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ABSTRACT

Using the methodology of contour dynamics, the evolution of an interface separating two regions of constant
potential vorticity is considered. The model equations are those for barotropic nondivergent flow over a topo-~
graphic slope adjoined by a coastal barrier. The main focus is on the processes which lead to wave breaking for
small-amplitude waves and, in general agreement with previous related work, it is found that wave steepening
leads to the formation of thin filaments. The key parameter is found to be the ratio of the background potential
vorticity to the discontinuity of potential vorticity across the front, with other parameters such as the topographic
slope and the distance to the coast playing a relatively less significant role.

1. Introduction

Coastal currents are often characterized by meanders
and squirts, which sometimes lead to the formation of
detached eddies. These features are usually of a suffi-
cient amplitude to require a nonlinear theory for their
theoretical description. In a previous paper Grimshaw
and Yi (1990) developed some models for the descrip-
tion of finite-amplitude long waves on coastal currents.
However, although that approach was successful in
identifying various families of waves, the long-wave
hypothesis precludes a study of wave evolution that
incorporates all length-scales. This is particularly per-
tinent when the long waves are observed to be steep-
ening. Hence, in the present paper, we seek to remedy
this defect by using the methodology of contour dy-
namics to extend one of the models developed by
Grimshaw and Yi (1990) to all length scales. This
model describes the waves that form at a vorticity in-
terface separating two regions of constant potential
vorticity, and is typical of the configurations that are
amenable to the techniques of contour dynamics.

Although contour dynamics is barely a decade old,
it has developed rapidly both with respect to the so-
phistication of the algorithms and with respect to the
range of applications, and is now established as a pow-
erful method for studying two-dimensional inviscid
fluid flows ( see, for instance, the recent review by Drit-
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schel 1989). Of the many oceanographic applications,
that which is closest to the present work is the study
by Pratt and Stern (1986 ) on the evolution of a vorticity
front separating two regions of constant potential vor-
ticity in a 11/;-layer quasi-geostrophic model. Here, a
vorticity front separating two regions of constant po-
tential vorticity is also considered, but in the context
of a nondivergent barotropic model for flow on the
continental shelf and slope. The essential difference is
the presence of the topographic slope, which in the
present paper is retained in full; that is, we do not make
the quasi-geostrophic approximation of a weak slope.
However, in order to obtain a relatively simple contour
dynamic algorithm we eventually assume that the vor-
ticity front lies entirely over the topographic slope and
well away from the shelf-break where the continental
slope adjoins the ocean whose topographic slope is zero.
The important question of how a vorticity front might
behave at the shelf-break is left for a later study, while
here we concentrate on the role of the coastal boundary
and topographic slope on the evolution of a vorticity
front. In developing a contour dynamics algorithm for
the present application, the most sophisticated routines
currently available for node insertion and deletion are
not used, since our main aim is the study of wave evo-
lution and the processes leading to filamentation, rather
than the details of filamentation itself. Hence we are
able to obtain computational simplicity and efficiency
while retaining sufficient resolution to determine how
waves on a vorticity interface evolve and possibly de-
velop filaments. After completion of our work we be-
came aware of the paper by Send (1989), which treats
a similar problem on the behavior of potential vorticity
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fronts over topographic slopes. The essential difference y
between Send’s and our work is that Send considers
wave evolution on an unstable basic flow which re-
quires the use of two or three contours, whereas we
consider only waves on a stable basic flow using just
one contour. Further we give a detailed investigation
of the parameter regime whereas Send considers only
parameters appropriate to models of the California
Current system. There are also some differences in for-
mulation which are mentioned later in the appropriate
place.

In section 2 the equations of motion for barotropic
nondivergent flow over a topographic slope are for-
mulated. Then, assuming that the flow can be described
by the evolution of a potential vorticity interface sep-
arating two regions of constant potential vorticity (see
Fig. 1), the equations are recast into a format suitable
for the development of a contour dynamics algorithm.

In this section the topographic slope is not specified

precisely in order to demonstrate that the contour dy-

namics algorithm can in principle be formulated for z
quite general topographic slopes. However, it should

be pointed out that the wave restoring mechanism in —
this model is not due directly to the topographic slope,
but is due to the potential vorticity gradient; that is, it
is due to the potential vorticity jump across the inter-
face. The value of this jump is maintained by a com-
bination of the topographic slope and the basic long-
shore current.

Next, to make analytical and numerical progress,
we must choose a specific topographic slope which is
the familiar exponential depth profile. This is done in
section 3, which is in two parts. In the first we obtain
the Green’s function needed for inverting the vorticity-
streamfunction relation and hence the velocity fields
at the vorticity interface. At this stage we also introduce
the approximation that the vorticity interface is far re-
moved from the shelf-break. In the second part of sec-
tion 3, a brief description of the contour dynamics al-
gorithm is given. A reader not concerned with the de- .
tails of the Green’s function and the numerical vo(x)
procedure could proceed directly from section 2 to sec-
tion 4, where our results are presented. We conclude
with a summary in section 5.

x=L(y,t)
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2. Formulation

We shall use nondimensional coordinates based on — ’
a horizontal length scale L, (a typical wavelength), a
time scale f;~! (] is the magnitude of the Coriolis pa-
rameter) and a vertical depth scale 4, (a typical depth).
The equations of motion for barotropic nondivergent
flow are then

du
—‘E—ﬁ)+px=0, (2.1a)

FIG. 1. The coordinate system and definition sketches. (a) Plan
dv view of the potential vorticity interface; (b) the exponential depth

—+fu+p, =0, (2.1b)  profile; (c) the basic longshore current (3.15). For (b), (c) the pa-
dt rameter settingis s = 1, v, = 2,/ =1 and AQh, = —1.
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(hu)y + (hv), = 0, (2.1¢)
where
d 9 d
EE = 5 u 5} v 5 (2.1d)

Here u, v are the velocity components in the x, y di-
rections, respectively, and p is the sea-surface elevation.
The coast is located at x = 0 and the ocean depth is
h(x) where h(x) is an increasing function of x which
tends to Ay as x = co. Elimination of p from (2.1a, b)
leads to the potential vorticity equation

dq

Z =0, (2.2a)
where
q= I;—§ , (2.2b)
and
§=Ux — u,. (2.2¢)

Next (2.1c) is used to introduce the transport stream
function ¢, such that

hu=y,, hv=—y,. 2.3)
Hence, from (2.2b, ¢)
h=r-(%) %o, (2.4)

and (2.2a) is an equation for ¢ alone. The boundary
conditions are that

Y=0, at x=0, (2.52)

and

¥,—> 0, as x—> o0,

(2.5b)

which are the conditions for zero flux in the on-offshore
direction at the coast and in the distant ocean, respec-
tively.

We wish to consider the waves which form on the
interface separating two regions of constant potential
vorticity. As discussed in the Introduction, the basic
methodology is that of contour dynamics, although its
implementation is complicated here by the bottom to-
pography. Thus, we let x = L(y, t) denote the interface
between two regions of constant potential vorticity,
where L> 0and L — /asy — —oo (see Fig. 1.). Hence

q=Ql’
q=Q0a

Since it is anticipated that the interface will develop
folds and filaments we shall allow x = L(y, t) to be a
multivalued function of y, and denote the interface
simply by @, although it is convenient nevertheless to

for O0<x<L, (2.6a)

for x> L. (2.6b)
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retain the x = L(y, t) formulation in developing the
theory. The boundary conditions on € are the kine-
matic condition

(2.7)

and the continuity of the tangential velocity (Grimshaw
and Yi 1990), where it is noted that (2.7) implies the
continuity of the normal velocity. For the purposes of
contour dynamics it is convenient to replace these
boundary conditions with the equivalent Lagrangian
conditions that each Lagrangian point (L, ) on € is
moved according to the prescription

dL

- dy _
dt - u(L, Vs t)a dt - U(L, Y, t)'

Next we examine the structure of the basic longshore
current vo(x) which supports the piecewise constant
potential vorticity distribution in the limit y = —oo,
where L — [ and u = 0. Hence from (2.2b, ¢) and
(2.6a, b) it is defined by

_ =S+ Qih, for
box = {‘f‘*‘ Ooh,
With vy(x) continuous at x = /, we find that
vo(x) = V + (Qoho — N x = 1)

+Qof1 {h(x') = ho}dx

Li+vL,=u,

(2.8)

O0<x<l
(2.9)
for x> 1.

+ (Q1 — Qo)H(I — x) J; h(xdx'. (2.10)

We now require that v, is finite as x = oo so that Q,
= f/hy, and for convenience put the constant of in-
tegration V = 0 so that vy(/) = 0. Here H(-) is the
Heaviside function, and we recall that # — hy as x &>
o0 . The corresponding basic streamfunction y,(x) is
given by

Yo(x) = —J; Vo(x'Yh(x")dx'. (2.11)
A definition sketch of vy(x) is given in Fig. 1 for the
case when the topographic slope is given by the ex-
ponential depth profile & = A, exp[s(x — )] for 0 < x
< Xp and 1s a constant for x > xg [see (3.3a, b)]; in
this case vy(x) can be evaluated explicitly from (2.10)
and is given by (3.15).
Next, we put

¥ =vYo(x) + ¢, (2.12)

and substitute this expression into (2.4) and (2.6a, b)
to get

o) 0w _
(%),

—AQh, for
AQh,

0, otherwise

l<x<L

for L<x<l (2.13a)
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where
AQ = Q1 — Q. (2.13b)
The boundary conditions are that
¢=0, at x=0, (2.14a)
¢—=>0 as x2+)y’—> w0, (2.14b)

and ¢, ¢, ¢, are continuous across €. To solve (2.13a)
we introduce the Green’s function G(x, & y — n),
which is defined by

S 19— pa(y— ), (2.159)
n) " h
G=0, at x=0, (2.15b)
and
G—>0, as x*+y?—> . (2.15c)

It can now be shown that, using standard manipula-
tions involving Green’s integral identities,

d(x,y,t) = —AQJ: dy'

L(y’t)
X J; G(x', x;y' — yYh(x")dx'. (2.16)

The corresponding velocity fields are obtained from
(2.3) and (2.12) so that

AQ °°d,

u(x’y’l)::—m o

L(y"t)
Xf — (X, x; ¥ — p)h(x')dx', (2.17a)
1 dy
and
AQ &

v(x9 Y, t) - Uo(x) = Hx_) W

L(y’,t)
X f — (X, x; ¥~ y)h(xNdx'. (2.17b)
1 ax

Once the Green’s function G(x’, x; y' ~ y) has been
found from (2.15a-c), the expressions (2.17a, b) com-
bined with (2.8) give a set of integro—differential equa-
tions for the evolution of the contour €. This is the
essence of the contour dynamics approach. However,
to be useful, two further steps are required. The first
step is to obtain an analytical expression for the Green’s
function, which requires a specification of the depth
h(x). As indicated previously, the exponential depth
profile (3.3a, b) is used. Combined with the approxi-
mation that the contour lies entirely over the slope
(i.e., L, [ < xo where h = hy is a constant for x > xp),
this then leads to a relatively simple explicit formula
for the Green’s function [see (3.7)]. This calculation
is deferred until section 3, but we note here that near
the source point
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G, xy = )~ og(R/R)), as R0,
(2.18a)
where
R= {(x—x)+(y—y)}'"* (2.18b)
and
Ri={(x+x")+(y—y)}" (2.18¢c)

Note that the image term is included to satisfy the
coastal boundary condition (2.15b), and that for a
constant depth, (2.18a) is an exact result. Hence we
anticipate that it may be useful for weak slopes. The
second step is to convert the expressions (2.17a, b)
from integrals over the area occupied by the displaced
contour to integrals along the contour @€ itself. In the
case of (2.16a) this is readily accomplished by observing
that the Green’s function depends only on ' — y, con-
verting the y-derivative to a y'-derivative and inte-
grating by parts to get

u(x, y, 1) = - % [ ~ MELYGL, x; ¥ - L,
(2.19a)
where
L'=L(y,t), (2.19b)
and
dL' = ;%7 ay'. (2.19¢)

However, a similar procedure cannot be immediately
applied to (2.17b) until an analytical expression for
the Green’s function is obtained in section 3.

To conclude this section we reconstruct the long-
wave approximation for the evolution of the contour,
given by Grimshaw and Yi (1990). This could be ob-
tained by approximating the Green’s function but it is
simpler to obtain an approximation for ¢(x, y, ¢t) di-
rectly. Turning to (2.13a), suppose that 4 = A, for x
> X and that the contour lies entirely in the region 0
< Xx < Xp. Then for x > xp the solution of (2.13a),
which satisfies the boundary condition (2.15b), is given
by

l o0
4=5 L F(B) expliky — [k|(x — xo)]dk,
(2.20a)

where

5’(B)=f_oo B(y, 1) exp(—iky)dk, (2.20b)

and

B = ¢(x0, ¥, 1). (2.20c)
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Next, for 0 < x < Xxp, the long-wave approximation
implies that the y-derivatives in (2.13a) can be ne-
glected. Hence an approximate solution of (2.13a),
which satisfies the boundary condition (2.14a) and
matches smoothly with the solution (2.20a) at x = x,
is readily constructed. When combined with yy(x) [see
(2.11) and (2.12)], we find that

L X
w(L,y,t)w;lf—o fo h(x)dx f, Lo — h(x)]dx’

+ AQ[—I- J? + -{ $(M)] , (2.21a)
2 ho
where

M=%(J2-j2) (2.21b)

L !
J=J; h(x)dx, j= J; h(x)dx, (2.21c)

and

B(M) = —i Z |k|F (M) exp(iky)dk. (2.21d)

Now, using (2.3), (2.7) can be put in the form

d
h(L)L, = ™ {UL,y,0}, (2.22)

and substituting the approximate expression (2.21a)
into (2.22), we obtain an evolution equation for L.
After allowing for a different notation, this agrees with
the equation discussed by Grimshaw and Yi (1990).
They discuss various numerical solutions that show a
tendency towards wave steepening. Indeed, as discussed
in the Introduction, our main aim in this paper is to
relax the long-wave approximation and determine the
consequences of wave steepening. In the weakly non-
linear, nondispersive limit, (2.22) reduces to

L, = AQh {coL, + [1 + (1 =)L — )L,}
(2.23a)
where
1 /
Co = h_,J; h(x)dx, hy=h(l), (2.23b)
and

_ S h
Yl Ath) ho'

Thus, small-amplitude long waves propagate with
speed ¢ in the positive (negative) y-direction if AQ
< 0(>0), and will steepen in the forward (backward)
direction if [1 + v;(1 — 8)] > 0(<0).

(2.23¢)
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3. Green’s function evaluation and numerical method
a. Green’s function evaluation

The Green’s function is defined by (2.15a-c). To

solve this system in general, we take a Fourier transform
in y so that

G(x,&y—m)
1 [~ .
= 2—f G(x, & k) explik(y —n)ldk. (3.1)
T J-o

Then from (2.15a—c) it follows that G is obtained from

(%)x - i—c—;g =d0(x—§), (3.2a)
G=0, at x=0, (3.2b)

and
G—>0, as x— 0. (3.2¢)

Next we suppose that 2 = A, for x > Xxp, so that
G(x, & k) = G(xo, & k) exp[— | k](x — x0)],

for (3.3)

To make further progress, a specific depth profile must
be chosen, and we use the exponential depth profile
given by

X 2 Xp.

h(x) = h expls(x—1)] for 0<x<x, (3.3a)

so that

hy = hy exp[s(xo — D]. (3.3b)

Note that A, is the depth at the undisplaced position
of the interface [see (2.23b)]. Then it may be shown
that, when 0 < £ < xo,

{h(x)h(£)}'?

G= 1(x; k)p2(§; k),

w (k)

for 0<sx<§ (3.4a)

and
. h h 1/2
G = {—(X;/Tf)&’ $1(& K)a(x; k),
for ¢<x<xy, (3.4b)

where

/2
di(x; k) = sinh[(kz + % 32) x] , (3.4¢)

1/2
$a(x; k) = cosh[(k2 + i 32) (xo — x)]
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k] +1s
2 L\
T sinh[(k2 +2 s2) (x0 — x)]
2
-5
4 )

(k2 +
and

2 12”2 2 121/2
W(k)=—(k +Zs) cosh[(k +Zs) xo]

1/2
- (Ikl + % s) sinh[(k2 + i sz) xo] . (3.4¢)

_ However, even though the expressions (3.4a, b) for
G are explicit, to make further progress in obtaining
G it is necessary to introduce some approximations.
First, it is noted that if s = 0, so that & = Ay everywhere,
then

+

(3.4d)

#1(x; k) = sinh(] k| x), (3.5¢)
da(x; k) _ 1 _
TV-(—k)—— |k| exp( Ika) (3.5d)

Substitution of G into (3.1) then readily shows that G
is given by (2.18a) as expected, indicating that this
may be a useful approximation when s <€ 1. However,
this approach is not pursued, since we wish to take full
account of the topographic slope. Hence, instead we
shall use the approximation that the contour lies en-
tirely over the slope at all times (i.e., 0 </, L < xp)
and that L, / <€ xg, where x; is the shelf-break. Thus,
we let xo = oo in (3.4e) [and then also 4y = o, see
(3.3b)] and get

b2(x;3 k) _ 1
W (k) (k* + LsH1/?
172
X exp[—(k2 + 411 32) ' x] , (3.6)

while ¢, (x; k) is unchanged from (3.4c). Substituting
the resulting approximation for G in (3.1) it can be
shown that

G(x', x;y' —y)

- OO (i1 or) - x4 )

(3.7)

where R, R; are defined by (2.18b, ¢). In obtaining
this result we note that (e.g., Magnus and Oberhettinger
1949)

Kol (x* + y*)'/?]

dk
(k* + 1)17?
(3.8)

=%f exp(—(k* + 1)'2| x| + iky)
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where Ky( +) is the modified Bessel function of the sec-
ond kind. For future reference we note that as R — 0,

Ko (% sR)=-InR—(y +1In (%s))

+ O(R*In R, R?*») (3.9)

where v is Euler’s constant. In particular, it follows
that in the limit s = 0 (3.7) reduces to (2.18a) as
expected.

To simplify notation, we define

H(R)= —%Ko(% sR). (3.10)

Then, substituting the expression (3.7) for G into
(2.19a), we get

a0

{h(x)}'7?

X fw {h(L")}*?{H(R') — H(R})dL', (3.11a)

u(x,y) = -

where
= {(x__LI)2+(y_yl)2}1/2, (311b)

and

Rr={(x+ L)+ (y—y)}". (3.1lc)
Next we substitute the expression (3.7) for G into
(2.17b), and integrate by parts, noting that the terms
involving R’, R} are functions of (x — x’) and (x + x')
respectively. Hence,

v(x, y) — vo(x) =

{h( )}1/2f {h(L)}3/2{H(R)+H(R1)}dy

+ i | W HRS) + H(Rio) ) dy

A ® L’

X {2H(R) + H(R;) }dx', (3.12a)
where
Ro={(x=D*+(—-y)}"? (3.12b)
and
Rio= {(x+D*+(y—y)*}""*. (3.12)

Here we recall that R, R; are defined by (2.18b, ¢),
and note that Ry, R are just R, Ry with x' = [. We
see that use of the approximate Green’s function (3.7)
has enabled us to reduce the expression for v — vy to
three terms, two of which are integrals along the con-
tour @, while the third term remains as an integral over
the area occupied by the displaced contour. However,
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we expect the main contributions to v — vy to come
from the first two terms, provided that the contour is
not displaced too much from its original location (i.e.,
x = 1), since the variation in the depth over the region
where the contour moves will then be quite small; it
is the third term that largely describes this effect. The
expressions (3.11a-c) and (3.12a—c) are equivalent to
those used by Send (1989) although there are some
differences, the most notable being that Send does fur-
ther differentiations on (3.11a-c) and (3.12a-c) to re-
place the area integral in (3.12a) by other contour in-
tegrals. However, the price paid for this is a higher
order of singularity in the extra integrals; we have pre-
ferred to leave the area integral in place. Also, Send
uses a different formulation of the basic flow, which
he includes partly in the perturbation field, with the
consequence that the second integral term in (3.12a)
is absent. Further, Send treats the boundary condition
at x = 0 with image contours, whereas we have included
the image terms directly in the Green’s function; this
is preferred because, due to the topographic slope, there
is no exact symmetry or antisymmetry, about x = 0.
We conclude this subsection by noting that the second
term in (3.12a) can be evaluated analytically. Indeed

[ trcre) + mrio) ay

_ 1 1 1
= —;[exp(—islvx—- ll) + exp(—5s|x+ II].

(3.13)

To establish this, we note that
1 o0
—f Kol(x* + y*)'*]dy = exp(~ | x]), (3.14)
27 J-wo 2
aresult which is readily established by taking the inverse

Fourier transform of (3.8). Also, on using (3.3a) in
(2.10), we get

vo(x)

= Ath[—H(l - x)[% {1 —exp(—s{l—x)1} ]

+ 71[(1 —X) -~ g {1 —exp[—s(/- X)]}” (3.15)

where v, 6 are defined in (2.22c), while the linear
long-wave speed ¢o (2.22b), is here given by

c0=%[1 — exp(~—sl)]. (3.16)

b. Numerical method

With the expressions (3.11a) and (3.12a) for u and
v, Eqs. (2.8) are integro-differential equations for the
evolution of the contour €. The essence of the method
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of contour dynamics is to represent the contour by N
points (L;(¢), y;(¢))fori =1, - - -, Nin a discretized
formulation, so that (2.8) becomes

dL; dy;

dr dr
where u, v are given by appropriate discretized versions
of (3.11a) and (3.12a), respectively. Here, we follow
Pratt and Stern (1986) for the numerical approxima-

tion of (3.11a) and (3.12a) and use a trapezoidal rule.
Thus, (3.11a) is approximated by

=u(Li,y;), — =v(Li,y), (3.17)

N+1

A
u(Li, yi) = — 22' (Lj — Lj-y)

% {h 3/2H(R )+ h3/2H(Ry——l)} + lQ/Z

N+1

X Z > (L L) {h*?H(R5) + h}’?H(Ry-1)}

— AQK; LL_,l {%{%)]3/2H(R’)dL’, (3.18a)
where
Ry = {(Li = L)* + (i — »)*}'?, (3.18b)
Ry = {(Li + L) + (v — y)*}'2,  (3.18¢)
and
h; = h(L;). (3.18d)

Here 2’ denotes the sum over j with the terms j = i, i
+ 1 omitted; for notational convenience we introduce
the fixed end-points (Lo, yo) and (L,.+1, Yn+1), where
Ly = Ly, = 1, and it is assumed that the contour is
not displaced for y = y; and y < yy4,;. The last term
in (3.18a) is a singular integral and is evaluated by
approximating the curve between (L;_,, y;-;) and
(Lis1, yi+1) by a parabola, and then extracting the sin-
gular part (cf. Jacobs and Pullin 1989). Thus this part
of the contour is represented by

L'=L;+ % (Lix1 — Li—y)e
+ % (Liss + Lioi — 2L)e*,  (3.19a)
, 1
Y'=Yit5(Yier — Yir)e
1
+ 3 (Virr + Yim1 — 2y:)€%,  (3.19b)
where —1 < e< 1 and e = —1, 0, 1 correspond to i

— 1,1, i+ 1, respectively. Now we write, recalling (3.3a)
for h(x),
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Livy nY3/2
f [—-——h(L )} H(R"YdL'
Liy hi

R. GRIMSHAW

- %exp{" (L - L,-)}H(R')de
-1

=—2a+f [%—,exp[—(ﬂ L,-)]
-1

X H(R') — « lnlel]de, (3.20a)

2ra = (27;) =
de |, _,

Here we have used (3.9) to extract the logarithmic sin-
gularity from H(R), and evaluated this integral ana-
lytically. The remaining integral is evaluated by Simp-
son’s rule.

The approximation for v (3.12a) is similar, but
complicated by the necessity to evaluate the tail terms
(i.e., the integrals from —oo to o and from yy.; to
o), and the area integral (the last term in (3.12a).
Hence,

where

(Livt — Li-y).  (3.20b)

N =

AQ N+1 1

v(L;, yi) — vo(L;) = — h-”z 2' (yj Vi-1)
X {hA2H(RY) + K H(RY )} — Al%
N+1
X 2 y/—l){h 3/Z}J(IQ lj) + h3/2H(RIy-—l)}
Virt ((h(L' 3/2 AOh 3/2
— AQk; ML) H(R")dy' — —Ql—,'z—
Vi1 hi hi

” i H(R; H(R})1;d
X[f—eo-*-J;NH[ ( )+ ( 1)]] Y
A L)

Sh,'”z

+ exp(—llei + ll)] + SAQh;

N
{2 - y-0{2K; + Kz} }, (3.21a)

where

— 1 1
i =5 Ky + K1), Ky = 5 (K + K1),

[ 8]

(3.21b)

L; h Y372
K,.j=f1 [%‘—)] H(Ry)dx, (321c)
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and

L; "nY3/2
K],'j = J; [‘}I(Tx)} H(R,,,)dx’ (321d)
Here R}, R); are defined by (3.11b, c), respectively,
with x = L;, x' = land y = y;, while R;;, Ry;; are defined
by (2.18b, c), respectively, with x = L;, y = y; and '
= y;. The second integral term in (3.12a) has been
evaluated analytically using (3.13). The singular in-
tegral in the third term in (3.21a) is evaluated in an
analogous manner to (3.20a), hence

i1 1372
[ [———’“L )} "H(R)dy = 28
Yi-1 hi

+f1 ﬂex 3s
1| de P 2

{— (L' - Li)]H(R’) -8B lnlel]de,
(3.22a)

where

dy

2B = (de

1
) =3 (Yier — yi-1). (3.22b)
e=0

The tail integrals in the fourth term of (3.21a) are eval-
uated by Simpson’s rule over the ranges P+ y, < )’
< ¥y Or Yn41 < Y’ < yy+1 + P where Pis chosen large
enough for the Bessel function integrands to achieve
exponential smallness. The new feature here is the
presence of the integral terms Kj;, K;; which are also
evaluated by Simpson’s rule. However, K;; has a sin-
gularity at x’ = L; and is evaluated by first extracting
the singularity as follows:

1
Kii=5;(Li _l){ln(|Li =) - 1}

L~ 3 1
+f [exp(— 5s£)H<|s|) —2—7r1n(|s|)]ds

(3.23)

where the integral is again evaluated by Simpson’s rule.

The ordinary differential equations (3.17) are
stepped forward in time using a standard fourth-order
Runge-Kutta method. As time progresses the nodal
points tend to clump together in some places and to
diverge in other places. Hence it is necessary to use a
node insertion / deletion scheme to maintain adequate
resolution. The scheme used here is based on that de-
scribed by Pullin and Jacobs (1986). Briefly, a node is
inserted between the points (L;, y;) and (L;41, Vi+1) if

A; = {(Lis1 — LiY* + (i1 — %:)*}'? > ¢, (3.24a)

where

.1 1
€= max[mm(i Amins o Smaxs 4Sadj) s 0.2] ,
(3.24b)
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drmin = Max[Spin, 0.02], (3.24¢)

Smax = min[ Py, 0.2], (3.24d)
and

Sagj = min[A;—y, Ay ], (3.24¢)

while « is the curvature of the local contour segment
estimated by fitting a parabola between the ith and
(i + 1)th nodes, Sy, is the minimum distance of ap-
proach of nonadjacent parts of the contour, and P,, is
the average length of the current contour segment. A
node is deleted if A; < min[e/10, 0.02]. The actual
numerical values used here were obtained by extensive
testing and are suitable for the present application, al-
though for some calculations different values were used
depending on the total range of y (i.e., ¥n+1 — Jo) and
the total number of initial nodes; also not all of the
criteria in (3.24b) were always needed, and occasionally
some were omitted to improve computational effi-
ciency.

4. Results

Apart from parameters introduced through the initial
condition (see below), the available parameters are
AQhy, v1 = f/AQh,, § = h,/hy and s, where the to-
pographic slope is the exponential depth profile A
= hy exp(s(x — 1)) for 0 < x < xg, h = hy for x > x,,
hy = h(l) and hy is the depth of the ocean. Here [ is
the undisturbed distance of the potential vorticity front
from the coast at x = 0, and there is no loss of generality
in putting / = 1, Next it can be shown from (3.11a)
and (3.12a) that |AQh,| determines the time scale.
Further, a change of sign of AQh,, with all other pa-
rameters fixed, simply reverses the direction of the wave
evolution (i.e., is equivalent to a change of sign of y).
Hence there is no loss of generality in putting AQh,
= —1. Next, our approximation for the Green’s func-
tion in section 3a used the limit 4y — oo, which requires
that 8 = 0, although some calculations were neverthe-
less carried out with § # O [in (3.15)]. Thus, the two
remaining parameters are the topographic slope s and
v:1. Most of the calculations were carried out with

-32.0 -16.0
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s = 1, although we shall report on some calculations
for other values of s. The parameter v, is an inverse
measure of the strength of the potential vorticity front
(i.e., AQ) to the background potential vorticity f/ A, .
Note that the quasi-geostrophic limit corresponds to
s = 0, v, = oo with the product ;s held fixed. In
most of the calculations reported here we put y, = 5
or —5, and note that the choice of sign is significant.
Finally, in a typical calculation we begin with about
100 nodal points, and allow this to increase to a max-
imum of 200 nodal points.

Since our main aim is the study of wave evolution
and the comparison with long-wave theories, we at first
choose the initial condition

L(y,0) =1+ a, sech?8y, (4.1)

which introduces two further parameters, the initial
wave amplitude ay and the initial wavelength, which
is measured by 8~!. The fixed end points o, yn+1 are
chosen in each calculation to be sufficiently remote
from the evolving wave so that the assumption that
they remain fixed is valid for as long as possible. As a
check on the code we monitored the depth-integrated
area of the displaced contour,

A = f_ Z ( fl oo h(x’)dx')dy,

which is a conserved quantity. This is most readily
shown from the kinematic condition (2.7) in the form
(2.22). In practice, A was conserved to three significant
figures for the calculations reported here.

Before proceeding to describe our main results, we
show in Fig. 2 a typical result for the evolution of a
long wave. This is obtained for an initial amplitude a,
=0.1,and3=1.0in(4.1), withs= 1,4, = 5and é
= 0. To aid in the comparison with the long-wave cal-
culations of Grimshaw and Yi (1990), the results are
shown in the same format of contour plots of 4, where
A = L — [, in the x-t plane. We see that there is a
tendency for the wave to steepen, with the formation
of a small depression in the lee of the wave. This is in
qualitative agreement with the results of Grimshaw and
Yi. However, a quantitative comparison is not possible

(4.2)

x

16.0 32.¢

F1G. 2. A typical result for the evolution of a long wave from the initial condition (4.1):
AQhy = —1,v,=56=0,5s=1,8=0.1,8=1.



AUGUST 1991

because of the different choices for the depth profile
and the different treatment there of the shelf-break
condition (see the discussion here in the last paragraph
of section 2 for a summary of the approach used in
Grimshaw and Yi). Instead, the results in Fig. 2 can
be compared with the predictions from the weakly
nonlinear, nondispersive limit (2.22). The simplest
comparison is the linear long-wave speed ¢p (2.23b)
[see also (3.16)]. For the case shown in Fig. 2, the

R. GRIMSHAW AND ZENGXIN YI

1249

observed speed is slightly less than ¢y, presumably due
to dispersive effects, since decreasing 3 in (4.1) was
found to cause the observed speed to approach .
Next, to study the consequences of wave steepening
we show in Fig. 3 the results when ap = 0.1 or 0.2 and
B = 5 in the initial condition (4.1). The remaining
parameters are s = 1, v, = 5, and § = 0. In both cases
the wave initially steepens and breaks forward, in
agreement with the predictions of the weakly nonlinear,

a 6. T T T T T T T
4 — - - - - - o =
L 1 F 4 F 4 F .
2 L 1t 11 1t 1
o. | 1 F ; 1T 1T .
- t=0.00 - t =0.64 - - t=1.28 - L t=1.92
-2. i i 1 1 1 1 1 1
2.9 1.1 1.3
T T T T T T T T
- 4t 4t S .
) 1T [ 11 J
o t=2.56 o t=3.20 o t=3.84 4 o t=4.48 1
1 L | 1 —L 1 ] A

F1G. 3. Typical results for the initial condition (4.1) with v, > 0 and ay > 0: AQh; = —1, v,
=506=0,5s=1,8=5and(a)a = 0.1, (b) ay = 0.2. In these and all subsequent plots the x
and y axes are the horizontal and vertical axes, respectively.
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nondispersive equation (2.23). However, as time pro-
gresses the breaking wave evolves into a thin filament
while a depression forms and deepens behind the fil-
ament. Also noteworthy is the gradual rise of the in-
terface in the region ahead of the filament. Increasing
the initial amplitude from ay = 0.1 to ao = 0.2 did not
cause any qualitative changes. We also found that
varying s in the range 0.5 to 2, or putting 6 = 0.2, did
not change the qualitative picture or introduce signif-
icant quantitative changes. Increasing the slope s be-
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yond 2 did cause some changes which are reported
later (see Fig. 7).

In Fig. 4, we set @p = 0.1 or 0.2, 8 = 5 in the initial
condition (4.1), again put s = 1, 6 = 0, but now put
v: = —5. This corresponds to changing the sign of f.
The evolution is now quite different. The initial ten-
dency is for the wave to propagate in the negative y-
direction, even though the linear long-wave speed is
positive. This indicates that even with g, = 0.1, the
nonlinear effects are significant. At the same time a

1 T T L T T T
L 1 L 1 | 1 L 4
: 1t 1t it :
2. - > 4 F 4 4 L 4
L. . - N | _{ - -
I t=0.007 [ t=0.647 [ t=1.287 [ t=1.92
_3_ 1 1 1 1 i 1 1 3
2.8 1.8 1.2
T T T T T T L T
L 4 L 4 L 1k J
I t=2.567 [ t=3.207 | t=3.84 i t=4.48
1 1 1 1. 1 j I— 1 1
b 3 T
2. |
-3. L
2.8
-
i

FIG. 4. As in Fig. 3 but with v, <O and @y > 0: AQh; = —1, v, = ~5,6 =0,
s=1,8=5and(a)a, = 0.1, (b) ay = 0.2.
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depression develops, and propagates in the positive y-
direction. Presumably this skewing of the wave will
eventually result in the formation of two filaments.
In Fig. 5a we consider the consequences of putting
v: = 0.2, with the remaining parameters unchanged
from Fig. 4. This corresponds to increasing the strength
of the front vis-a-vis the background. There is now
little tendency for the wave to propagate, although some
movement in the negative y-direction can be detected.
Instead, a depression develops in the lee (now on the
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positive side given the slight movement in the negative
direction ), and appears to deepen without much sign
of propagation. The contrast with the results in Fig. 3
is obvious, and the changeover between the two types
of behavior as «, is decreased through positive values
occurs at about vy, = 1.7 [see Fig. 5(b)].

In Fig. 6, we show two cases with gy = —0.2, v, = 5
or —5, and the remaining parameters unchanged from
Fig. 3. There is a clear resemblance between the case
ao < 0 and v, > 0(<0) with the corresponding cases

a 3. T T T T T T T T
6. | > 4 + g 4 F 4 F -
i t=0.007 [ t=0.647 [ t=1287 T t=1.92

_3. 1 1 — — 1 1 L 1

8.8 1.0 1.2

T T T T T T T
L 4 L 4 L J L 4
i t=2.567 [ t=3.207 [ t=3.84 " t=4.48"

1 I . A 1 I 1 1

t=0.00 | t=0.64
-3 . A . ) \
2.8 1.9 1.2
T T T T T
L 4 L 4 kb
I t=2.5671 [ t=3.207 [
1 K Y N 1

FIG. 5. As in Fig. 3 but as v, is varied. Here AQh; = —1,6 =0,s =1,
2 =0.1,8=5and(a)y; =0.2,(b)y, = L.7.
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ap > 0 and y; < 0(>0) [see Figs. 4b and 3b respec-
tively], which extends even to approximate quantita-
tive agreement when gy = —0.1. This antisymmetry is
to be expected in the absence of a topographic slope
(i.e., s = 0) and for the absence of a coast at x = 0.
However, even for an amplitude qo = —0.2 as small as
that shown in Fig. 6, there are some observable effects
" of the slope and coast. For ayy, > 0, comparing Figs.
3b and 6b we see that, with the initial displacement
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towards the coast and into the shallower water, there
is an enhanced tendency for filament formation and
the wave speed increases. However, for ayy, < 0, this
tendency is reversed. A simple explanation of these
tendencies can be found by examining the expression
(3.15) for vo(x). Recalling that vo(/) = 0, we see from
(3.15) that the basic current shear vg, is — AQhyy, as
x = I+ and —AQh,(y, — 1) as x = [—. Since AQh,
< 0 was chosen, this implies that for v, > O there is a

t=1.28

t=3.
— A

FIG. 6. Typical results for the initial condition (4.1) with q, < 0: AQh, = —1,

6=0,s=1,a=-02,=5and(a) vy, =

5, (b) y1=~5.
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6. T T T T

1.1 1.3
t=4.48

FIG. 7. Typical results for the initial condition (4.1) as the topo-
graphic slope s is varied: AQhy = —1,v,=5,6=0,8,=0.1,8=5
and (a) s = 4, (b) s = 7. Only the results for ¢ = 4.48 are shown.

relatively stronger magnitude for the positive current
in x > [ than there is for the negative current in x </
(see Fig. 1). The situation is reversed for v; < 0.

In Fig. 7, we show the effect of increasing the to-
pographic slope to s = 4 or 7, for the same initial con-
dition shown in Fig. 3a. Interestingly, these steeper to-
pographic slopes result in enhanced filamentation and
a tendency for the tip of the filament to develop into
a detached eddy.

All results shown so far are for the initial condition
(4.1) with |ag| = 0.1 or 0.2, which represents a small-
amplitude wave. With the exception of the last result
shown in Fig. 7, no tendency was found for the wave
to evolve into a detached eddy. This is in agreement
with the results of Pratt and Stern (1986), who con-

20. T
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clude that “fairly extreme initial conditions” are needed
to get eddy detachment. Indeed, we find that retaining
the smooth shape of (4.1) but increasing | a,| does not
lead to any significant tendency for eddy detachment,
although it is of course conceivable that the thin fila-
ments formed, for example, in Fig. 3b, might eventually
wrap around to form an eddy. However, our present
capacity for numerical resolution prevents us from
pursuing this possibility. Instead, we follow the pro-
cedure of Pratt and Stern (1986 ) and replace the initial
condition (4.1) with

L(y,0) = 1 +3a {1 7 tanh[s0(y T W)]},

for y=0, (4.3)

which for large values of s, describes an approximation
to a square wave with amplitude a,. Then sufficiently
narrow waves of large amplitude will evolve to a point
where eddy detachment is about to occur. Of course,
our contour dynamics algorithm does not allow for
contour surgery, so we are unable to see the eddy ac-
tually form. A typical result is shown in Fig. 8 for a,
= 3.6, 5o = 10 and w = 1.5. This large-amplitude wave
requires much greater resolution, so we commence with
nearly 400 nodal points and allow this to increase to
nearly 600 nodal points. Now an eddy begins to form
at the tip of the wave, although the evolving wave also
contains other features such as filament formation. The
overall picture is similar to the results of Pratt and
Stern (1986) although there are some significant dif-
ferences, notably the thin filament propagating towards
the coast in the negative y-direction at the front of the

T T T 1 L T T L T T T
15. 1 4 F 4 F .
10. 4 F - F 4 F .
5. |- - - - - - -
6. % 1t 4t 1k -
t=0.00 t=0.08 t=0.16 t=0.24

-5. 1 | L | $ 1 L ! 1 | 1

2.0 5.0 19.0

T —T T T T T T T T T T T
- 4 Lk 4 L 4 b N
1T 1T 1T N
t=0.32 t=0.40 t=048 t=0.56

1 L 1 | 1 | 1 1 ! !

FIG. 8. A typical result for the evolution of a large-amplitude square wave. The initial condition

is (4.3) with @; = 3.6, 5o = 10, and w = 1.5 Here AQh, =

-1,6=0,s=1,and vy, = 5.
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wave. The result shown in Fig. 8 is robust in that vary-
ing the number of nodal points, or modifying the node
insertion/deletion scheme, did not change the result
in any significant way. It is appropriate to note here
that the main difference between the present model
and that used by Pratt and Stern (1986) is that the
latter in essence replaces (2.13a) for the streamfunction
anomaly with a Helmholtz equation on the left-hand
side and a piecewise constant function on the right-
hand side [i.e., there are no inhomogeneous terms such
as those due to A(x) in (2.13a)]. Thus, their model
contains a finite deformation radius, and this seems to
provide a length scale for eddies to form. However,
although our equation (2.13a) is closer in form to
Poisson’s equation, an examination of our Green’s
function (3.7) shows that there is an effective defor-
mation radius of s!, the inverse of the topographic
slope. Hence it is not surprising that our large-ampli-
tude studies are generally similar to Pratt and Stern
(1986).

5. Discussion

The main aim of this study has been to determine
the evolution of small-amplitude waves on a potential
vorticity front. These results are summarized in Figs.
3 to 7. In each case the wave at first deforms according
to the predictions of the weakly nonlinear, nondisper-
sive equation (2.23a). It is significant here that our
choice of values for the parameters s, v, and § generally
implies that the nonlinear steepening term in (2.23a)
dominates the linear term which describes propagation
at speed ¢o. In our previous theory (Grimshaw and Y1
1990) weak dispersion was invoked to balance the
steepening process. However, in that theory the dis-
persive terms were associated with shelf-break pro-
cesses, which are absent in the present study because
we have used the approximation /o > h,. Hence, we
find here that wave steepening generally leads to fila-
ment formation, although there is sufficient dispersion
associated with the topographic slope alone to produce
a significant depression behind the wave (see, for in-
stance, Figs. 3a,b). In some instances this depression
deepens and begins to form a filament, becoming itself
a major feature (see, for instance, Figs. 4a,b and 5a).
Further, it is useful to note that although the weakly
nonlinear, nondispersive equation (2.23a) provides the
best guide to the initial movement of the wave, simple
advection by the basic flow vg(x) (3.15) also gives a
crude guide to the initial wave evolution. Note that
vo(/) = 0 and the basic current shear v, is —AQhv,
as x = [+ and —AQh (v, — 1) as x = [— (see Fig.
1). With AQh, < 0 this leads to forward (backward)
steepening for ayy, > 0(<0).

Next we turn to the filamentation process itself. First
we note that conservation of the depth-integrated area
of (4.2) leads to a gradual rise (i.e., a displacement in
the same sense as the initial wave) ahead of the main
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wave. The front of this rise propagates in the positive
y-direction at the linear long-wave speed c¢,. When this
front reaches y = yy,, errors are introduced into the
computation since our algorithm requires the point
(Ly+1, yn+1) to be fixed with Ly, = [. However, these
errors, particularly noticeable for instance in Fig. 4b,
remain localized, and do not affect significantly the
filament behavior. That filamentation occurs here as
a consequence of wave evolution is not surprising, as
contour dynamics simulations in a variety of contexts
have demonstrated that filamentation is an ubiquitous
feature of the unsteady evolution of vorticity fronts
(see, for instance, the review by Dritschel 1989). In
the present context the process leading to filamentation
is generally wave steepening by nonlinear effects where
clearly, for the present parameter values, wave disper-
sion is too weak to prevent filaments forming. In the
terminology of Pullin et al. (1990), filamentation oc-
curs by a kinematic mechanism.

To explore this latter concept more fully, we first
note that the basic flow vy(x) (3.15) is linearly stable.
Indeed the basic flow vo(x) given by (2.10) is linearly
stable for all depth profiles #(x). Returning to (3.15)
it can be shown that infinitesimally small-amplitude
waves of wavenumber k have a phase speed ¢ given by

AQh,
2K+ §sHTP

1 1/2
X[l—exp[(k2+zs2) 21“, (5.1)

where the limit 4y = oo (i.e., 8 = 0) has been taken
for simplicity. Note that the limit k — 0 gives the linear
long-wave speed ¢q (3.16), while otherwise ¢ decreases
as either | k| or s increases. Pullin et al. (1990) adapt
the suggestion by Pullin (1981) that filamentation will
occur when the initial wave contains a dominant Fou-
rier component with wavenumber k which contains a
critical layer. They propose that filamentation will oc-
cur when a hyperbolic stagnation point (in a suitable
frame of reference) almost coincides with an interface
extremum. Here, in a frame of reference moving with
speed ¢, a critical layer provides a suitable stagnation
point. Strictly, to calculate the position of the critical
layer, we should take account of the flow field due to
the initial wave [i.e., that given (4.1)], but since our
attention is restricted here to small-amplitude waves,
we estimate the critical layer position x, by putting
vo(x.) = c. For instance, with the parameter setting of
Fig. 3 (ie,, /= 1,5 = 1, AQh, = —1), and putting &k
= ] as a representative wavenumber for the initial con-
dition (4.1) with 8 = 5, we find that x, — [/ =~ 0.08 for
v, = 5, and —0.067 for v, = —5. This implies that
waves of amplitudes gy > 0.08 should filament for v,
= 5, but not when v; = —5. Our results for vy, = 5
support this conjecture (see Figs. 3a,b), and while re-
sults for v, = —5 (see Figs. 4a,b) suggest that the waves
are evolving into filaments, the evolution is much less

c =
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pronounced than for «v; = 5, and in this sense supports
the proposed kinematic mechanism. Further, with &
= (), the critical layer position moves to x. — / = 0.13
and implies that a long wave of amplitude g, = 0.1
will not filament, in agreement with our results shown
in Fig. 2. Two further tests of the mechanism can be
made. First, with/=1,s =1, AQh; = —1,and k= 1
the critical layer is given by x, — [ = 0.235 for y, = 1.7,
and x, — [ = —0.5 for v, = 0.2. This implies that a
wave of amplitude a, = 0.1 will filament in the region
x> [for vy, = 1.7 but not when v, = 0.2, in agreement
with the results in Fig. 5a,b. Also, we note that with
v, = 0.2, it is the negative depression which starts to
show signs of filamentation, in agreement with the fact
that the critical layer x. < /. Next, as the slope s in-
creases, the phase speed ¢ (5.1) decreases, thus shifting
the critical layer closer to x = /. This implies that in-
creasing the slope s will enhance filamentation in
agreement with our results shown in Fig. 7. In sum-
mary, filamentation is essentially controlled by local
nonlinear vorticity dynamics, and the main role of the
topographic and potential vorticity parameters (i.e., §,
v1) is to control the position of the critical level, and
hence determine the onset of filamentation. Inciden-
tally, a similar interpretation is possible for the results
of Stern and Pratt (1985), who found that small am-
plitude waves on an evolving undular bore did not fil-
ament, in contrast to larger amplitude waves. A quan-
titative investigation of their results is not possible due
to difficulties in estimating an appropriate wavenumber
k, but their results are consistent with the observation
that as the strength of the bore is increased, thus pro-
ducing larger waves, the critical level for a given wave-
number k& moves relatively closer to the interface de-
fining the undular bore.

We turn next to the interpretation of the present
theoretical results in the context of observations of
meanders and other pronounced features of coastal
currents. Of course, the present model has been adopted
for analytical convenience and, in particular, neglects
the effects of stratification and friction. Further, we
have used a very special basic potential vorticity profile
in order to allow the development of a contour dy-
namics algorithm. However, it is apparent from our
results, and from the many other contour dynamic
simulations in the literature, that filamentation is an
ubiquitous and robust process. We conclude that cur-
rent meanders and squirts can be due entirely to the
kind of nonlinear vorticity dynamics described here
and that it is not always necessary to invoke an un-
derlying linear instability (e.g., baroclinic instability)
of the basic flow in order to explain the growth of
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prominent features on coastal currents. Of course, the
presence of a linear instability mechanism could well
act in concert with filamentation dynamics by pro-
moting initial wave growth to the point where fila-
mentation then occurs. Indeed, Send (1989) has con-
sidered wave evolution over a topographic slope for an
unstable basic flow, and found that, for small-ampli-
tude initial disturbances, linear instability theory pro-
vides the selection mechanism for the alongshore scale
and the initial wave growth, which is then following
by filamentation. However, he did not discuss the ac-
tual filamentation process itself.

Finally we note that for all our small-amplitude sim-
ulations there was no tendency for the wave to evolve
into a detached eddy. Indeed, in agreement with the
results of Pratt and Stern (1986), we find that only
large-amplitude waves of narrow aspect can readily
evolve to a state where it seems that an eddy is about
to form. Even then, however, it seems that eddy de-
tachment is caused by local filamentation of a portion
of the interface (see Fig. 8). But to conclude we should
comment that if the underlying basic flow were linearly
unstable then it is conceivable that a small-amplitude
wave could grow to a point where subsequent filamen-
tation would lead to eddy detachment (see Send 1989).
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