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Abstract. The paper presents the mathematical theory of some credi-
bility models, involving complicated properties of conditional expectations
and of conditional covariances. The fact that it is based on complicated
mathematics will give more insight and understanding of the theoretical
aspects and will point the way to the practical possibilities of the credi-
bility models.
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1 The Bühlmann’s model

In this section we first give Bühlmann’s original model, which involves only one iso-
lated contract. We derive the optimal linearized credibility estimate for the risk
premium for this case. It turns out that this procedure does not provide us with a
statistic computable from the observations, since the result involves unknown param-
eters of the structure function. To obtain estimates for these structure parameters,
for Bühlmann’s classical model we embed the contract in a collective of contracts, all
providing independent information on the structure distribution (see Section 2). In
the original credibility model of Bühlmann, we consider one contract with unknown
and fixed risk parameter θ, during a period of t years. The yearly claim amounts
are denoted by X1, . . . , Xt. The risk parameter θ is supposed to be drawn from
some structure distribution U(·). It is assumed that, for given θ = θ , the claims
are conditionally independent and identically distributed with known common dis-
tribution function FX|θ(x, θ). For this model we want to estimate the net premium
µ(θ) = E[Xr|θ = θ], r = 1, t as well as Xt+1 for a contract with risk parameter θ.

Theorem 1.1 (Bühlmann’s optimal credibility estimator). Suppose
X1, . . . , Xt are random variables with finite variance, which are, for given θ = θ,
conditionally independent and identically distributed with known common distribution
function FX|θ(x, θ). The structure distribution function is U(θ) = P [θ ≤ θ]. Let D
denote the set of non-homogeneous linear combinations g(·) of the observable random
variables X1, X2, . . . , Xt:

(1.1) g(X ′) = c0 + c1X1 + c2X2 + . . . + ctXt
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Then the solution of the problem:

(1.2) Min
g∈D

E{[µ(θ)− g(X1, . . . , Xt)]2}

is:

(1.3) g(X1, . . . , Xt) = zX + (1− z)m

where X
′
= (X1, . . . , Xt) is the vector of observations, z = at/(s2+at), is the resulting

credibility factor, X =
1
t

t∑

i=1

Xi is the individual estimator, and a, s2 and m are the

structural parameters as defined in (1.4):

(1.4)

m = E[Xr] = E[µ(θ)], r = 1, t

a = Var{E[Xr|θ]} = Var[µ(θ)], r = 1, t,

σ2(θ) = Var[Xr|θ = θ], r = 1, t,

s2 = E{Var[Xr|θ]} = E[σ2(θ)], r = 1, t.





Remark 1.1. If µ(θ) is replaced by Xt+1 in (1.2), exactly the same solution (1.3)
is obtained, since the covariances with X are the same.

Applications of Theorem 1.1. 1) Suppose the claims are integer-valued and
Poisson (θ) distributed, so

(1.5) dFX|θ(x, θ) = θxe−θ/x!, x = 0, 1, . . .

and suppose the structure distribution of θ to be a Gamma distribution

(1.6) u(θ) = θβ−1e−αθαβ/Γ(β), θ > 0.

In this case the best linearized credibility estimator for µ(θ) can be written as
follows

(1.7) zx̄ + (1− z)m = (v + β)/(t + α).

Since in this case m = E[X] = E{E[X|θ]} = E[θ] = β/α, and for the ratio of the
structure parameters a and s2 we have:

s2/a = E{V ar[X|θ]}/V ar{E[X|θ]} = E[θ]/V ar[θ] = (β/α)/(β/α2) = α,

we find z = at/(s2 + at) = t/(t + α), so the best linearized credibility estimator for

µ(θ) can be written in the form (1.7), where v =
t∑

i=1

xi.

2) Suppose the claims are a Negative Binomial (θ) distribution, so:

(1.8) dFX|θ(x, θ) = θx(1− θ)1−x, x ∈ {0, 1}
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and suppose the structure distribution of θ to be a Beta distribution:

(1.9) u(θ) = θα−1(1− θ)β−1/β(α, β), θ ∈ (0, 1).

In this case the best linearized credibility estimator for µ(θ) can be written as
follows:

(1.10) zx + (1− z)m = [t/(t + α + β)x] + [α/(t + α + β)].

Since in this case m = E[X] = E{E[X|θ]} = E[θ] = α/(α + β), and for the ratio of
the structure parameters a and s2 we have:

s2/a = E{V ar[X|θ]}/V ar{E[X|θ]} = E[θ(1− θ]/V ar[θ] = [E(θ)− E(θ2)]/V ar(θ) =

= {[α/(α + β)]− [α(α + 1)/(α + β + 1)]}/{[(αβ)/(α + β)2(α + β + 1)]} =

= [αβ/(α + β + 1)]/[αβ/(α + β)2(α + β + 1)] = α + β,

we find z = at/(s2 + at) = at/{a[(s2/a) + t]} = t/(t + α + β), so the best linearized
credibility estimator for µ(θ) can be written in the form (1.10).

3) Suppose the claims are a Exponential (θ) distribution, so:

(1.11) dFX|θ(x, θ) = θe−θx, x > 0

and suppose the structure distribution of θ to be a Gamma distribution:

(1.12) u(θ) = θβ−1e−αβαβ/Γ(β), θ > 0.

In this case the best linearized credibility estimator for µ(θ) can be written as
follows:

(1.13) zx + (1− z)m = (v + α)/(t + β − 1), if β > 2.

Since in this case m = E[X] = E{E[X|θ]} = E[1/θ] = α/(β − 1), if β > 1, and for
the ratio of the structure parameters a and s2 we have:

s2/a = E{V ar[X|θ]}/V ar{E[X|θ]} = E[1/θ2]/V ar(1/θ) = β − 1,

if β > 2, we find

z = at/(s2 + at) = at/{a[(s2/a) + t]} = [t/(t + β − 1)][v/t] = v/[t + β − 1],

if β > 2, so the best linearized credibility estimator for µ(θ) can be written in the

form (1.13), where v =
t∑

i=1

xi.

4) Suppose the claims are a Normal (θ, σ2) distribution, so:

(1.14) dFX|θ(x, θ) =
1

σ
√

2π
e−

1
2 ( x−θ

σ )2

, x ∈ R

and suppose the structure distribution of θ to be a Normal (µ0, σ
2
0) distribution:

(1.15) u(θ) =
1

σ0

√
2π

e
− 1

2

(
x−µ0

σ0

)2

, θ ∈ R.
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In this case the best linearized credibility estimator for µ(θ) can be written as
follows:

(1.16) zx + (1− z)m =
[

ν

σ2
+

µ0

σ2
0

]
/

[
t

σ2
+

1
σ2

0

]
.

Since in this case m = E[X] = E{E[X|θ]} = E(θ) = µ0 and for the ratio of the
structure parameters a and s2 we have:

s2/a = E{V ar[X|θ]}/V ar{E[X|θ]} = E(σ2)/V ar(θ) = σ2/σ2
0 ,

we find z = at/(s2 + at) = at/{a[(s2/a) + t]} = t/[(σ2/σ2
0) + t], so the best linearized

credibility estimator for µ(θ) can be written in the form (1.16), where ν =
t∑

i=1

xi.

5)

Theorem 1.2 (Credibility estimator minimizes mean squared error for
exponential family with natural parametrization and prior): - consider the
exponential family of distributions with natural parametrization:

(1.17) fX|θ(x, θ) = p(x)e−θx/q(θ), x > 0, θ > 0

together with the natural conjugate priors with density

(1.18) u(θ) = q(θ)−t0e−θx0/c(t0, x0), θ > 0

where p(x) is an arbitrary non - negative function, t0 and x0 are positive constants,
and c(t0, x0) is a normalization constant. For this case, the linearized credibility
estimator is

(1.19) zx + (1− z)m =

(
x0 +

t∑

i=1

xi

)
/(t0 + t),

where m = E[µ(θ)] = x0/t0, s2/a = t0, z = t/(t + t0). Indeed: - by Theorem 1.1 we
only have to prove that the optimal estimator

(1.20) E[µ(θ)|X] =

[∫
µ(θ)

t∏

i=1

fX|θ(xi, θ)dU(θ)

]
/

[∫ t∏

i=1

fX|θ(xi, θ)dU(θ)

]
.

First we express E[µ(θ)] in the prior parameters x0 and t0, then the theorem fol-
lows because of the special form of the posterior distribution. Because q(θ) is the
normalizing constant of the distribution (1.17) one has

(1.21) q(θ) =
∫ +∞

0

p(x)e−θxdx.

So

(1.22) q′(θ) = −
∫ +∞

0

xp(x)e−θxdx = −q(θ)E[X|θ = θ],
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since

E[X|θ = θ] =
∫ +∞

0

xfX|θ(x, θ)dx =
[∫ +∞

0

xp(x)e−θxdx

]
/q(θ).

Therefore the risk premium when θ = θ equals:

(1.23) µ(θ) = E[X|θ = θ] = −q′(θ)/q(θ).

Taking the first derivative of (1.18) with respect to θ gives, using (1.23):

u′(θ) = [−t0q(θ)−t0−1q′(θ)e−θx0 ]/c(t0, x0) + [q(θ)−t0e−θx0(−x0)]/c(t0, x0) =

= t0[−q′(θ)/q(θ)][q(θ)−t0e−θx0/c(t0, x)0)]− x0[q(θ)−t0e−θx0/c(t0, x0)] =

= t0u(θ)− x0u(θ) = [t0µ(θ)− x0]u(θ).

So

(1.24) u′(θ) = [t0µ(θ)− x0]u(θ).

Integrating this derivative over θ gives zero for the left hand side, since

(1.25)
∫ +∞

0

u′(θ)dθ = u(+∞)− u(0) = 0.

So the right hand side of (1.24) results in:

(1.26) m = E[µ(θ)] =
∫ +∞

0

µ(θ)u(θ)dθ = x0/t0,

since: (1.24) ∧ (1.25) ⇒
∫ +∞

0

[t0µ(θ)− x0]u(θ)dθ = 0 ⇔ t0E[µ(θ)]− x0

∫ +∞

0

u(θ)dθ = 0 ⇔

⇔ t0E[µ(θ)]− x0 · 1 = 0 ⇔ E[µ(θ)] = x0/t0.

The conditional density of θ, given X = x (posterior density) is, apart from a nor-
malizing function of x1, . . . , xt:

(1.27)

fθ|X(θ, x) = fX|θ(x, θ)fθ(θ)/fX(x) ::

u(θ)
t∏

i=1

{p(xi)e−θxi/q(θ)} :: q(θ)−(t0+t)e−(x0+
∑

i xi).

Density (1.27) is of the same type as the original structure density (1.18), with x0

replaced by

(
x0 +

∑

i

xi

)
and t0 by (t0 + t). So by (1.26) the posterior mean (1.20),

which is the mean squared error - optimal estimator for µ(θ), is:

(1.28) E[µ(θ)|X1, . . . , Xt] =

(
x0 +

∑

i

xi

)
/(t0 + t).
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This is indeed a non - homogeneous linear combination of X1, . . . , Xt. By (1.26)
we have m = x0/t0, and comparing (1.28) and (1.3) we see that t0 = s2/a and
z = t/(t + t0).

Remark 1.2. The parametrization is called natural because the exponent part is a
linear function of θ, and by taking a natural conjugate prior the posterior distribution
is of the same type as the prior distribution. We restrict ourselves to x > 0 and θ > 0,
and suppose furthermore that at the end point of the intervals the densities are zero.
These restrictions are not strictly necessary.

Remark 1.3. It should be noted that the solution (1.3) of the linearized credibility
problem only yields a statistic computable from the observations, if the structure
parameters m, s2 and a are known. Generally, however, the structure function U(·)
is not known. Then the ”estimator” as it stands is not a statistic. Its interest
is merely theoretical, but it will be the basis for further results on credibility. In
the following section we consider different contracts, each with the same structure
parameters a,m and s2, so we can estimate these quantities using the statistics of the
different contracts.

2 Further developments

For this estimation, assume that we have a portfolio of k identical and independent
policies that have been observed for t(≥ 2) years, and let Xjr denote the total claim
amount of policy j in year r. Let:

(2.1) Mj = Xj =
1
t

t∑
s=1

Xjs, j = 1, k, M0 = X .. =
1
k

k∑

j=1

Mj .

For m we propose the unbiased estimator:

(2.2) m̂ = M0 = X ..

For each policy j, the empirical variance:

(2.3)
1

t− 1

t∑
r=1

(Xjr −Mj)2

is an unbiased estimator of V ar(Xjr|θj), and thus:

(2.4) ŝ2 =
1

k(t− 1)

k∑

j=1

t∑
r=1

(Xjr −Mj)2

is an unbiased estimator of s2. The empirical variance:

(2.5)
1

k − 1

k∑

j=1

(Mj −M0)2
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is an unbiased estimator of V ar(Mj), and as:

(2.6) V ar(Mj) =
ŝ2

t
+ a,

we introduce the unbiased estimator:

(2.7) â =
1

k − 1

k∑

j=1

(Mj −M0)2 − ŝ2

t

for a. This estimator has the weakness that it may take negative values whereas a is
non - negative. Therefore, we replace a by the estimator:

(2.8) a∗ = max(0, â),

thus losing unbiasedness, but gaining admissibility. Note that m̂, ŝ2 and a∗ are con-
sistent as k → +∞.

3 The credibility estimator

Let us look a bit at the credibility estimator (1.3). This estimator has been criticized
because it gives the claim amounts from all previous years the same weight; intuitively
one should believe that new claims should have more weight than old claims. However,
as the claim amounts of different years were assumed to be exchangeable, it was only
reasonable that the claim amounts should have equal weights. The following model
(which is called ”Recursive credibility estimation”) is an attempt to amend for this
intuitive weakness, and thus an application of the model from Section 1. We assume
that X1, X2, . . . are conditionally independent given an unknown random sequence
θ = {θi}+∞i=1 , and that for all i Xi depends on θ only through θi. This means that for
each year i there is a separate risk parameter θi containing the risk characteristics of
the policy in that year. The model of Section 1 appears as a special case by assuming
θi = θ1 for all i. We assume that:

E(Xi|θi) = µ(θi)

with the function µ independent of i. Assumption (3.1):

(3.1) Cov[µ(θi), µ(θj)] = ρ|i−j|λ

with 0 < ρ < 1 and λ > 0 (λ greater than zero), means that the correlation between
claim amounts from different years decreases when the time distance between the
years increases, which is intuitively appealing. Furthermore that:

µ = E[µ(θi)]

ϕ = E[V ar(Xi|θi)]

λ = V ar[µ(θi)]

for all i.
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Our motivation for introducing the present model was that we wanted new
claims to have more weight than older claims. The following theorem shows that this
wish has been satisfied.

Theorem 3.1. Let the coefficients αt0, αt1, . . . , αtt be defined by

µ̂(θt+1) = αt0 +
t∑

j=1

αtjXj

and assume that ρ < 1. Then

(3.2) 0 < αt1 < αt2 < . . . < αtt < 1.

4 Risk volumes

In the simple model of Section 1 we assumed that the risk volume was the same for
all years. Often, in particular in reinsurance, one wants to allow for varying risk
volumes, and for that purpose we will introduce the credibility model incorporating
risk volumes. We consider a ceded insurance portfolio. Let Sj denote the total claim
amount of year j and Pj some measure of the risk volume in year j. By the loss ratio
of year j we shall mean Xj = Sj/Pj . We assume that X1, X2, . . . are conditionally
independent given an unknown random risk parameter θ, that:

E(Xj |θ) = µ(θ)

independent of j, and that

(4.1) V ar(Xj |θ) =
s2(θ)
Pj

, j = 1, t.

We introduce the structural parameters:

µ = E[µ(θ)], ϕ = E[s2(θ)], λ = V ar[µ(θ)].

The assumption (4.1) is perhaps most reasonable if Pj is the number of risks in
the portfolio in year j. If we assume that the claim amounts Yj1, . . . , PjPj of the Pj

risks in year j are conditionally independent and identically distributed given θ, then:

V ar(Xj |θ) = V ar


 1

Pj

Pj∑

k=1

Yjk|θ

 =

V ar(Yj1|θ)
Pj

,

and (4.1) boils down to the assumption that

V ar(Yj1|θ) = s2(θ)

independent of j. We have the following result.

Theorem 4.1. The credibility estimator µ̂(θ) of µ(θ) based on
X ′ = (X1, X2, . . . , Xt) is given by

(4.2) µ̂(θ) =
P

P + K
Xt +

K

P + K
µ

with P =
t∑

j=1

Pj , Xt =
1
P

t∑

j=1

PjXj , K =
ϕ

λ
.
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5 Variation of E[V ar(Xi|θ)]
In Section 4 we allowed E[V ar(Xi|θ)] to vary. In the present section we are going to
allow E(Xj) to vary. Let X = (X1, . . . , Xt)′ be an observed random (t × 1) vector
and θ an unknown random risk parameter. Instead of assuming time independence
in the net risk premium:

(5.1) µ(θ) = E(Xj |θ), j = 1, t

one could assume that the conditional expectation of the claims on a contract changes
in time, as follows:

(5.2) µj(θ) = E(Xj |θ), j = 1, t.

Section 5 contains a description of the credibility regression model allowing for
effects like inflation. Often it is unrealistic to assume that, given θ, the X ′ =
(X1, . . . , Xt) are i.i.d.. To avoid this restriction, we will introduce the regression
technique. The variables describing the contract are (θ,X ′). Using the conventions
for matrix and vector notation, we have as a direct generalization of the Bühlmann
hypothesis:

µj(θ) = E(Xj |θ), j = 1, t

or

(5.3) µ(t,1)(θ) = E(X|θ) = (µ1(θ), . . . , µt(θ))′.

We restrict the class of admissible functions µj(·) to:

(5.4) µ(t,1)(θ) = x(t,n)β(n,1)(θ)

where x(t,n) is a matrix given in advance, the so - called design matrix, having full rank
n ≤ t and where the β(n,1)(θ) are the unknown regression constants. It is assumed
that the matrices:

(5.5) Cov[β(n,1)] = a = a(n,n)

(5.6) E[Cov(X|θ)] = Φ = Φ(t,t)

are positive definite. We finally introduce:

(5.7) b = b(n,1) = E[β(n,1)(θ)].

So, let:

(5.8) µj(θ) = x′jβ(θ),

where the non - random (1 × q) vector x′j is known, and let µ̂j(θ) be the credibility
estimator of µj(θ) based on X ′, with j = 1, t.

Theorem 5.1. The credibility estimator µ̂j(θ) is given by:

(5.9) µ̂j(θ) = x′j [Zb̂ + (I − Z)b], j = 1, t,
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with:

b̂ = b̂
(q,1)

= (x′Φ−1x)x′Φ−1X ← is the best linear θ − unbiased estimator of β(θ),

Z = Z(q×q) = ax′Φ−1x(I + ax′Φ−1x)−1 ← the resulting credibility factor.

Remark 5.1. Zb̂ + (I − Z)b is the credibility estimator of β(θ).
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