*r)}sinng. (32)
Since the functions J, and Y, occur it‘l both the par-
ticular and homogeneous solutions, their amplitudes
are determined by the patching conditions at 7 = 1 and
a'/?, so B, and B, are yet to be determined.

We proceed as in section 3a and consider first the A

patch of azimuthal modes. As before, this results in
four linear homogeneous equations for b}, b, d¥,
and b/:
Ju(bYbh — J(B3')bY — Y.(87"2)dl = 0

[=nJu(b) + bJ,_1(b)1b},

+ [nJ,(87'7%) — B2 -1 (85" 12)1bY

+ [nYu(B3'?) — B2'*Y i (B7'/*))dY = 0
J(@)bl + Y (a)d) — a™"?b}" =0

(—ndn(a) + aJo-y(a)]1b7

+ [~nY,(a) + aY,_(a)ld}

+ na™"?p" =0, (33)

where

a=(a/f)", b=p7""
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The consistency condition for (33) is
bJn—i (B)[JA(B2" )Y o1 (@) = Ju-1(@)Y,(B82'%)]
+ B3 2Jn(b) [ Jn-1 (@)Y n-i(B2'%)
= Juer (B33 Y i (@)1 = 0. (34)

Since 8, and B, in general are independent, there are
two obvious ways to satisfy (34). We select these pa-
rameters that

Jn~1(b) = 0

Jor(@)Y 1 (B7'7%) = Jp-1(B2'/*)Y por(a) = 0.
(35)

The other choice,
Ja(b) = J(B7))Y no1(a) = Ju-1(a)Ya(B7'7?) = 0,

is discarded since it does not resemble the small modon
case.

Taking b/ as arbitrary, we can express the other coef-
ficients in (33) as

bY = (w/2)b}B7" 2 Tn(D)Y p-1(B2'?)
dil = —(7/2)B7" b3 Ju(b)Ja-1(B2""?)

bl = a"DI2pL ] (B)Y 5y (B2?)/2Yn-1(a).  (36)
The axisymmetric solution for ¥ is (from 32)
I=Q+ w(r*/2 - 28,)

+ [BiJo(B37'/%r) + BxYo(B2'%1)].  (37)

The patch conditions (6) at r = «'/? fix B; and B, so
that (37) reduces to

I=w{r’/2—28, — (x/2)[aY(a)(26: — «/2)
~ aYo(a)1Jo(Bz'"?r) — (w/2)[eJo(a)
+ (/2 = 282)a)i(a)]Yo(B2' 1)}
+ Q{1 + (wa/2)[Jo(Bz"*1)Y1(a)
— Ji(@)Yo(B7'*n)1}. (38)

Now the rider condition Gp(0) + 4 = ¥oatr =0
and the patch conditions at r = 1 yield the three si-
multaneous equations

Q—28lw+A4=Y,
~ NQ+ [2(8; — B1) — MiJw + Jo(B7T"/P)4 = RY
—N2Q — Myw — BT 2N (B71)A4 = RE,  (39)
where
M, = (v/2){[aYo(a)
+ (a/2 = 28;)aY (a)Jo(B3'?)
— [aJo(a) + (a/2 — 2B3)at;(a)}Yo(B3'/?)}
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M, = (x/2)B7"*{[aJo(a)
+ (a/2 — 28,)al\(a)]Y,(B3'?)
— [aYo(a) + (a/2 — 2B,)aY (a)]]1(B2'%)}
Ny = (wa/2)[Jo(B2'*)Yi(a) — Ji(a)Yo(B3'/?)]
N, = (wa/2)(B2'?)[J1(a)Y(87'?)
- Ji(B5'*)Y (a)]
R
R%
The solution of (39) is
QAL = Yo BT 21 (BT"*) (M — 2(8, — B1)]
+ MyJo(B7'?)} — RT{2B1201(B7'%) + My}
+ RE{M; — 2(B, — B1) — 2B:1J0(B7"/%)}

= —~Gr(1)
"‘dGT( 1 )/dr

(40)

MIED ET AL.

1577

WAL = =Y [NBT2T1(BT'?) + N2 Jo(B7'%)]
+ R[N, — 87201 (BT'/%)] — RE[Jo(B7'?) + Ni]
AAL = Yola + 2(B, — B1)N,] + RT(M; + 26,N,)
+ RE[2(B2 — B1) — My — 2B8/N}], (41)

where

Ap= o+ 2(8; — BN, — BT (BT"H)]
+ BT 2I(BTVP )M, + MyJo(B7'7?)
+ 28 [BT2T(BTV 2Ny + Jo(BT?)N2].

In this last expression, we used the result

Nle - Nle = a.

1/2

To summarize for a'/* = 1, the general solution is

Large Modons ( a“ > 1); ¥ = 0.0
Azimuthal Modes

sin 26

sin 360 sin 46

Radial Modes

FIG. 4. Streamfunction (¥) contours for the large modon case (o = 2.0) with b4 = 1.0, v = 0.25 and no axisymmetric part (¥, = 0).
The first four azimuthal modes (sinn, n = 1, - - -, 4) and the three lowest-order radial modes (p =1, 2, 3) are shown.
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V' =[Q+ w(r?/2 — 261)] + AJo(B7'?r) + Gr(r)
+ blJ.(B7?r)sinnd, r<1
¥ = Q{1 + (an/2)[Y1(a)Jo(B2"/*r)
— Ji(a)Yo(B3'*N)]} + w{r?/2 — 28,
—(x/2)[aY\(a)(2B, — a/2) — aYo(a)]
X Jo(B7'7?r)} — (v /2)[ado(a) + aJi(a)
X (282 — a/2)1Yo(B7' 1)} + [bnJu(B7'/?1)
+ d,Y.(83'%r)]sinnd, 1<r<a'?
Wi = pll=n sin ne, (42)

where b, d¥ and b are given by (36) and Q, w,
and A are given by (41). Also, the consistency relation
is (35).

It is straightforward to show that ¥*/ vanishes when
a'/? = 1, so that both large and small modon solutions
give the same result when o'/ = 1.

When 3, = 8, = fand m = 2 [ parabolic topography

al? <7,
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in (7)], some simplification of these results occurs. In

particular, the consistency relation (34) reduces to
Jp_1{a) = 0. (43)

This is the same as (20) except that the «'/? in a is
larger than 1. Also 8; = 8, simplifies (36) to

bl = b,

=0

b1 = a2, ()bl
Noting that
B2I(BTRIM, + Jo(B7VH) M,

= —[aJO(a) + (a/2 - ZB)aJI(a)]’

6—1/211(5—1/2)]\[' + Jo(ﬂ“”z)Nz = —al\(a),

and A

Ap = o[l = Jo(a) — (a/2)Ji(a)] = AL

¥ = 0.0
0
Azimuthal Modes
sin @ sin 20 sin 36 sin 40
5.0 0.2 0.2 0.2
- z.sw 0.1 0.1 0.1
It |o.0 0.0 0.0 — 0.0 P
a 2 4 8 8 1 2 4 6 & 1 Nz 4 & 8 1 ~2 4 6 8 1
-2.5 -0.1 -0.1- -0.1
5.0 Lo.2 0.2 0.2
g 0.2 0.2 0.2 0.2
©
o | 0.1 0.1 (\ 0.1
= Il |o.0 / 0.0 /—\ 0.0 0.0 LN
= N 4 8 8 i V2 4 6 P 2 4/8 8 Va2 4 o3 b
S -0.1 -0.1 -0.1- -0.1
g -0.2 L0.2 0.2 Lo.2
0.2 £ | 0.2 0.2 D.40
o | o {\ / 0.1 0.1 D.25
Il {o.0 T 7T 1 0.0 v/F\N“&'——r 0.0 T [-10
0. 2 4/6 8 P 2 4 8 p 2 4 6 8 1
-0.11 -0.14 -0.1 pos{ 2 4+ & 8 b
-0.2 - 0.2 0.2 -p.20

FIG. 5a. Dispersion relation w = w(a, ¥o) with ¥, = 0 and ¥ = 0.25.
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it is seen that for the parabolic topography case (41) — aYo(a)1Jo(B71?)] — (7 /2)[ado(a)

reduces to + (/2 — 28)ady (@)]¥e(B™12)])}
~ [+ - ila 0
OR, = —~ Vol ado(a) + a(a/2 — 28)J(a)] b (B s, < r<

~ 2Bv[(M: — 28J0(87'1)] Y = "2 ] (a)blr"sinnd, o'?<r. (45)

_42 M+21/2J —1/2 .
. BivIM; g (A7 In this case Q, w, and A are given by (44), and the
why, = Woali(a) + 28v[N, + Jo(B7'/?)] consistency relation is J,_,(a) = 0.
+ 42N, — 7121 (B71)]
AA; = oWy + 487y (M, + 26N,)
The modon solutions outlined in sections 2 and 3
+28y(My + 26Ny (44) differ in two fundamental ways from those in most
The solution (42) then reduces to prior studies. First, the background medium is discon-
I 2,n . 5 tinuous as the topography has compact support (Fig.
V= [0+ w(r/2 = 28)] + y[=B(1 + 48) + br’] 1). This contrasts with the uniform infinite beta plane
+ AJo(BV%r) + bLT(B~"?r)sinnb, r<1 usedin most modon studies. Even in the prior studies

f modon propagation over topography, the topogra-
I/ -1/2 o propag pography, the topog
T = Q{1 + (va/2)[Yi(a)Jo(B™%r) phy was a smoothly varying function of position with-

4. Discussion

— JA@)Ya(B7V2Y + wlr2)2 — 2 out compact support. It must be noteq, however, that
1(a)Yo(B 2y tr 8 the inclusion of topography (v # 0) in the problem
—(w/2)[aY(a)(28 — a/2) merely produces an axisymmetric flow with a specified
¥ =-0.5
0
Azimuthal Modes
sin 6 sin 26 sin 36 sin 46
2 4 6 8 10
0.0 Lt 0.2 10.0 110.0
-~ ~2.5 0.1 7.6 7.6+
Il |5.0- 0.0 T T T b 6.0 6.0
Q -7.5- -0.1 2.5 2.5
10.0 -0.2 0.0 —— 0.0 — T
2 4 8 8 10 2 4 6 8 10
on 2 4 6 8 10
o 10.0 0.2 10.0 0.0 e
8 7.5 0.1 \ 7.5 2.5
N 9™ « 17 9 [~ &.9]
E Il | 6.0 0.0 \/,/,—:,\ 5.0 6.0
© A 2 4 8 8 1
5 2.5 -0.14 2.5 -7.54
«©
o 0.0 —— -0.2 0.0 T 0.0
2 4 6 8 10 4 8 10
10.0 0.2 10.0 [10.0
o |75 0.1 7.5 7.5
Jl | 5.0 0.0 > 5.0 5.0
a V2 4 P
2.5 0.1 2.5 2.5-
0.0 S R S—" 0.2 0.0 —— 0.0 —
2 4 6 8 10 2 4 68 8 10 2 4 6 8 10

FIG. 5b. Dispersion relation with ¥, = —0.5 and v = 0.25.
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form and amplitude [i.e., the functions I and G in
Eq. (17), (18), or (37)]. Without topography (v
= (), there is still an axisymmetric flow, but the values
of w, A, and Q depend only upon the rider value ¥,.

Second, all cases considered previously deal with
modon motion that was essentially rectilinear. The
search for a solution that transports fluid in a steadily
translating frame requires the existence of a bounding
streakline ¥ + Uqa sin 8 = const (Flierl et al. 1980). It
is important to stress that the bounding streakline con-
cept has no direct analog in our steadily rotating frame.
That is, our solution need not necessarily involve a
dividing streakline that separates an outer and an inner
region that is transporting fluid. Instead, the solution
sought specifies only that the inner and outer stream-
function fields be continuous along r = r,. It is em-
phasized that we do not require this curve to be a
streamline.

In the present case, there are three solution regions,
and we also impose the continuity of ¥, d¥/dr, and
0V /30 at the two dividing circles separating these re-
gions but do not require the vorticity to be continuous
across the line. Although this constitutes a more general
solution class, the relaxation of the requirement for
continuous vorticity has the consequence that the
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modon amplitude (b?) is unspecified and so is a free
parameter. In a more pragmatic sense, continuity of
the vorticity at both (or only one) radial boundaries
would overspecify the conditions on the constants
bl b, bl and c (or d7) in section 3.

The nonlinear forms treated in this work rotate
steadily about a central point. As such, they are some-
what reminiscent of Reznik’s (1985) modon dipole
eddy pair, which orbits steadily around a line of con-
stant height along parabolic topography of infinite ex-
tent. Reznik’s solution and ours, however, are unre-
lated, since in his case the modon changes to a mono-
pole when the orbit radius of the modon is reduced to
Zero.

There is a great variety of different streamfunctions
for the small modon case (a'/? < 1). Figure 2 is a
matrix that represents the different azimuthal modes
(sinné, n = 1, 2, + - -) and different radial modes
(Jooi(a)=0,p=1,2, - - -)that arise from the count-
able infinity of solutions to (20) when ¥, = 0. The
progressively increasing complexity of the streamfunc-
tions is evident as the azimuthal mode number (7) or
the radial root number (p), or both, are increased.

While the different azimuthal and radial modes
shown in Fig. 2 are noteworthy for their variety, the

¥ =05
Azimuthal Modes
sin @ sin 260 sin 360 sin 440
2 4 8 8 10 2 4 6 8 10
5.0 0.2 p.00 L R ——— 0.0 4—L—d>—3~L—1
- | 2:67 0.1 41.26 -1.0-
il {o.0 T 0.0 S S e N L -2.0-1
a 2 6 8 1 2 4 6 8 b
-2.5 0.1 -13.75— 3.0
-5.0 0.2 k.00 -4.0
» 2 4 6 8 10 2 4 6 8 10
O 0.0 bbb | 0.2 0.0 L 40
Re
O oyl*oT 0.1 -2.5- 3.0
= il |-2.0- 0.0 V¢ 5.0 2.0
"('a a 2 4 6 8 1P
— 3.0 -0.1- -7.5- 1.0
T
«
-4.0 -0.2 J10.0 0.0 ——T
o« ) 2 4 6 8 10
2 4 8 8 10 2 4 [-] 8 10 2 4 6 8 10
0.0 L 0.2 0.0 e 0.0 el
2.5 0.1 1.0 1.0
Il |-5.01 0.04+o9—> —r -2.oJ -2.04
2 4 8
Qf,s] -0.1 | 3.0 3.0
Jr0.0 -0.2 -4.0 -4.0

F1G. 5c. Dispersion relation with ¥, = +0.5. In each case v = +0.25.
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introduction of nonzero values of ¥, in the axisym-
metric part of the solution provides some exceptionally
interesting variants of these figures. In Figs. 3a,b, we
show streamfunction contours identical to those in Fig.
2 but with ¥, = 0.5 and 2.0, respectively. As ¥, is
increased from the zero value shown in Fig. 2, anti-
cyclonic values of ¥ are enhanced and cyclonic ¥ val-
ues are cancelled by positive ¥,. Some of the resulting
forms are quite interesting. For example, the sin @ col-
umn in Fig. 3b shows that for the first radial root (p
= 1) the dipole shifts to a near-anticyclonic monopole
with a weak cyclonic outlying vortex. The p = 2 case
for sin 6 also shows the way in which a quadrupole can
change to essentially a monopole with weak attached
vortices. Perhaps the most striking form, however, is
the p = 1, sin 26 case. What begins with ¥, = 0 in Fig.
2 as a quadrupole can be seen to become essentially a
compactly structured tripole in Fig. 3b, with the ad-
dition of a sufficiently large anticyclone (¥, = 2.0
here).

The large modon case («a!/2 > 1) shows the same
rich variety present in the small modon case (Fig. 4).
Moreover, there is a qualitative similarity between this
large case and the small case shown in Fig. 2. That
there should be at least a superficial similarity between
the two cases is not surprising. They both have the
same azimuthal structure (sin n6) and their radial
mode structures are both determined by the same ei-
genvalue relation J,_;(a) = 0. In addition, the two
solutions reduce to the same form at the intersection
point & = 1, that is, when the modon is precisely as
large as the mountain.

The two cases shown in Figs. 2 and 4 and treated in
sections 2 and 3 come about because we must allow
for the modon radius to be smaller or larger than the
radial extent of the mountain (see Fig. 1). In the small
modon case (a!/? < 1), the modon lies wholly over
the mountain and the vortex stretching constituent of
the potential vorticity has continuous radial derivatives
at r = o'/ (the modon radius). For the large modon
case («'/? > 1), the modon extends beyond the edge
of the mountain and the topography is not continu-

TABLE 1. A comparison of the properties of the rigid-lid, beta-
plane modon of Larichev and Reznik (1976) with the properties of
those in the present work.

Rectilinear modons
(Larichev and Reznik 1976)

Topographic modons
(this study)

1. ¥ = sind is basic modon

2. P.V. — ¥ relation
defined in two regions

3. Straight-line motion

4. Only translate eastward
in the rigid-lid model.

5. Translation speed
independent of
axisymmetric part

6. Riders have form sinznf,
(n=0and n = 2) and
cosnf, (n=1)

¥ = sinnd (n > 1) is basic modon

P.V. — ¥ relation defined in

three regions

Rotary motion

May rotate clockwise or
anticlockwise

Rotation rate (w) dependent upon
axisymmetric amplitude

Axisymmetric riders only
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ously differentiable at r = 1. Because of these funda-
mentally different scenarios, the solutions for a'/? 2 1
in the annular region II are quite different [Eq. (30)
vs Eq. (45)].

In view of these different functional forms, it is in-
teresting to note that the dispersion relations, w = w(;
¥,), for each of these modes (Figs. Sa-c) are contin-
uous at a = 1. Moreover, calculation reveals that the
first derivative of w is continuous across & = 1, and
this accounts for the smoothness in the profiles at «
= 1. From (25) and (44) it is seen that w has a term
that is proportional to v. For the case of no topography
(v = 0) w is a well-behaved function of «. It is worth

"noting that only for the # = 2 case w =0 when v = 0.

Figures 5a—c show the dispersion relations (plotted
as w/v for convenience) for the radial and azimuthal
modes when ¥, = 0, —0.5, and 0.5. That is, the rota-
tional frequency is depicted as a function of modon
size () for superimposed axisymmetric circulations
that are, respectively, zero, cyclonic, and anticyclonic.
A number of trends are immediately obvious. The first
is that for many of the modes, and especially for the
¥, = 0 case, w/vy may be either negative or positive.
A mode may rotate clockwise (w/vy < 0) or anticlock-
wise (w/vy > 0), depending only upon its size (a).

In the event that an axisymmetric cyclonic rider is
imposed upon the flow (¥, = —0.5, Fig. 5b), the waves
are, in general, shifted upward (w/vy becomes more
positive). The addition of an anticyclonic rider (¥,
= +0.5, Fig. 5¢) produces the opposite effect; that is,
/v becomes more negative and the modons generally
favor clockwise rotation (w/+ more negative). A con-
spicuous violation of this trend occurs for the sin 26
modons that are unaffected by the addition of an axi-
symmetric vortex. Reference to the dispersion relations
for small and large modons [the w solutions in (25)
and (44), respectively] indicates that ¥, and J,(a)
always occur as a product. The dispersion relation for
this mode is J;(a) = 0, which nullifies the effect of
adding any axisymmetric part.

The possibility of positive and negative rotation rates
for any particular mode and the sensitivity of w/+v to
¥, occur because the rotation direction and angular
velocity of these modons are determined by three fac-
tors:

e mutual advection of the vortices
e the magnitude and sign of v
e the presence of an arbitrary axisymmetric vortex.

The interplay between these effects gives a richness of
behavior that is not available with the rigid-lid beta-
plane modon (Larichev and Reznik 1976), which can
only propagate eastward.

The final point to be made on the dispersion relations
in Fig. 5 is that they are all singular at « = 0. Equation
(25), indicates that the small a behavior is given by
w/v o« xIna/a. For small scales, however, the QG
model is inappropriate and other physics should be
included.



1582

Since the rotating modons described in this work
are new and offer such rich and varied behavior, it is
appropriate to compare various facets of their behavior
with that of the classical Larichev and Reznik (1976)
rectilinear case. This is summarized in Table 1.

5. Conclusions

We have analyzed the structure and properties of
steadily rotating modon solutions to the quasigeo-
strophic equations of motion over isolated topography.
The following conclusions can be made:

e Steady closed-form solutions are possible with
quadratic topography and have an azimuthal structure
characterized by sin nf (n=1,2,3, + « +).

e Each sin n6 azimuthal mode has a countable in-
finity of radial modes.

e Both cyclonically and anticyclonically rotating
solutions are possible.

o Solutions are valid for seamounts, flat bottoms,
or depressions (y = 0).

e An axisymmetric vortex rider of arbitrary ampli-
tude (¥,) can be superimposed on these solutions, and
its inclusion strongly influences the angular velocity of
the modon.

e The case n = 2 and no topography (v = 0) yields
= 0. When an axisymmetric rider is present (¥, # 0)
the solutions are tripolar; see Figure 3a,b. Hence, tri-
poles over flat topography do not rotate in this model.

This paper has only addressed some elementary
theoretical properties of rotating modons. The results
suggests many other questions that can be resolved only
after further study. In our view, the two most pressing
are as follows:

e Generation. A viable generation mechanism for
rotating modons is unknown. If one were found, the
lowest order (sin 8, p = 1) would have an unambiguous,
periodic signal that might be stable and observabile for
extended periods of time.

e Stability. It seems likely that the large p, large n
modons would be unstable, as might the small p, small
n ones with large amplitude (5% > 0). Theoretical and
diagnostic studies along the lines reported by Butchart
et al. (1989) as well as numerical experiments should
resolve this.
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