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In the present paper, we investigate theoretically and experimentally the number of non-zero
matrix entries generated by the wavelet BEM with the Beylkin-type compression algorithm. The
Beylkin-type algorithm, which is based on a prescribed level-independent threshold, retains the
asymptotic convergence rate of BE solutions, like widely-used level-dependent compression schemes.
The coefficient matrix compressed by the Beylkin-type scheme has O(N1+γ) (0 < γ < 1, N : degree
of freedom (DOF)) non-zero entries; level-dependent schemes enable us to reduce the matrix entries
up to O(N(logN)α) (α ≥ 1). However, for matrix compression using the Beylkin-type scheme the
compression rate is greater than or comparable to that of the Schneider’s level-dependent scheme,
in the moderate DOF range.

Key Words : wavelet BEM, matrix compression scheme, large-scale problems

1. INTRODUCTION

In recent years, one of the major interests of
boundary element (BE) researchers is the devel-
opment of numerical techniques which enhance
the performance of the boundary element method
(BEM) in large-scale problems. The use of
wavelets (wavelet BEM) is accepted as a fast
solution comparable to the fast multipole BEM
(FMBEM). In the wavelet BEM, wavelets are em-
ployed as the basis functions to derive a system
of algebraic equations from the boundary inte-
gral equation. Many coefficients of the algebraic
equations, which are defined as the double inte-
grals including the fundamental solutions and the
basis on boundary, have small values owing to
the vanishing moment property of the wavelets.
Hence, we will be able to truncate these small
coefficients, and consequently make sparse matri-
ces of boundary element equations. The sparse
coefficient matrix enables us to reduce the com-
putational cost of BE analysis.

As mentioned above, the key technique for the
reduction of computational cost with the wavelet
BEM is the truncation of small matrix entries.
The choice of the truncation schemes thus in-

fluences the performance of matrix compression
in wavelet-based BE analysis. The ideal situa-
tion in the analysis is to truncate as many values
as possible. However, the truncation should not
deteriorate the BE solution. Widely-used trun-
cation schemes, which ensure asymptotic con-
vergence rate of the BE solution, are classified
to two types of schemes: level-dependent and
Beylkin-type schemes. The main difference of
these schemes is found in the way of determin-
ing the threshold of truncation.

Level-dependent truncation schemes select the
truncated entries by comparing the given thresh-
old with the distance between the supports of
two basis functions. The threshold for trunca-
tion varies with the resolution level of the ba-
sis; a smaller value of threshold is used to trun-
cate the matrix entries with a higher resolution
level. This type of truncation schemes has been
firstly proposed by Dahmen et al.1) Ref.1) shows
the methodology for truncation in the wavelet-
based BE analysis of strongly elliptic boundary
value problems. Dahmen’s scheme is also effective
to the boundary element equation discretized by
either the Galerkin- or the collocation approach
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using arbitrary-order wavelets. The detailed algo-
rithms of the level-dependent schemes have been
described by Schneider2).

Other level-dependent schemes including
discussions on their performances have been
presented by Schwab’s group3),4),5), Amaratunga
and Castrillon-Candas6), and Rathsfeld7).
Schwab’s schemes are similar to Schneider’s one;
they have constructed the algorithms by limiting
the order of vanishing moments of wavelets to
M + 1 (M : order of interpolation). This is
because the choice of an extremely large order
of the vanishing moments tends to increase the
computational work. In Ref.3), von Petersdorff
and Schwab have discussed the matrix com-
pression in 2-D analysis in which the integral
equation of the first kind is discretized using the
semi-orthogonal wavelet with the second-order
vanishing moments. A practical algorithm for
the equation of the second kind in 3-D has been
described in Ref.5); the basis of the wavelet
series has been defined using multiwavelets4)

with triangular support. Amaratunga and
Castrillon-Candas6) have introduced a trun-
cation scheme for the wavelet BEM based on
the Petrov-Galerkin approach. Rathsfeld7) has
proposed a matrix compression algorithm for the
collocation-wavelet BEM.

The matrix compression based on the level-
dependent truncation schemes except for Raths-
feld’s one ensures the number of the non-zero en-
tries of the coefficient matrix to be O(N(logN)α)
(α ≥ 1). These schemes, however, have several re-
strictions in the application to BE analysis. The
restrictions are concerned with the kind of inte-
gral equation and discretization conditions. We
cannot consequently apply the level-dependent
schemes to any types of elliptic boundary value
problems.

On the other hand, the Beylkin-type schemes
are based on the truncation with a threshold in-
dependent of the resolution level of the basis. The
threshold is defined as the lower bound of the
stored matrix entries in magnitude. This type of
truncation scheme has been proposed by Beylkin
et al. 9) They however, did not consider retaining
the quality of the BE solution in the development
of the truncation scheme. Numerical results, pre-
sented in Refs.8) and 10), have been obtained by
compression of the matrix under a few threshold-
ing values. In the earlier stage of the development
of wavelet BEM, these schemes were used for ma-
trix compression and its threshold had to be de-
termined empirically, as shown in Ref.11). This is
because we did not have an appropriate way for
determining the threshold. We can now overcome

this difficulty by using the semi-analytical tech-
nique proposed by the authors12). The applicabil-
ity of our determination strategy is independent
of e.g., the kind of Fredholm integral equations
and the kind of wavelets. The determined thresh-
old enables us to compress the coefficient matrix
without noticeable accuracy deterioration, even
if the Beylkin-type algorithms are adopted as the
truncation scheme.

The main advantages of the Beylkin-type
schemes are the simple structure of the algo-
rithms and few restrictions on implementation.
The matrix compression based on these schemes
however, leads to only O(N1+γ) (0 < γ < 1) non-
zero entries. On the basis of the theoretical esti-
mation of the number of the non-zero entries, sev-
eral researchers have concluded that the use of the
Beylkin-type scheme is of disadvantage in compu-
tational cost in contrast to the level dependent
schemes. This estimation shows the DOF de-
pendency of the storage requirement of the com-
pressed matrix. We, however, cannot estimate
the actual number of the entries through theoret-
ical approaches. Previous works on wavelet-based
BE analysis have been devoted to the verification
of theoretical estimation or discussion of the ef-
fectiveness of wavelet BEM to reduce the compu-
tational cost of conventional BEM. The difference
between the performance of the main two schemes
in actual BE analysis has thus never been dis-
cussed. Moreover, the estimation on the number
of non-zero entries for Beylkin-type truncation is
limited to 2-D problems12). In our previous pa-
per, we have never discussed the efficiency of the
Beylkin-type compression in 3-D problems.

In the present work, we discuss matrix com-
pression in wavelet-based BE analysis for 2-
D and 3-D Laplace problems. The trunca-
tion of small matrix entries is based on ei-
ther Schneider’s level-dependent or the Beylkin-
type schemes. The truncation threshold for the
Beylkin-type scheme is determined with our semi-
analytical technique12). The theoretical estimate
claims that the performance of this truncation
may be inferior to that of the level-dependent
scheme. We thus investigate the actual com-
pression rate of the coefficient matrix for the
Beylkin-type truncation, and discuss the differ-
ences between the performance of the both com-
pression schemes. Furthermore, the asymptotic
order of the storage requirement is estimated for
the Beylkin-type compression in 3-D problems.
The theoretical estimation is verified through sev-
eral numerical results.
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2. BOUNDARY ELEMENT FOR-

MULATION USING WAVELETS

In the present paper, we discuss 2-D and 3-D
Laplace problems. The boundary integral equa-
tion for Laplace problem is formulated through a
direct approach as follows:

c(x)u(x) +
∫

Γ
q∗(x,y)u(y)dΓy

=
∫

Γ
u∗(x,y)q(y)dΓy + f(x),

(1)

where the function f(x) is defined by either 0 for
internal domain or U∞(x) for external problems.
The function U∞ is the potential at the infinity.
Γ denotes the boundary, and the points x,y are
on Γ. u is the potential on Γ, and the flux q
is defined as q = ∂u/∂n, where n stands for the
outward normal direction on Γ. c is the free term.

To derive a system of algebraic equations from
Eq.(1), we now approximate the true solution u
and q with functions ũ and q̃. The approximation
ũ and q̃ are defined by the following wavelet series:

ũ :=
ns∑
l=1

û0,lφ0,l +
m∑

k=0

nk∑
l=1

ũk,lψk,l,

q̃ :=
ns∑
l=1

q̂0,lφ0,l +
m∑

k=0

nk∑
l=1

q̃k,lψk,l.

(2)

In Eq.(2), φ0,l and ψk,l are the scaling function
and the wavelet function with level k, respec-
tively. û0,l, ũk,l, q̂0,l and q̃k,l are the expansion
coefficients of the wavelet series. m is the finest
level. ns is the number of scaling functions φ0,l,
and nk corresponds to the number of wavelets ψk,l

with level k.
Substituting Eq.(2) into Eq.(1), we obtain the

following linear algebraic equation through the
Galerkin formulation:

Hu = Gq + f . (3)

In Eq.(3), u, q ∈ R
N , where R is the set of

the real numbers and N is the degree of free-
dom (DOF), are vectors whose components are
the expansion coefficients in Eq.(2). The matri-
ces G, H ∈ R

N×N have the entries gij and hij

expressed as

gij :=
∫

Γ
wi

∫
Γ
u∗wjdΓ2,

hij :=
1
2

∫
Γ
wiwjdΓ +

∫
Γ
wi

∫
Γ
q∗wjdΓ2,

(4)

where i, j = 1, . . . , N . Both functions wi and wj

are defined as either φ0,l or ψk,l. Moreover, the
vector f ∈ R

N has the components fi as

fi =
∫

Γ
wi(x)f(x) dΓ. (5)

We separate the known and unknown compo-
nents of u and q, and then rearrange Eq.(3). The
following algebraic equation is consequently ob-
tained:

AX = b, (6)

where b is the known vector. A is the coefficient
matrix corresponding to the unknown vector X.

3. TRUNCATION SCHEMES FOR

MATRIX COMPRESSION

The main objective of the present work is to
investigate the performance of the Beylkin-type
algorithms in actual BE analysis. The following
discussion is based on comparison of the com-
pression rate obtained by either Beylkin-type or
level-dependent truncation. In the present work,
the truncation is restricted to the matrix entries
where the two basis functions wi and wj in Eq.(4)
are both given by the wavelets ψ. Schneider’s
algorithm2) is used as a level-dependent scheme.

(1) Schneider’s level-dependent scheme
Schneider’s truncation scheme has the distance-

based truncation criterion. The truncated en-
tries, which are chosen before calculation of
Eq.(4), are associated with the basis functions
satisfying the following geometrical condition:

r̄ > δki,kj
, (7)

where r̄ is the distance between the supports of
the two basis functions. δki,kj

is the threshold for
truncation, and is defined by

δki,kj
:= a · max

{
2−min(ki,kj),

(m+ 1)
1

2n+r 2(m+1)−(ki+kj)
}
,

(8)

for p+ 1 = n+ r, and

δki,kj
:= a · max

{
2−min(ki,kj),

2
(m+1)(2p′−r)−(ki+kj)(n+p′)

2n+r

}
,

(9)

for p+1 < n+r. In Eqs.(8) and (9), p is the degree
of the polynomials which form the wavelets. n is
the order of the vanishing moments, which are
defined by∫ ∞

−∞
ψ(ξ)ξλdξ = 0, (λ = 0, 1, . . . , n− 1), (10)

for univariable wavelets, and∫ ∞

−∞

∫ ∞

−∞
ψ(ξ1, ξ2)ξλ1

1 ξλ2
2 dξ1dξ2 = 0,

(λ1, λ2 ≥ 0, λ1 + λ2 = 0, 1, . . . , n− 1),
(11)
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for surface wavelets for 3-D BE analysis. More-
over, r is the order of a boundary integral opera-
tor: r = −1 for the matrix G, while r = 0 for the
matrix H in Eq.(3). The parameter p′ satisfies
p + 1 < p′ < n + r, and a > 1. ki and kj are
the resolution levels of the basis wi and wj , re-
spectively. The truncation based on Schneider’s
algorithm enables us to compress the coefficient
matrix at O(N logN)α (α ≥ 1) storage require-
ment, as shown in Ref.2) or will be shown in Sec-
tion 4. The quasi-linear complexity of Schneider’s
matrix compression is enhanced to O(N) by the
second compression2). This compression is based
on the additional truncation of the small entries
with larger difference of the levels |ki − kj |. We
however, skip the second compression and thus
employ the truncation algorithm only with crite-
rion (7) and threshold (8) and (9). This is because
the goal of the present work is to clarify the basic
property of the two kinds of matrix compression
schemes.

(2) Beylkin-type truncation scheme
In the present work, the compression algorithm

proposed in Ref.12) is used as the Beylkin-type
truncation scheme. This algorithm enables us
to truncate small matrix entries without deteri-
oration of the quality of BE solution. The first
step of this compression process is to calculate
the approximations ḡij and h̄ij corresponding to
the coefficients gij and hij . The approximations
can be calculated by asymptotic expansion at
the barycenter of the supports12). Truncation is
hence carried out before calculation of Eq.(4).

In this algorithm, the truncated entries in the
coefficient matrix are selected in accordance with
the following criterion:

ḡij < τ ·Gmax, h̄ij < τ ·Hmax. (12)

In assembly of the coefficient matrix, the entries
which satisfy Eq.(12) are truncated, if the dis-
tance r̄ satisfies r̄ ≥ ν(2−ki + 2−kj ) (ν > 0).
The entries where the distance between the sup-
ports of wi and wj are smaller than the distance
ν(2−ki + 2−kj ) are stored without truncation.
This exception is introduced to avoid the trunca-
tion of matrix entries with overlapping supports.
In Eq.(12), Gmax and Hmax are the maxima of
the coefficients gij and hij , respectively. τ is the
threshold for truncation, and is predetermined by
the semi-analytical technique proposed in Ref.12).
The threshold is then set to a level where a larger
number of coefficients are truncated without ac-
curacy loss. Such a threshold can be determined
by allowing the truncation-induced error upto the
level of discretization error of BE solution. The

semi-analytical technique requires error estima-
tion of BE solution; the discretization error is in-
directly estimated by the residual of the bound-
ary integral equation. The threshold τ can be
consequently approximated by

τ ≈ 1
2 · ‖H‖ · ‖c‖‖u‖ . (13)

In Eq.(13), H and u are the matrix and vector
in Eq.(3). The components ci (i = 1, 2, . . . , N) of
the vector c are defined as

ci := −1
2

∫
Γ
wi(ˆ̂u− ũ)dΓ

−
∫

Γ
wi

∫
Γ
q∗(ˆ̂u− ũ)dΓ2,

(14)

where ˆ̂u is the wavelet series of the true solution
u. In the determination process, ˆ̂u is given by the
wavelet series of the higher-order interpolation of
BE solution ũ. This is because the true solution
u is unknown. Moreover, the norms ‖H‖ and
‖c‖/‖u‖ are for the BE solution with the same
DOFN as that of main analysis. This calculation
is only for setting the threshold τ but will require
a huge computational cost. The norms in Eq.(13)
are approximately predicted as follows. The norm
‖c‖/‖u‖ is estimated by

‖c‖
‖u‖ ≈ α′ ·N−β, (15)

where the parameters α′ and β are independent
of DOF N . In the present technique these param-
eters are set on the basis of auxiliary BE analysis
with sufficiently small DOF. The norm ‖H‖ is ap-
proximated by the norm of the matrix H̃ obtained
through an auxiliary analysis.

The threshold τ for the Beylkin-type compres-
sion is hence determined as

τ =
α′N−β

2 · ‖H̃‖ . (16)

The truncation using the threshold (16) retains
the accuracy of BE solution, as reported in
Ref.12).

The original algorithm proposed in Ref.12) in-
deed includes also the a posteriori truncation
which is carried out after the calculation of matrix
coefficients. We however, consider the a priori
truncation which is implemented before the cal-
culation for matrix assembly. This is because the
estimation of the number of stored matrix entries
to be presented in the following will correspond
to the a priori truncation.
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4. ASYMPTOTIC ESTIMATION OF

THE NUMBER OF NON-ZERO

MATRIX ENTRIES

In the present section, we show a mathemati-
cal approach for estimating the number of stored
entries of the matrix compressed with the above
truncation schemes. The coefficient matrix in
wavelet BE analysis is defined as an assembly
of the blocks specified with the resolution level
(ki, kj). The total size of storage can be thus
estimated by summing the number of non-zero
entries in every block. The framework of this es-
timation has been presented by von Petersdorff
and Schwab3) and Lage and Schwab5); they have
discussed the complexity of BE analysis based on
Schwab’s level-dependent matrix compression.

We first denote by B either the matrices G or H
in Eq.(3), and define Bki,kj

as the block with the
level (ki, kj). The storage requirement� (Bki,kj

)
of the block Bki,kj

is bounded due to truncation
of small entries as

� (Bki,kj
) ≤ C(2kis + 2kjs + γ2(ki+kj)sδs), (17)

where s = 1 for 2-D, and s = 2 for 3-D. The
constant γ satisfies γ > 0. δ is the supremum of
the distance between the supports of the wavelets
which are used to generate the stored matrix en-
tries.

(1) Schneider’s level-dependent scheme
Schneider’s truncation scheme has the distance-

based threshold as shown in the previous section.
The supremum δ in Eq.(17) is determined to be
δki,kj

given by either Eq.(8) or (9) depending on
p, n and r.
a) p+ 1 = n+ r

The supremum δ in Eq.(17) is given by Eq.(8)
for p + 1 = n + r, and is set to δ = (m +
1)

1
2n+r 2(m+1)−(ki+kj) at every level (ki, kj) for the

finest level m ≥ 1. In wavelet BEM, remarkable
reduction of computational cost is achieved by
truncating the wavelet series having sufficiently
large finest level m for approximation. The fol-
lowing estimation is thus developed under the as-
sumption of m ≥ 1. The number of entries of the
matrix B, � (B), is bounded as follows:

� (B) ≤ C ′
m∑

ki=0

m∑
kj=0

� (Bki,kj
)

≤ C ′′
1 (m+ 1)2(m+1)s

+ C ′′
2 2(m+1)s(m+ 1)2+

s
2n+r

≤ C ′
1N logN + C ′

2N(logN)2+
s

2n+r ,

(18)

where 2(m+1)s ≈ N and (m + 1) ≈ logN .
The storage size � (B) is hence estimated to
be O(N(logN)2+

s
2n+r ). The number of entries

in the matrix G or H can be easily estimated
from Eq.(18) as one sets the order r of an inte-
gral operator to r = −1 for G-matrix or r = 0 for
H-matrix.
b) p+ 1 < n+ r

For p + 1 < n + r, the supremum δ in Eq.(17)
is given by Eq.(9). The threshold δki,kj

of Eq.(9)
is set to either the first- or second term of the
right-hand side in accordance with the level (ki,
kj).

We now consider the level at which the first
term of Eq.(9) is chosen as the threshold. For
ki ≥ kj , the blocks with the threshold δ =
2−min(ki,kj) have the level (ki, kj) satisfying

kj < σki − ρ,

σ :=
n+ p′

n+ r − p′
> 0,

ρ :=
(2p′ − r)(m+ 1)

n+ r − p′
.

(19)

The number of non-zero entries in the correspond-
ing block Bki,kj

is then estimated as� (Bki,kj
) ≤

C1(2kis + 2kjs). On the other hand, the block
where truncation threshold is set to the second
term of Eq.(9) has the number of entries:

� (Bki,kj
) ≤ C2(2kis + 2kjs

+ 2κs(m+1) · 2κ′s(ki+kj)),
(20)

where κ := (2p′ − r)/(2n + r) and κ′ := (n+ r −
p′)/(2n + r).

Eq.(19) shows that the blocks with the level
ki < ρ/σ are always compressed using the thresh-
old defined by the second term of Eq.(9). Since
the threshold δki,kj

for Schneider’s truncation
scheme satisfies δki,kj

= δkj ,ki
, the number of non-

zero entries of the matrix B is estimated by

� (B) ≤ 2C1

m∑
ki=ρ/σ

σki−ρ−1∑
kj=0

(2kis + 2kjs)

+ 2C2

ρ/σ−1∑
ki=0

ki∑
kj=0

(
2kis + 2kjs

+ 2κs(m+1) · 2κ′s(ki+kj)
)

+ 2C2

m∑
ki=ρ/σ

ki∑
kj=σki−ρ

(
2kis + 2kjs

+ 2κs(m+1) · 2κ′s(ki+kj)
)

≤ C ′
1N logN + C ′

2N

+ C ′
3N

1− 2(n+r−p′)2
(2n+r)(n+p′) +C ′

4N
1−n+r−p′

n+p′ ,

(21)
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where 2(m+1)s ≈ N and (m + 1) ≈ logN . In
Eq.(21), we have

1 − 2(n + r − p′)2

(2n+ r)(n+ p′)
< 1,

1 − n+ r − p′

n+ p′
< 1.

The number of entries, � (B), is consequently of
O(N logN) for p+ 1 < n+ r, as shown in Ref.2).

(2) Beylkin-type scheme
a) Distance-based threshold

The storage requirement for Beylkin-type ma-
trix compression discussed in the Section 3(2) is
estimated through the same technique as that for
Schneider’s compression. In estimation of stor-
age size of the coefficient matrix, we first have to
describe the threshold as the maximum distance
between the supports of the wavelets correspond-
ing to the stored entries. This is because origi-
nal threshold (12) for the Beylkin-type scheme is
defined as the maximum of the stored entries in
magnitude.

We now consider the matrix entries gij and hij

described in Eq.(4). On the basis of Schneider’s
estimation 2), we have

|gij | ≤ Cg
2−(n+s/2)(ki+kj)

r̄s+2n−1
,

|hij | ≤ Ch
2−(n+s/2)(ki+kj)

r̄s+2n
,

(22)

where r̄ is the distance between two basis sup-
ports. The truncated entries satisfy Eq.(12), and
their maximum is calculated under the distance
δg or δh between the supports of wavelets. The
distance δg and δh are derived from Eqs.(12) and
(22) as follows:

δg = C ′
gτ

− 1
s+2n−1 2−

s+2n
2(s+2n−1)

(ki+kj),

δh = C ′
hτ

− 1
s+2n 2−

1
2
(ki+kj).

(23)

Moreover, the truncated entries are chosen among
the matrix entries with r̄ > r0 := ν(2−ki + 2−kj),
using Eq.(12). The truncation criterion with the
distance-based threshold is hence described as

truncate the entries with r̄ > δ

for r0 < δ, while
truncate the entries with r̄ > r0

for r0 ≥ δ,

(24)

where the threshold δ is set to δg for the matrix
G or δh for the matrix H. δg and δh are defined
in Eq.(23).
b) Resolution level corresponding to the

blocks with r0 < δ
As shown in Eq.(24), the distance-based thresh-

old for Beylkin-type compression is determined to

be either δ or r0 in accordance with their mag-
nitude. The distance δ and r0 both depend on
the level (ki, kj). The threshold in truncation
criterion (24) is hence set at every block of the
coefficient matrix.

We now consider the level (ki, kj) correspond-
ing to the blocks satisfying r0 < δ. In the blocks
with r0 < δ, we have the following relation:

ν(2−ki + 2−kj ) < C ′
gτ

− 1
s+2n−1 2−

(s+2n)(ki+kj)

2(s+2n−1) ,

(matrix G),

ν(2−ki + 2−kj ) < C ′
hτ

− 1
s+2n 2−

ki+kj
2 ,

(matrix H),

(25)

Multiplying both sides of Eq.(25) by 2ki+kj , we
have

2ki + 2kj <
C ′

g

ν
τ−

1
s+2n−1 2(1− 1

s+2n−1
)

ki+kj
2 ,

2ki + 2kj <
C ′

h

ν
τ−

1
s+2n 2

ki+kj
2 ,

(26)

where s + 2n − 1 > 0 and 1 − 1/(s + 2n − 1) <
1. Hence, the resolution level (ki, kj) satisfying
the first inequality of Eq.(26) also satisfies the
following relation:

2ki + 2kj <
C ′

g

ν
τ−

1
s+2n−1 2

ki+kj
2 . (27)

Replacing the first inequality of Eq.(26) with
Eq.(27), we have

2kj − C ′
g

ν
τ−

1
s+2n−1 2

ki+kj
2 + 2ki < 0,

(matrix G),

2kj − C ′
h

ν
τ−

1
s+2n 2

ki+kj
2 + 2ki < 0,

(matrix H).

(28)

We now define x = 2kj/2 and t = 2ki/2 in Eq.(28),
and introduce a new constant µ = C ′

gτ
− 1

s+2n−1 for

matrix G or µ = C ′
hτ

− 1
s+2n for matrix H. Eq.(28)

is thus rewritten as
x2 − µ

ν
xt+ t2 < 0. (29)

The bounds of x which satisfy Eq.(29) are easily
calculated as

x =
t

2

(
µ

ν
±
√
µ2

ν2
− 4

)
. (30)

Assuming µ/ν � 2, we can approximate the sec-
ond term of Eq.(30) as

t

2

√
µ2

ν2
− 4 ≈ t

2

(
µ

ν
− 2ν

µ

)
. (31)

On the basis of Eq.(31), Eq.(30) is described as
follows:

x ≈ µ

ν
t,

ν

µ
t. (32)

224s



We substitute µ/ν = 2ω/2 (ω > 0), x = 2kj/2 and
t = 2ki/2 into the solution of Eq.(29), and con-
sider the logarithmic expression of the resulting
inequalities. The level (ki, kj) satisfying r0 < δ
is consequently specified with

ki − ωg < kj < ki + ωg, (matrix G),
ki − ωh < kj < ki + ωh, (matrix H),

(33)

where the constants ωg and ωh are defined as fol-
lows:

2
ωg
2 =

C ′
g

ν
τ−

1
s+2n−1 , 2

ωh
2 =

C ′
h

ν
τ−

1
s+2n . (34)

c) Number of stored entries of the blocks
Gki,kj

and Hki,kj

The number of the entries in the compressed
blocks of coefficient matrices is estimated using
Eq.(17), as in the estimation for Schneider’s trun-
cation scheme. We now define the blocks of the
matrices G and H with the level (ki, kj) as
Gki,kj

and Hki,kj
. In the Beylkin-type compres-

sion algorithm shown in Eq.(24), the threshold
is determined to δg or δh defined in Eq.(23), or
r0 = ν(2−ki + 2−kj ). The choice of threshold is
based on the level (ki, kj) and the kind of the ma-
trix. The storage size � (Gki,kj

) and � (Hki,kj
)

are hence bounded as follows:

� (Gki,kj
) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cg1

(
2kis + 2kjs

+γ′τ−
s

s+2n−1 2
ki+kj

2
εs

)
,

(r0 < δ)

C ′
g1(2

kis + 2kjs),
(r0 ≥ δ)

(35)

� (Hki,kj
) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ch1

(
2kis + 2kjs

+γ′τ−
s

s+2n 2
ki+kj

2
s

)
,

(r0 < δ)

C ′
h1(2

kis + 2kjs),
(r0 ≥ δ)

(36)

where γ′ > 0 and ε := 2 − (s+ 2n)/(s + 2n− 1).
d) Number of non-zero entries of matrix

G
We now estimate the number of stored entries

in the matrix G. The storage requirement� (G)
of the matrix G can be estimated by summing
the number of entries in every block Gki,kj

. The
number of entries in the block Gki,kj

, � (Gki,kj
),

has been presented in Eq.(35). The threshold δg
defined in Eq.(23) is invariant under the exchange
of ki and kj . The storage requirement � (G) is

hence bounded as follows:

� (G) ≤ C
m∑

ki=0

m∑
kj=0

� (Gki,kj
)

≤ C ′
1

m∑
ki=0

m∑
kj=0

(2kis + 2kjs)

+ C ′
2τ

−s
s+2n−1

m−ωg∑
ki=0

ki+ωg∑
kj=ki

2
λs
2

(ki+kj)

+ C ′
3τ

−s
s+2n−1

m∑
ki=m−ωg+1

m∑
kj=ki

2
λs
2

(ki+kj),

(37)

where λ = (s+ 2n− 2)/(s + 2n − 1).
The summations in the terms of Eq.(37) are

calculated as
m∑

ki=0

m∑
kj=0

(2kis + 2kjs) ≤ C̄1(m+ 1)2(m+1)s, (38)

m−ωg∑
ki=0

ki+ωg∑
kj=ki

2
λs
2

(ki+kj)

≤ C̄ ′′
2 τ

λs
s+2n−1 2λs(m+1),

(39)

m∑
ki=m−ωg−1

m∑
kj=ki

2
λs
2

(ki+kj)

≤ C̄ ′
32

λs(m+1)
(
1 + τ

λs
s+2n−1 + τ

2λs
s+2n−1

)
.

(40)

Substituting Eqs.(38)–(40) into Eq.(37), we have

� (G) ≤ C4N logN +Nλ

(
C5N

sβ
s+2n−1

+ C6N
(1−λ)sβ
s+2n−1 + C7N

(1−2λ)sβ
s+2n−1

)
.

(41)

Note that τ = α′N−β, m + 1 ≈ logN and
2s(m+1) ≈ N .

In Eq.(41), λ = 1 − 1/(s + 2n − 1) satisfies
0 < λ < 1 with s+2n− 1 > 0. The indices of the
terms in Eq.(41) thus have the following relation:

(1 − 2λ)sβ
s+ 2n− 1

<
(1 − λ)sβ
s+ 2n− 1

<
sβ

s+ 2n− 1
. (42)

Rearranging Eq.(41) on the basis of Eq.(42), we
have

� (G) ≤ C ′
4N logN + C ′′

5N
λ+ sβ

s+2n−1

= C ′
4N logN + C ′′

5N
1+ sβ−1

s+2n−1 .
(43)

Therefore, the number of stored entries in the ma-
trix G shows either O(N logN) for β ≤ 1/s or
O(N1+(sβ−1)/(s+2n−1)) for β > 1/s.
e) Number of non-zero entries of matrix

H
The number of stored entries of matrix H,
� (H), can be estimated through the same tech-
nique as that for the matrix G. Summing the
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storage requirement of every block Hki,kj
in ac-

cordance with Eqs.(33) and (36), we have

� (H) ≤ C
m∑

ki=0

m∑
kj=0

� (Hki,kj
)

≤ C ′
1

m∑
ki=0

m∑
kj=0

(2kis + 2kjs)

+ C ′
2τ

−s
s+2n

m−ωh∑
ki=0

ki+ωh∑
kj=ki

2
s(ki+kj)

2

+ C ′
3τ

−s
s+2n

m∑
ki=m−ωh+1

m∑
kj=ki

2
s(ki+kj)

2 .

(44)

The summations in the terms of Eq.(44) are cal-
culated as follows:

m−ωh∑
ki=0

ki+ωh∑
kj=ki

2
ki+kj

2
s ≤ C̄1τ

s
s+2n 2s(m+1), (45)

m∑
ki=m−ωh+1

m∑
kj=ki

2
ki+kj

2
s ≤ C̄22s(m+1)

+ C̄3τ
s

s+2n 2s(m+1) + C̄4τ
2s

s+2n 2s(m+1).

(46)

Substituting Eqs.(38), (45) and (46) into Eq.(44),
we have the following estimation:
� (H) ≤ C4N logN + C5N

+ C6N
1− sβ

s+2n +C7N
1+ sβ

s+2n ,
(47)

where τ = α′N−β, logN ≈ m + 1, N ≈ 2s(m+1)

and sβ/(s+ 2n) > 0. The storage requirement of
the matrix H hence is of O(N1+sβ/(s+2n)).

5. NUMERICAL RESULTS

(1) Problem description
The numerical tests were undertaken to inves-

tigate the performance of the Beylkin-type trun-
cation scheme in actual BE analysis. The test ex-
amples were Laplace problems of 2-D or 3-D. The
matrix compression in the present tests was car-
ried out using either the Beylkin-type or Schnei-
der’s truncation schemes; the detail of these trun-
cation algorithms has been described in Section
3. The results obtained through the Beylkin-
type matrix compression will be shown with the
label “Beylkin” in the present section. Schnei-
der’s truncation algorithm was implemented with
a = 1. In the figures in the present section, the
label “Case 1” indicates the results obtained by
compression with threshold (8). The results for
truncation with threshold (9) are labelled “Case
2”.

The present 2-D problems have two kinds of
boundary conditions. The first example is a Neu-

q̄ = 0

q̄ = 0

q̄
=

0

q̄
=

0

0
x

1

1
y

(a) External Neumann
problem. (U∞ = x)

q̄ = −x

ū = x

u = xy

q̄
=

−y

ū
=
y

0
x

1

1
y

(b) Mixed boundary
value problem for
an internal domain.

Fig.1 Test examples for 2-D analysis.

x

y

z

1

1

1
0

Fig.2 Test example for 3-D analysis. (Neumann
problem for an external domain. Boundary
conditions: q̄ = 0, U∞ = x)

mann problem with an external domain shown in
Fig. 1(a). The Neumann condition is set to q̄ = 0
on the boundary, and the potential at the infinity
shows U∞ = x. The second example of 2-D is a
mixed boundary value problem with an internal
domain. The details of boundary conditions and
true solution are illustrated in Fig. 1(b).

In the present work, we also deal with 3-D prob-
lem. The test example for 3-D is an external Neu-
mann problem. Fig. 2 shows the boundary con-
ditions of the 3-D example. The Neumann con-
dition is set to q̄ = 0 on the boundary, and U∞ is
defined as U∞ = x.

(2) 2-D Neumann problems for external
domain

We first present the results for the 2-D exter-
nal Neumann problem shown in Fig. 1(a). Fig.
3 depicts the number of non-zero entries in the
coefficient matrix A in Eq.(6). For the present
problem all the entries of the matrix A are the co-
efficients hij defined in Eq.(4). The results shown
in Fig. 3 thus correspond to the number of entries
of the matrix H. In calculation of BE solution,
the approximations ũ and q̃ were defined as the
wavelet series with the Haar wavelets 11). Using ũ
and q̃, the true solutions u and q were expanded
in every sub-boundary divided at four corners of
the square domain. The Haar wavelet consists
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of two piecewise constant functions (p = 0), and
has the first-order vanishing moment (n = 1). For
Haar wavelets, the boundary integral equation is
thus discretized under p + 1 = n+ r for the ma-
trix H, and under p+1 > n+r for the matrix G.
This fact implies that Schneider’s level-dependent
truncation scheme is not applicable to compres-
sion of the matrix G. In the present problem,
Schneider’s scheme can be used for matrix com-
pression without any restriction, because the as-
sembly of the matrix G is skipped.

We now compare the storage requirement of
the coefficient matrix compressed by the Beylkin-
type algorithm, with Case 1 in Schneider’s trun-
cation. The results corresponding to Case 1 were
obtained through compression with appropriate
threshold (8). Fig. 3 shows that Beylkin-type
compression leads to smaller number of stored en-
tries than that of Case 1, in the small DOF range.
The difference between both storage requirements
however, decreases as the DOF increases. In the
range of DOF larger than 10,000, the matrix com-
pression of higher rates is achieved by implemen-
tation of Schneider’s algorithm. The superiority
of Schneider’s scheme with appropriate thresh-
old in storage requirement is limited in the range
where the finest level m is set to a sufficiently
large integer.

As described in Section 4, the quasi-linear com-
plexity is ensured to Schneider’s truncation alone.
The difference between the storage requirements
for the above compression schemes is small within
the DOF range chosen in the present test. In
other words, the matrix compression using the
Beylkin-type scheme shows high compression rate
comparable to that for Schneider’s truncation
with appropriate threshold (8). This fact shows
that the Beylkin-type scheme is effective for the
reduction of computational cost in actual BE
analysis for 2-D Neumann problems.

In the present example, we set the threshold
for the Beylkin-type truncation to τ = α′N−1.28

through an auxiliary BE analysis mentioned in
Section 3. The number of stored entries of the
matrix A is hence predicted to be increased at
O(N1.43) from our estimation; the corresponding
numerical results show the behaviour of O(N1.43).
The present estimation described in the previous
section is efficient to predict the asymptotical or-
der of the storage requirement of the compressed
H-matrix for 2-D.

We next compare the storage requirement for
Beylkin-type matrix compression with the nu-
merical results for Schneider’s truncation under
inappropriate threshold (9). Schneider’s com-
pression using threshold (9) has been classified
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Fig.3 The number of stored entries of the coefficient
matrix for the 2-D external problem shown in
Fig. 1(a). The boundary values were approx-
imated using the Haar wavelets (p = 0 and
n = 1). The label “Case 2” indicates the re-
sults obtained through compression with inap-
propriate threshold (9) and p′ = 1.
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Fig.4 The storage requirement and the error of the
corresponding BE solution. The test example
is the 2-D external Neumann problem shown
in Fig. 1(a). The Haar wavelets are used for
the basis of the approximation ũ and q̃. The
parameter p′ in the Case 2 for Schneider’s trun-
cation is set out of the appropriate range.

to the Case 2 in the present paper; the results
for this case were obtained under p′ = 1. For
the Case 2 with p′ = 1, Schneider’s compres-
sion is superior in storage requirement to Beylkin-
type truncation. Implementation of Schneider’s
scheme then does not cause accuracy deteriora-
tion of BE solution, as shown in Fig. 4. We thus
attempted to truncate the small coefficients us-
ing threshold (9) with p′ < 1. Fig. 4 indicates
the number of stored entries and the error of the
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corresponding BE solution. In compression of the
matrix A, we set the parameter p′ to 0, 0.5 and
1.

As shown in Fig. 4, the choice of the param-
eter p′ to a smaller value results in the higher
compression rates of the matrix A. Threshold (9)
for Schneider’s algorithm is not applicable to the
present example and discretization. Schneider’s
scheme then does not always ensure the asymp-
totic convergence rate of BE solution. However,
compression with p′ = 0.5 or p′ = 1 does not
disturb the convergence of the solution in the
present numerical test. For p′ = 0, the error of
BE solution reaches a lower bound at a critical
value of DOF; the solution with a larger DOF
than the critical value has the error comparable
to the lower bound. This fact clearly results from
overtruncation. A similar lower bound to that for
p′ = 0 may be found in matrix compression with
p′ = 0.5 and p′ = 1 in larger DOF range. We thus
have to carefully choose the truncation parameter
p′, if Schneider’s algorithm with an inappropriate
threshold is implemented in actual BE analysis.

(3) 2-D mixed boundary value problems
for internal domain

We now discuss the performance of the Beylkin-
type scheme in 2-D mixed boundary value prob-
lems. For this type of problems, the coeffi-
cient matrix A is assembled through the cal-
culation and truncation of coefficients gij and
hij . These coefficients were calculated under the
discretization of a boundary integral equation
with the piecewise constant non-orthogonal spline
wavelets11). The wavelets used in the present nu-
merical test have the third-order vanishing mo-
ments; p = 0 and n = 3. The inequality
p + 1 < n + r then holds for the coefficients in
both the matrices G and H. Schneider’s trunca-
tion scheme is thus implemented with threshold
(9). The parameter p′ can be set to a value in the
range of 1 < p′ < 2.

Fig. 5 shows the number of stored entries
in the matrix A, which is compressed with ei-
ther the Beylkin-type or Schneider’s algorithms.
The quality of the both truncation techniques in
matrix compression is similar to that for exter-
nal Neumann problems presented in the previous
subsection. In smaller DOF range the Beylkin-
type scheme enables us to compress the matrix A
at higher rates. The superiority of this technique
may disappear as the DOF increases. The dif-
ference between the storage requirements for the
above two types of compression is small in the
present DOF range. Hence, the employment of
the Beylkin-type scheme, which ensures O(N1+γ)
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Fig.5 The number of stored entries of the coefficient
matrix for the 2-D mixed boundary value prob-
lem shown in Fig. 1(b). The baoundary values
were approximated using the piecewise con-
stant non-orthogonal wavelets with the third-
order vanishing monents (p = 0 and n = 3).
The threshold for Schneider’s matrix compres-
sion was determined with Eq.(9).

10
4

10
5

10
6

10
710

-6

10
-5

10
-4

10
-3

Number of Stored Entries

E
r
r
o
r
 
o
f
 
B
E
 
S
o
l
u
t
i
o
n
s
 
o
n
 
t
h
e
 
P
o
t
e
n
t
i
a
l

Beylkin

Schneider(p'=1)

Schneider(p'=0.5)

Schneider(p'=0)

Fig.6 The storage requirement and the error of the
corresponding BE solution. The test exam-
ple is the 2-D mixed boundary value prob-
lem shown in Fig. 1(b). The boundary values
were approximated using the piecewise con-
stant non-orthogonal wavelets with the third-
order vanishing monents (p = 0 and n = 3).
The appropriate threshold for Schneider’s com-
pression is determined with the parameter p′ in
1 < p′ < 2.

storage requirement, will not be a disadvantage
with regard to the computational cost.

In the present example, the threshold for
Beylkin-type compression was determined with
β = 1.78. The number of stored entries in the
matrix G or H is predicted to show O(N1.13) for
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Fig.7 The number of stored entries in the coefficient
matrix A for the 2-D problem illustrated in
Fig. 1(b). The boundary values were approx-
imated using the Haar wavelets. Schneider’s
algorithm is not applicable to compression of
the matrix G. The results labelled “Case 2”
were obtained through truncation with p′ = 1.

G-matrix or O(N1.26) for H-matrix; the numer-
ical results indicate the storage requirement of
O(N1.21). The power “1.21” is within the esti-
mated range [1.13, 1.26]. The validity of our es-
timation for compression of the matrices G and
H is thus verified through the present numerical
results.

We next consider the disadvantage caused by
using the inappropriate threshold in Schneider’s
matrix compression. Fig. 6 depicts the storage
requirement of the coefficient matrix A and the
error of the corresponding BE solution. The nu-
merical results were obtained through discretiza-
tion with the piecewise constant non-orthogonal
wavelets; these basis functions have the third-
order vanishing moments. The inappropriate
threshold for Schneider’s compression was exam-
ined for p′ = 0, 0.5 and 1. As shown in Fig. 6, the
matrix compression with p′ = 0.5 or 1 retains the
convergence rate within the present DOF range.
The choice of the parameter p′ = 0 however, re-
sults in disturbance of the convergence of BE so-
lution. These show the same tendency in the er-
ror as that for 2-D external Neumann problems.

Fig. 7 shows the storage requirement of the
matrix A derived through discretization with the
Haar wavelets. The present example is the 2-D
mixed boundary value problem illustrated in Fig.
1(b). In the present example, matrix compression
based on Schneider’s algorithm is restricted to the
matrix H; the threshold determined by Eqs.(8)
or (9) is not applicable to the matrix G. Never-

theless, Schneider’s matrix compression does not
cause to break the convergence of BE solution.
The coefficient matrix compressed with Schnei-
der’s algorithm however, has more entries than
that for Beylkin-type compression. The storage
requirement for the Case 1, in particular, is re-
markably large, as shown in Fig. 7. Little merit
of Schneider’s truncation based on Eq.(8) in ma-
trix compression can thus be found in actual BE
analysis for 2-D mixed boundary value problems.
The numerical results depicted in Fig. 7 include
also the storage requirement of the matrix com-
pressed by the hybrid algorithm with the above
two truncation schemes. In the hybrid algorithm
the Beylkin-type scheme is used to compress the
matrix G, while the small entries of the ma-
trix H are truncated on the basis of the thresh-
old for Schneider’s technique. The correspond-
ing results, labelled “Hybrid”, show better per-
formance in matrix compression than that of the
original Beylkin-type truncation.

(4) 3-D Neumann problem for external
domain

We finally investigate the performance of
the abovementioned truncation schemes for 3-D
Laplace problem. In the present work, we deal
with the external Neumann problem shown in
Fig. 2. The potential u on boundary was ap-
proximated using the piecewise constant surface
wavelet with a triangular support. This wavelet
has the first-order vanishing moment; p = 0 and
n = 1. The basis for the wavelet series then con-
sists of the scaling function φ and three kind of
wavelets ψ1, ψ2 and ψ3. The DOF of this se-
ries increases at four times with the increase of
the finest level m. Fig. 8 illustrates the shape of
four basis functions. In this figure, the number in
every triangular subdomain indicates the height
of the piecewise constant function defined in the
corresponding patch.

Fig. 9 shows the storage requirement of the
compressed coefficient matrix A, equivalent to
the matrix H, for the 3-D example. The numer-
ical results were obtained through discretization
with p = 0 and n = 1. As shown in Fig. 9, the
behaviour of storage requirement for 3-D analy-
sis is similar to that for 2-D. In the DOF range
where the finest level is set to a small value, the
Beylkin-type technique enables us to compress
the coefficient matrix at higher rates than Schnei-
der’s truncation scheme in Case 1 based on the
appropriate threshold of Eq.(8). The superiority
of the Beylkin-type scheme can also be found in
BE analysis with about 200,000 DOF.

Schneider’s algorithm for Case 2 was imple-
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(d) Wavelet ψ3.

Fig.8 Piecewise constant surface wavelets with trian-
gular supports. Three wavelets, ψ1, ψ2 and ψ3,
have the first-order vanishing moment. The
number in every triangular patch indicates the
height of the piecewise constant function in the
corresponding patch.

mented with an inappropriate threshold deter-
mined with p′ = 1. Then, the asymptotic con-
vergence rate of BE solution is not always re-
tained due to overtruncation. The numerical re-
sults corresponding to Case 2 show the storage
requirement comparable to that for the Beylkin-
type compression without accuracy loss. How-
ever, the inappropriate threshold in Schneider’s
technique has to be used carefully so that the ba-
sis with the parameter p′ can retain the rate of
convergence.

In the present numerical test, the threshold for
Beylkin-type matrix compression was determined
with β = 0.80. The storage requirement of the co-
efficient matrix is thus predicted using the present
estimation to O(N1.40); the number of stored en-
tries in actual BE analysis shows O(N1.44).

6. CONCLUSIONS

In the present work, we have discussed the
performance of the matrix compression schemes
used for wavelet-based BE analysis. The two
types of schemes, the Beylkin-type and Schnei-
der’s level-dependent algorithms, have been con-
sidered. The effectiveness of the Beylkin-type
truncation technique, in particular, has been in-
vestigated through comparison of the storage re-
quirement of the compressed coefficient matrix.
We have described the theoretical estimation of
the storage requirement. Using the proposed es-
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Fig.9 The number of stored entries in the coefficient
matrix A for 3-D external Neumann problem
illustrated in Fig. 2. The potential on bound-
ary was approximated using the piecewise con-
stant surface wavelets with the first-order van-
ishing moments and triangular support. The
inappropriate threshold for the Case 2 was de-
termined using Eq.(9) with p′ = 1.

timation, the number of stored entries in the co-
efficient matrix has been predicted to show in-
creasing behaviour of O(N1+γ) (0 < γ < 1) for
Beylkin-type compression. This fact is the basis
that the Beylkin-type scheme is inferior in storage
requirement to Schneider’s truncation technique
which ensures O(N(logN)α) (α ≤ 1). The stor-
age size required in numerical tests is increased at
the same order predicted by the present estima-
tion. However, the matrix compression rates for
Beylkin-type truncation is higher than or compa-
rable to that for Schneider’s matrix compression.

We have also discussed the restrictions of
Schneider’s algorithm in the application to matrix
compression. The restrictions depends on the or-
der of a boundary integral operator and the kind
of wavelets. Schneider’s scheme is not applicable
to certain discretization conditions, because the
appropriate threshold cannot be determined with
the original scheme. We thus have attempted
to implement Schneider’s algorithm with an in-
appropriate threshold. Matrix compression us-
ing the inappropriate threshold does not always
retain the convergence rate of BE solution. In
numerical tests, the choice of sufficiently small
threshold out of applicable range causes overtrun-
cation. The error of the solution then usually in-
creases. We, hence, have to take care to retain
the convergence of BE solution, if we use an in-
appropriate threshold in Schneider’s scheme.
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