Existence and uniqueness for optimal control
of Oxygen absorption in aquatic system
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Abstract. In this paper, we consider the mathematical formulation and
analysis of an optimal control problem for a nonlinear Dissolve Oxy-
gen(DO)/ Biological Oxygen Demand(BOD) system with logistic growth
term. In the BOD /DO system studied by Bermidez [2] this logistic growth
term is not included. We study the existence and uniqueness of solution
for the nonlinear system as well as the existence and uniqueness of optimal
solutions.
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1 Introduction

Most often, our waterways are being polluted by municipal, agricultural and industrial
wastes, including many toxic synthetic chemicals which cannot be broken down at all
by natural processes. Even in tiny amounts, some of these substances can cause
serious harm.

Microorganisms such as bacteria are responsible for decomposing organic waste.
When organic matter such as dead plants, leaves, grass clippings, manure, sewage, or
even food waste is present in a water supply, the bacteria will begin the process of
breaking down this waste. When this happens, much of the available dissolved oxygen
is consumed by aerobic bacteria, robbing other aquatic organisms of the oxygen they
need to live [17].

Biological oxygen demand (BOD) is an indicator for the concentration of biodegrad-
able organic matter present in a sample of water. It can be used to infer the general
quality of the water and its degree of pollution. BOD measures the rate of uptake of
oxygen by micro-organisms in the sample of water at a fixed temperature and over a
given period of time.

If the pollution level is not too high this need can be satisfied by the dissolved
oxygen. Notice that the oxygen is very sensitive to wastewater discharges namely
the thermal ones. Indeed, at high temperature solubility of oxygen decreases while
activity of microorganisms which are oxygen consuming increases. If the quantity of

AvrpLiep SCIENCES, Vol.10, 2008, pp. 9-18.
© Balkan Society of Geometers, Geometry Balkan Press 2008.



10 F.B. Agusto and O. M. Bamigbola

organic matter increases beyond a maximum value the dissolved oxygen is not enough
to decompose it leading to modification in the ecosystem.

In recent times a number of researchers have worked on the BOD/DO parabolic
models. Streeter and Phelps [16] gave the classical model for BOD/DO. Bermidez [2]
considered Streeter model, and in [3] gave an optimal location for wastewater outfall
for steady case parabolic equation. Martinez [12] gave the theoretical analysis for
the optimal control problem related to wastewater treatment resulting in pointwise
control for both the objective functional and state constraint stating the existence of
unique solution. Alvarez-Vazquez [1] threated the case of evolution parabolic equation
of [3] for an optimal location of wastewater outfall. Piasecki [14] and [15] in his work
modified the Streeter’s model to include Sediment Oxygen Demand(SOD).

This paper concerns the application of a distributed parameter control for a
diffusive-convective population, whose growth is governed by logistic terms. The
growth of microorganisms population have been shown to follow logistic growth pat-
tern [4]. In recent years, several authors have studied population models with logistic
growth terms, Clark [5] and Murray [13]. Lenhart and Bhat [10] treated wildlife man-
agement problem with logistic growth terms and Lenhart [11] considered degenerate
parabolic equation having logistic growth terms. Similarly, Garvie [6], [7] and [§]
considered population models with logistic growth terms. The present work modifies
the classical model of Streeter and Phelps by including the logistic growth terms.

Mathematical models play a major role in predicting the pollution level in the re-
gions under consideration. Obviously, the knowledge of mathematical models for the
evolution of pollutant concentration is an unavoidable first step if one wants to use
optimal control techniques. So, the first part of this work is devoted to the study of
Biological Oxygen Demand (BOD) and Dissolved Oxygen (DO), which is frequently
used in the case of domestic discharges. Next, in section 3 we discuss the existence
and uniqueness of solution for this nonlinear system of equations and in the subse-
quent section, we consider the existence and uniqueness of solution for the optimal
control of the coupled system.

2 Pollutant Dispersion: The BOD-DO Model

We consider a domain occupied by shallow water of polluted wastewater. Firstly, in
order to simulate the water quality in the domain ,we have to choose some indicators
of pollution levels. Two of the most important (especially in the case of domestic
discharges) are the Dissolved Oxygen (DO) and the organic matter, which can be
measured in terms of the need of oxygen to decompose it, the so called Biological
Oxygen Demand (BOD). If the pollution level is not too high the BOD can be satisfied
by the DO. However, if the organic matter increases beyond a maximum value the
DO is not enough for its decomposition, leading to important modifications (anaerobic
processes) in the ecosystem. To avoid this situation a threshold value of BOD may
not be exceeded and a minimum level of DO must be guaranteed.

The evolution of the BOD and the DO in the domain  C IR? is governed by a system
of partial differential equations (see Streeter and Phelps [16], A. Bermddez, [2]). We
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give a modification of the model given by Bermddez, [2] to include a logistic growth
for BOD and we also suppose that there are no source term . Let us denote by p;(x, t)
and pa(z,t) the concentrations of BOD and DO at point « €  and at time ¢ € [0, 7],
respectively. Then, these concentrations are obtained as the solution of the following
two initial-boundary value problems:

dp1

5 T v.Vp1 — B1Ap1 = pi(a —bp1) — kip1 in Q
%1 (2,0) = p1o(x) in Q
% =0 on %
(2.1)

6p2 1 .

E +v.Vpy — 62Ap2 = —klpl + Ekg(ds — pg) in Q
pag(x,O) = pao(x) in
% =0 on X

where u and h can be obtained from the shallow water equation, 5, and S (horizon-
tal viscosity coefficients) are positive parameters, ki, ks (kinetic coefficients related
to BOD elimination and oxygen transfer through the surface, respectively) and d,
(oxygen saturation density) can be obtained from experimental measurements.

In the domain €, it is necessary to assure water quality, i.e. pollution concentration
must be lower than a given maximum level. If we take BOD and DO as indicators of
the water quality, then the environmental constraints on it can be written as:

(2.2) pila <o and p2la > ¢

where ¢ and ( are, respectively, critical levels for BOD and DO. For this system, we
prove, in the subsequent section, the existence and uniqueness of solution.

3 Analysis of the State System

Let Q C IR? be a bounded domain with boundary smooth enough and (0,7) an open
interval. @ denotes the cylindrical domain 2 x (0,7, while ¥ = 9Q x (0,T) which is
the lateral boundary of (). We make the following assumptions of the problem data
adapted from Martinez, Rodriguez, Vazquez-Méndez [12])

v e [L®(Qx[0,TN]?, heCQx[0,T]) h(z,t)>a>0 Y(z,t)eQx][0,T)])
P10, P20 € 02(9)7 a < LOO[Q X [O,T]]7 be LOO[Q X [O,TH
Definition 3.1. Adapting the definition in Ladyzenskaja, Solonnikov and Uralt-

seva [9], the weak solution of the system (2.1) defined as a function p = (p1,p2) €
[L2(0,T; HY())]?, is called the solution of (2.1) if the following holds:
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0 5]
/ {—ﬂ p1— ﬂm + 61V Vp1 + B2V1m2Vpe +vniVpr +vn2Vpe + (a — bpr)pim

1
+kimip1r + kinapr + Ek‘znzm}dxdt = / hikzdsmdwdt +/ n(z,0)po(x)dx
Q (l',t) Q

Vo= () € L2(0,T5 H?(Q)) N L*(0, 75 HY(2)) with nl=r =0, nlr = 0.
Our main result for this section is the following:
Theorem 3.1.

There exists a unique pair p = (p1, p2) € [L2(0,T; HY(Q))]? N [L2(0,T; L3(2))]? with
pt € [[L2(0,T; H-1(Q))]?)? of the state equation (2.1) satisfying the following

||p||[2[L2(0,T;H1(Q))]2]2 + HP||[2[L2(0,T;L2(Q))]Z]2 + ||pt‘|[2[L(07T;H*1(Q))]2]2 < Calllprolley + llp20llo@)

Proof. Let us consider p* = p;, i = 1,2 the solution of the approximate system

at 'y v.Vp} — B1Ap} = pi(a —bpk) — kipf in Q
Py (2,0) = pro() in Q
aaﬂ =0 on X
n
(3.1)
d 1 .
aptz +0.Vp5 — BaAps = —kip} + 7 k2(ds — p5) in Q
P’S(kﬂ?’ 0) = pao() in Q
aaﬁ =0 on %
n

Multiplying (3.1) by p* = p;, i = 1,2 and integrating over @ we have

) )
/ plp’H p2 dadt = / B1ApY P} + BaAphph — vl Vol
ot at ’ o

(3.2) —vp5 V5 + (a— bp})pi ok — kaphpf — k1pspl + }dmdt

1
———ko(ds dxdt
+\/Q h(x,t) ( pQ)pQ x

resulting in,
(3.3)
5 P ez < BillVAM Iz + 1oll = @xi0.mp IV lizz @z 10" 22
+k1||pk||[2[L2(Q)]2]2 + ||CL||(L°°(Q)><[0,T])||/)11€||2L2(Q)]2
HIbll o= ) x o, 1PE 1220012 P 22 (212
+—kads |5l oy + —helloslfze a2
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where 3; = (5;, ¢ = 1,2. By Cauchy - Schwartz inequality and Poincaré inequality
then (3.3) simplifies to

d
(3.4) @HPkH[Q[L"‘(Q)PP < Cl||pk||[2[H1(Q)]2]2 + 02||pk||[2[L2(Q)]2]2
+18ll e 52y x 0,7 125 22 2 105 B2 g2 + Ol 1122

1
where C1 = 2(3; + [|v]| L (a))s C2 = 2(|[v][ gy + 2k1 + [lallL~@) + akz) and

1
03 = —kad;
o
then by Gronwall’s inequality

1o* I 2 g2 < Callpollg

then integrating (3.3) from 0 to T and using Cauchy - Schwartz inequality, Poincaré
inequality and Gronwall’s inequality, we have

16" 11f L2 0.7:22 212 < C4||p0|\20(m
integrating (3.4) from 0 to T" and employing Gronwall’s inequality, we have

o I 2 .1 m1 (2 < CullpollZ

for any n = (n1,12) € C§°(Q), we have

B)
/{ﬁ 1+7772}dxdt /{ BrApin — BaApsne — vm Vph

—vnVph + (a — bpY)pim — kil — kanzpl+}dadt

1
——ko(ds — pE)nodadt
+/Qh(x,t) 2( ps )n2dx

Consequently

|| || [(E-1 @)+ < ﬁz”VP H[L2(Q 22 T HUH(LOO(Q)X[OT)HVP || [[L2(2)]2]2 HPH[L2(Q )]2]2
+ha [ H[[L2(Q)]2]2 + HaH(L“’(Q)X[O,T])leH[L2(Q)]2

1 1
H1bll Lo @y x o, 125 2225 ez e + Ek2d5||p§||[2L2(Q)]2 + akQHPSH[zL?(Q)]?

Thus

T gk
ap
/0 IE=ve N iz @yz2di+ < BillVo* Lz pe + 10l noe @y x o, VA" iz @212 1ol f 22 22
+ha [ ||[[L2(Q)]2]2 + ||a||(L°°(Q)><[O,T])||p1||[2L2(Q)]2 + HbH(Loo(Q)x[o,T])Hm\|[L2(Q)]2||P1||[2L2(Q)]2

1 1
+Ek2ds||pl2€||[2L2(Q)]2 + ak;2||pl2€||[21:2(9)]2
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and therefore

10F1fi 2207 5-1 (g2 < Cullpollz

Consequently, there exists a subsequent p* of p such that

o —p in[L3(Q))? and in [L3(0,T : H(Q))]?
pE—p i [LX0,T: H ()]

On passing to limit in (3.1), we see that p is also a solution of (2.1) by the definition
of 3.1.

To prove uniqueness of solution, we let w = p — p the difference of two possible
solutions. Then define for any t; € [0, 7], set

—[fwdr telot)
’]’] = tl
0 t € [t1,T] where t; € (0,T) and w= (w1, wa)

By the definition of solution we have

/ {—(Z?Zwl - %wg +unVwy +vnVwz + 51VnVw; + 51V77Vw} dxdt
Qe

1
(a —b(p1 + p1))win — 2kinw; pdxdt + / {(k:st — wg)n} dxdt
Qtl h(xatl)

y

t1

+ /Q n(z,0)wo(x)dx

Then, it follows that

/Q {07 + 07 — vimer — vt — BN — Bonene pdadt = /Q { — (a—0b(p1 + pr))nmy
t1

t1

1
+2kinne pdadt + / {_(kgdsn + nnt)} dxdt + / n(z,0)po(z)dz
Qt1 h(.’E, tl) Q

which gives,
Hnt||[2[L2(Qtl)]2]2 + e1lna (2, 0)[fr2 2 < cellnllizzq., 2z llnellgz ., 22
11 9 9
+§ads||77||[[L2(Qtl)]2]2 + ||77(9370)\|[[L2(Q)]2]2||Po($)\|[c(ﬁ)]2

where ¢; = 36; and ¢ = 3((a — b(p1 + p1))) + 2k1 + ks, then by Cauchy - Schwartz
inequality we have

17l fiz2(qu, 22 + llne(@, 0)l[fz2@yze < callnllizz@iy iz + c2llnellize ., e

11 9 9
+§Ed8||77”[[L2(Qtl)]2]2 + [In(@, 0)llz2 @212 1 P0 (@) iy
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and hence
1 = e2)llmellfizz (g, 2 < esllnlfzecqy, 2

11
where c3 = = —dg + ¢
2«
thus,

(3.5) eIz (@0, 212 < esllnllizaay, 2

(1 — 62)

where ¢4 =

Now, we let ((z,t) = fot w(z,&)dE. Then, for t € [0,t]

(36) Gt =w = —n, 77(33715) = C(xvtl) - C(J),t)

and on the other hand

t

(1) 1ICC )|y =2 /Q | s < @ + 160 Rua
and
(3.8) ‘|"7||[2[L2(Qt1)]2]2 < ZHCH[Q[L?(QM)]?]? + 26 [[¢ (2, t)[f 2 22
Hence, combining (3.5) to (3.7), we obtain

16 L2 (@0, 22 < callnlliizeqqu, e < callCC tDlfize(qu, 2z + callKlfra(qy, e
In view of (3.8), we have
1Gel {22 (@212 < catll€Iizaapzz+eallClifiza@e e < estall€llfze(u e +ealldllizaar, 22

—estullCllfize @i + 6@ e < calldllfizeor, e
For a t satisfying the condition

1
0<t; < —
_1_205

hence
||Ct||[2[L2(Qtl)]2]2 < ||C|\[2[L2(Qtl)]2]2 vV t€0,t]

(3.9) /QC(a:,t)|2da:Q/Ot/QC(:c,t)(t(x,t)dxdtSC’/Ot/QC|d:rdt, te [0,t]

Then, by Gronwall’s inequality, we end up with ¢ = 0 for ¢ € [0,¢;]. This implies
p = p for ¢t € [0,¢;]. Continuing the argument for ¢ € [t1, 2¢1] and so on, we conclude
that p=pon Q
]
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4 Optimal Control

In this section, we prove the existence and uniqueness of optimal solution to the state
equations (2.1), given an appropriate objective functional stated below.

4.1 The Optimization Problem

We state the optimal control problem. We look for a (p,m) € H(Q) x U, such that
the cost functional:

1 T
(4.1) J(p,m) = 7/ \p—pd|2d0:dt+§/ m?dt
2 Jo 2 J

is minimized subject to the constraints

0 .
L oVp - Bidp = pila=bp) —kipi+m  nQ
%1(93, 0) = p1o(z) in Q
% =0 on Y
(4.2)
8p2 1 .
5 +0.Vps — B2Aps = —k1p1 + Ekz(ds — p2) in Q
%2(3), 0) = pao(x) in Q
% =0 on %

Now, let U, 4, the admissible space of control be defined as
Upa = {m :0 < J(m) < and (4.2) are satisfied}.
The control problem is to find the values of m > 0, in such a way that they satisfy
(4.2) and they minimize the objective function, i.e.,
(4.3) J(p.m) < J(p.m) v (pym) € HY(S) X Ua

Any element m € U,q, satisfying (4.1) is called an optimal control and the corre-
sponding state, denoted by p is called an optimal state.

4.2 The Existence of an Optimal Solution

We now show the existence of an optimal solution and give the following theorem

Theorem 4.1. If there exists a feasible control m € Uyq such that p1|lo < o and
p2la > C then the optimal problem has, at least, a solution.
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Proof: The set U,  is nonempty, thus may choose (p(m*), m*) in H'(2) x U,q such
that

li FomPb) = inf .
el Tlp?m”) (pam)EH () xUns Tlp,m)
Set p(mF) = p¥. By the definition of U,q we have
8—plf+vvk—ﬁAk—k(—bk)—k K in Q
ot -V P1 1801 = prla—0py 101
Py (2,0) = pro() in
0
% =0 on X
(4.4)
% k_ T _ ok .
ot +v.Vp; — B2Apy = —kipt + th(ds P3) in Q
p3(x,0) = pao(2) in Q
0
% =0 on X

Let {m*},en € Uyq be a minimizing sequence. From boundedness of the sequence
we can deduce the existence of a subsequence (still denoted the same way) that
converges weakly in (L2(0,7)) to an element m € U,q. From theorem (3.1) we have
that the sequences p* = (p¥, p&) = (p¥(m*), p5(m*)) are uniformly bounded. Since
the embedding from [H!(Q)]? << [L%(Q)]? is compact and using the compactness
lemma, it follows that we may extract a subsequence, denoted again by p”* such that

pe —p in [L*(Q)]?
pr —p in[L*0,T : H'(Q))]

So, passing to the limit, we obtain that p satisfies (4.4) and consequently, p = p(m).
since J(p, m) is lower semi continuous we conclude that (p,m) is an optimal solution,
ie.

J(p,

2

= inf J(p,m).
(p7m) € uad (p )

Thus, we have shown that an optimal solution belonging to U,4 exists.
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