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Abstract. The total computation of the generation and verification of 
personnel identification or digital signature is heavy. For many schemes of 
them, the total computation is not less than hundreds of modular 
multiplications. Efficient schemes of personnel identification and digital 
signature were proposed, which require no more than 10 modular 
multiplications on generation and verification of challenge-response or 
digital signature. However, the schemes are weak in security. The paper 
will show that by interception of a transcript of communications between 
the prover and verifier, the private key of the prover is revealed. 

1 Introduction 

In daily life we write our name down on a document to give a 
handwritten signature on the content of that document. The digital 
counterpart to a handwritten signature is digital signature. It is an 
important primitive operation in public key cryptosystems. Many 
applications in information security require digital signatures, entity 
authentication, data integrity, and proof of non-repudiation, for example. 

Since the emergence of public key cryptography, many schemes of 
digital signature have been proposed, such as RSA-based signature 
schemes [1, 2, 3] and DL-based (Discrete Logarithm) signature schemes 
[4, 5, 6]. Generally, a signer (prover) signed on a message (document) and 
then sent receiver (verifier) the digital signature (may be along with the 
message). In the setting of public key cryptosystems, heavy computation is 
required in signature generation, verification, or both. The following table 
summarizes computational cost of signature generation and signature 
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verification, and other information. Two signature schemes are listed in 
different columns, one is RSA-based and the other one is DL-based. To 
quantify computation, MM is used to denote the costly operation of 
modular multiplication. 

 
 RSA signature scheme 

|n|= |d| = 1024, e = 3 
Schnorr signature scheme 
|p| = |y| = 1024, |q| = 160, g = 2 

Signature size 1024 bits 320 bits 

Size of private key 1024 bits 160 bits 

Size of public key 1024 bits  
(only n counted) 

2208 bits  
(only p, y, and q counted) 

Signer’s 
computations 

1536 MMs  (1.5 ⋅ |d|) 240 MMs  (1.5 ⋅ |q|)  

Verifier’s 
computations 

2 MMs 480 MMs 

Total computation 
(Signer + Verifier) 

1538 MMs 720 MMs 

 
The signer/verifier may be a host computer, a mobile computer, a pocket 

device or a smart card. Usually the latter three entities are powered by 
battery, which implies that they have limited processing capability. In 
order to reduce the processing burden of signer/verifier, many methods 
have been developed. Short public keys (e.g. e = 3) are used in RSA-based 
signature schemes to verify signatures efficiently; many researchers [5, 7, 
8, 9] have devoted to reduce the complexity of online computation during 
the signing phase. However the total computation (computational cost of 
generation and verification signature) still requires hundreds of MMs or 
more.  

Using diophantine solutions for the Pythagorean triplets, the work in 
[10] proposes efficient schemes of personnel identification and digital 
signature (Method 2). Let’s call it M2-scheme. The schemes’ total 
computation is less than 10 MMs. The extremely low computational 
requirement seems attractive especially for portable systems.  

However, the paper will show that weakness exists in M2-scheme. By 
the transcript of communications between a prover and a verifier, the 
prover’s private key can be calculated.  
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2 M2-scheme reviewed 
Two operation modes are permitted in [10]. The section only reviews the 

trusted party mode. Let n be the product of large primes p and q. Their bit 
lengths may be |p| = |q| = 512, for example. In order to register at a trusted 
party, the user should show his/her credentials to the party. From the 
supplied credentials, the trusted party generates an identity string I(s) 
according to a fixed and widely published format, e.g. I(s) ∈ Z* 

n .  
In the trusted party mode, the M2-scheme has designed such that the 

modular product of public key (Puk) and modulo square of private key 
(Prk) equals one, i.e. (Puk) ⋅ (Prk)2 = 1 mod n. In the finite group Z* 

n , it 
may be failure to find the square roots of I(s). Then a short random string 
(sr) is concatenated with I(s) such that the resultant string is in the set of 
quadratic residue modulo n, namely, I(s) || sr ∈ QRn. Now, the user’s 
public key is the concatenation of I(s) and sr, and private key is the 
reciprocal of the square root of Puk modulo n.  

A digital signature scheme can be converted from a personnel 
identification scheme using the Fiat-Shamir transformation [11]. The 
following only examines the personnel identification scheme. Assume that 
a prover wants to prove his identity to a verifier. On receipt of verifier’s 
challenge string c, the prover computes strings p1 and p2 as response. The 
strings are created using the challenge string c, a random number u, and the 
prover’s private key Prk. After receiving prover’s response, the verifier 
will verify whether the response is valid. A valid response confirms 
verifier the identity of the prover. The detailed interactions between the 
prover and verifier are as follows.   

  
M2-scheme: Prover(Prk) 
 
// Prk = 1 / (Puk)1/2 mod n 
 
u ← Z* 

n , v ← c / (2 ⋅ u) mod n 
p1 ← u + v mod n 
p2 ← Prk ⋅ (u2 - v2) mod n 

    
 
⎯⎯←c  

 
 

⎯⎯⎯ →⎯ 21, pp

 

M2-scheme: Verifier(Puk) 
 
// Puk = I(s) || sr   
c ← Z* 

n   
 
A = Puk ⋅ p2

2 mod n 
B = p1

2 ⋅ (p1
2 - 2 ⋅ c) mod n 

If A = B then accept  
else reject 
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3 Cryptanalysis of the M2-scheme  
Let n be the product of large primes p and q. It is hard to find square 

roots of x ∈ QRn. However, the congruence x2 + k ⋅ y2 = m mod n is 
solved by the probabilistic algorithm in [12] with polynomial time, 
without the knowledge of the factorization of the modulus n. Based on the 
probabilistic algorithm, the prover’s private key can be computed. The 
details are as follows.  

 1. Obtain the transcript (c, p1, p2) of the communications between the 
prover and verifier. 

2. Compute the quantity m = Puk ⋅ p2
2 + c2 / 2 = u4 + v4 mod n. 

3. Apply the probabilistic algorithm to the congruence u4 + v4 = m mod n. 
The values u2 and v2 mod n are computed in polynomial time.  

4. The prover’s private key is solvable, i.e. Prk = p2 / (u2 - v2) mod n.   

4 Conclusion  

This paper has shown that M2-scheme is weak against active attack. The 
prover’s private key is computable using the information leaked from the 
transcript of challenge-response. 
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