2001年5月

Atomic Energy Science and Technology

文章编号:1000-6931(2001)03-0207-04

金属铀与 Ha 表面化学行为的 XPS 研究

伏晓国,汪小琳,俞 勇,赵正平

(中国工程物理研究院,四川 绵阳 621900)

摘要:采用 X 射线光电子能谱(XPS)分析研究了金属铀的清洁表面在 100 和 200 时与 H₂ 作用的 表面化学行为。通入 12.0 Pa ·s 口 H₂ 即可观察到明显的氢化反应,UH₃ 的 U $4f_{7/2}$ 峰结合能为 378.7 eV。温度由 100 升高至 200 有利于 UH₃ 生成。深度分析表明:清洁的金属铀表面与 H₂ 作用后,表面层结构由表向里依次为 UO₂、UH₃ 和 U。

关键词:铀;H2;X射线光电子能谱

中图分类号:O614.62 文献标识码:A

为探索有益于核材料表面钝化或缓解腐蚀的有效气体环境,国内外对 U-O₂、U-H₂O(汽) 和 U-CO 等体系的表面反应进行了深入研究^[1,2]。就 U-H₂ 体系而言,国外曾对块状铀在高温 (0~500)、高压(10²~10⁷ Pa)条件下的表面氢化反应动力学进行了深入的研究^[3,4],但运用 XPS 研究金属铀在氢气气氛中的表面化学行为则报道较少^[5],有关金属铀的表面氢化反应机 理有待于进一步系统研究。

国内曾用 XPS 研究铀的氧化物及金属表层在 H₂ 气氛中的表面化学行为^[6,7]。本工作拟运用 XPS 研究 100 和 200 时金属铀的新鲜清洁表面在 H₂ 气氛中的表面化学行为。

1 实验

1.1 试剂与仪器

金属铀为低碳贫化铀,密度为 19.03 g/cm³,纯度为 99.97 %。实验用 H₂ 由充分活化的 铀床加热至(485 ±5) 提供,纯度优于 99.999 %;其它化学试剂均为分析纯。实验在 PHF 5600 ESCA 谱仪上进行。谱仪分析室(SAC)本底真空优于 6.0 ×10⁻⁸ Pa,Mg 的 K (1 253.6 eV)射线为激发源,发射电压 15 kV,功率 300 W,用 Ag 3 d_{5/2}峰(368.26 eV)标定 ESCA 谱仪,

收稿日期:2000-01-03;修回日期:2000-03-22

基金项目:国家自然科学基金资助项目(29871026);中国工程物理研究院科学基金资助项目(96Z055) 作者简介:伏晓国(1973 —),男,四川阆中人,助理研究员,硕士,核燃料循环与材料专业

分辨率为 0.8 eV。通过闸阀与谱仪分析室相连的样品处理室(STC)的本底真空优于 3.0 × 10⁻⁷ Pa。样品的温度由自动恒温系统控制,加热点在样品底座。

1.2 实验方法

金属铀试样 (ϕ 10 mm ×2 mm) 经 XPS 探测无明显杂质。试样经金相砂纸分级打磨、机械 抛光、无水乙醇洗涤后,送入分析室。用氩离子枪清洁铀表面,直至探测不到 C、O 等元素。将 试样转移至样品处理室,分别在 100 和 200 下通入 H₂ 充 H₂ 完毕后,将试样转移至分析室 进行 XPS 分析。当累计通入 174.2 Pa s H₂ 后,用氩离子束原位溅射获取试样表面层沿深度 方向的信息分布。氩离子溅射时,动能 3 keV,束流 6 µA,束斑 2.5 mm ×2.5 mm。

1.3 数据处理

XPS 的数据采集、保存和处理均在与 ESCA 谱仪相连的 Apollo 小型计算机上完成,原子百分浓度采用根对灵敏度因子法进行计算,不易分离的谱峰以相应峰形进行多峰拟合。

2 结果与讨论

2.1 铀在 H 气氛中表面反应的 XPS 分析

100 下铀的新鲜清洁表面通入 H₂ 后的 U 4 $f_{7/2}$ 拟合图谱示于图 1。金属铀与 H₂ 作用 后 ,U 4 $f_{7/2}$ 峰存在 3 种化学状态 :UO₂ ,结合能为 380.5 eV ;UH₃ ,结合能约为 378.7 eV ;金属 铀 ,结合能为 377.2 eV。通入 12.0 Pa ·s H₂ 后 ,即可观察到表面有较明显的氢化反应 ,随 H₂ 的增加 ,UH₃ 所在峰位强度增大 ,氢化反应更加明显。由于 H₂ 中的微量 H₂O (汽)和 O₂ 对铀 十分敏感 ,铀的氧化反应也相当显著^[7] ,谱图中 UO₂ 的峰强度最大 ,且随 H₂ 的增加而加强。

2.2 温度对 UH。体系表面氢化反应和氧化反应的影响

200 下通 H₂ 后的 U 4 $f_{7/2}$ 峰仍存在 3 种化学状态 :UO₂、UH₃ 和金属铀。表面发生氢化 反应的同时也发生氧化反应。图 2 是不同温度下 UO₂、UH₃ 和 U 含量与 H₂ 进气量的关系。 由图 2 可知 :随着 H₂ 进气量的增加 ,铀表层 UO₂ 和 UH₃ 的含量递增 ,金属铀的含量相应递 减。当通入 89.1 Pa s H₂ 后 ,UO₂ 的含量基本上不再变化 ,U 的含量则减少 ,而 UH₃ 的含量 相应增加。这表明 ,在 XPS 谱仪信息深度范围内的金属铀通过氢化反应逐渐转变成 UH₃。温 度升高对 U-H₂ 体系氧化反应和氢化反应速率均有影响。当在 100 和 200 下通入12.0 Pa s H₂ 时 ,UO₂ 的含量分别为 57.1 %和 58.3 % ,UH₃ 含量分别为 3.8 %和 6.5 % ,温度对氢化 反应的影响较氧化反应显著。随着 H₂ 进气量进一步增大,UO₂ 的含量逐渐趋于平衡,当通入 126.4 Pa s H₂ 时,100和200 下的 UH₃ 含量分别为10.0 %和11.9 %。

2.3 UH 体系氢化反应机理探索

通入174.2 PasH2后,金属铀表面层沿深度(以溅射时间衡量)方向的信息分布示于图 3, 200 时溅射至铀基体需 10 min,100 时仅需 5 min。因此,200 时已-H,体系的氧化 反应和氢化反应速率均较 100 时为大。200 时生成的 UH₃ 明显多于 100 时的.100 时溅射 2 min 后 UH_3 含量急剧下降 .m 200 溅射 5 min 后 UH_3 的相对含量仍有 10 %。因 时 UH₃ 在表面层中所处的位置深得多,即温度由 100 升高至 200 有利于 UH₃ 此.200 的生成。温度升高,使得氧化反应速率增大,形成的 UO2 层相对较厚。在 200 和100 时. UO2 随着溅射时间的增加而减小,U则随之增加。随着溅射时间增加,UH3 含量先增加,而后 变小,有一极大值。这表明:UH;主要分布在 UO;和金属铀的过渡层之间,即金属铀发生氢化 反应后的表层结构由表向里依次为 UO_{2} 、 UH_{3} 和 U_{0} UH_{3</sub> 的形成大致经历 3 个过程:1) H_{2} 分 子通过物理吸附停留在金属铀清洁表面,随后与金属铀通过化学吸附形成共价型原子氢,微量 O₂和水汽对铀十分敏感,优先与铀形成致密的 UO₂ 薄膜;2) 共价型原子氢溶解变成溶解型原 子氢并通过 UO2 的晶格间隙向铀基体扩散。UH3 比 UO2 分布较深表明氢扩散透过氧化膜, 但氢化反应中氢透过氧化膜扩散的具体行为和方式不清楚;3) 原子氢与金属铀形成 UH3。

100

图 2 UO_2 、UH₃ 和 U 含量与 H₂ 暴露量的关系 Fig. 2 Content variation of UO₂, UH₃ and U with exposure of H₂ at 100 and 200 100 : $-UO_2$, $-UH_3$, -U;

 $: \mathbf{\nabla} - \mathbf{U}\mathbf{O}_2, - \mathbf{U}\mathbf{H}_3, + - \mathbf{U}$

8 5/16 6			
₩ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	X	L	
	4 6 t/min	8	10

图 3 铀表层氢化反应后(通入 174.2 Pa s H₂) UH₃、UO₂和U的含量随溅射时间 t 的变化 Fig. 3 XPS depth profile of uranium surface layer after exposure to 174.2 Pa s H₂ 100 : —UO₂, —UH₃, —U; 200 : ▼---UO₂, —UH₃, + ---U

3 结论

200

1) 100 和 200 时,在金属铀发生氢化反应的同时,受反应体系中的微量 O_2 和 H_2O (汽) 的影响发生了显著的氧化反应。

2) UH_3 和 UO_2 的含量均随 H_2 暴露量的增大而增加,温度由 100 升高至 200 有利于 氢化反应的进行。

3) 深度分析表明:清洁的金属铀表面与 H_2 作用后表面层结构由表向里依次为 UO_2 、 UH_3 和 U_{\circ}

傅依备、武胜、谢仁寿、邹觉生和柏朝茂研究员等对本工作给予了大力帮助,黄文莉等为本 工作制备了贫铀样品,在此一并致谢。

参考文献:

- Colmenares CA. Oxidation Mechanisms and Catalytic Properties of the Actinides[J]. Prog Solid State Chem, 1984, 15:257 ~ 364.
- [2] Mclean W, Colmenares CA, Smith RL. Electrom spectroscopy Studies of Clean Thorium and Uranium Surfaces Chemisorption and Initials Stages of Reaction With O₂, CO and CO₂ [J]. Phys Rev B, 1982, 25:8 ~ 23.
- [3] Bloch J, Mintz MH. Types of Hydride Phase Development in Bulk Uranium and Holmium[J]. J Nucl Mater, 1982, 110:251~255.
- [4] Bloch J, Cimca F, Kroup M, et al. The Initial Kinetics of Uranium Hydride Formation Studied by a Hotstage Microscope Technique[J]. J Less Common Met, 1984, 103:163~171.
- [5] Allen GC, Stevens JCH. The Behavior of Uranium Metal in Hydrogen Atmospheres[J]. J Chem Soc Faraday Trans , 1988, 84(1):165~170.
- [6] Wang Xiaolin, Fu Yibei, Xie Renshou. Surface Chemical Behavior of Triuranium Octaoxide in the Atmosphere of Carbon Monoxide and Hydrogen[J]. J Nucl Mater, 1998, 257:287~294.
- [7] 汪小琳,傅依备,谢仁寿,等. H₂ 气氛中铀金属表面反应的 XPS 研究[J]. 核化学与放射化学,1998,20 (2):85~89.

Research on the Surface Chemical Behavior of Uranium Metal in Hydrogen Atmosphere by XPS

FU Xiao-guo, WANG Xiao-lin, YU Yong, ZHAO Zheng-ping

(China Academy of Engineering Physics, P. O. Box 919-71, Mianyang 621900, China)

Abstract : The surface chemical behavior of clean uranium metal in hydrogen atmosphere at 100 and 200 is studied by X-ray photoelectron spectroscopy (XPS), respectively. It leads to hydriding reaction when the hydrogen exposure is 12.0 Pa ·s , and the U $4f_{7/2}$ binding energy of UH₃ is found to be 378.7 eV. The higher temperature (200) is beneficial to UH₃ formation at the same hydrogen exposures. XPS elemental depth profiles indicate that the distribution of uranium surface layer is UO₂ , UH₃ and U after exposure to 174.2 Pa ·s hydrogen. **Key words :**uranium ; hydrogen gas ; X-ray photoelectron spectroscopy