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supported by a segment
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Abstract. Given are two strictly positive constants a and k. We show
that if a ≥ 3.92k then there exists an open and bounded set Ω in R2

which contains strictly the line segment C (C = [−1, 1] × {0}) such that
the following overdetermined problem has a solution

−∆u = aδC in Ω, u = 0 and − ∂u

∂ν
= k on ∂Ω.

Here ν is the outward normal vector to ∂Ω and δC is the uniform density
supported by C.

M.S.C. 2000: 35J05.
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1 Introduction and main theorem

Let µ be a positive measure with compact support Kµ and denote by Cµ the convex
hull of Kµ. Consider the following free boundary problem:

(FBµ)





Find a domain Ω of RN which strictly contains Kµ

and a function uΩ ∈ H1
0 (Ω) such that:



−∆uΩ = µ in Ω
uΩ = 0 on ∂Ω
−∂uΩ

∂ν = k on ∂Ω (overdetermined condition).

where ν is the outward normal vector to ∂Ω and k ∈ R∗+.

This problem is known as the quadrature surfaces free boundary problem and
arises in many areas of physics (free streamlines, jets, Hele-shaw flows, electromagnetic
shaping, gravitational problems etc.) It has been intensively studied from different
points of view, by several authors. For more details about the methods used for
solving this problem see the introduction in [6].

In [2], the authors gave sufficient condition of existence for the problem (FBµ)
with µ ∈ L2

(
RN

)
(N ≥ 2) and Kµ has a nonempty interior.
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This paper concerns the case where N = 2 and µ = aδ[−1,1]×{0} (a > 0).

By using the moving plane method [5], H. Shahgholian showed in [9] that if the
problem (FBµ) admits a solution (Ω, uΩ) such that Ω is of class C2 and uΩ ∈ C2(Ω),
then all the inward normals at the boundary ∂Ω of Ω meet Cµ.Since we relate the
existence of a solution for Problem (FBµ) to the existence of a minimum of some
shape optimization problem, it is natural to resolve this one in a class of domains
with this geometric normal property (see below).

In [1], the author studied bounded domains with the property he denoted by C-
gnp (Geometric Normal Property w.r.t C). Namely, for a given compact convex set
C, the bounded domain ω satisfies C-gnp if

1. ω ⊃ int(C),

2. ∂ω \ C is locally Lipschitz,

3. for any c ∈ ∂C there is an outward normal ray ∆c such that ∆c∩ω is connected,
and

4. for every x ∈ ∂ω \ C the inward normal ray to ω (if exists) meets C.

Let D be a ball of R2 with large radius in order to contain all the sets we will use.
Let C = [−1, 1]× {0} and set

OC = {ω ⊂ D : ω satisfies C − gnp} ,

and

J(ω) = −1
2

∫

ω

|∇uω(x)|2dx +
k2

2

∫

ω

dx,

where uω is the solution of the following Dirichlet problem P (ω) :

−∆uω = aδC in ω, uω = 0 on ∂ω.

Remark 1.1. δC is a distribution belonging to H−1 (ω) and thus the solution uω of
P (ω) is a priori only in H1

0 (ω) . Nevertheless uω is harmonic (and thus it is C∞)
outside the line segment C and one can prove that it is continuous in ω.

Our aim here is to prove the following

Theorem 1.2. 1. If a ≥ 3.92k then there exists Ω ∈ OC which contains strictly
C and such that J (Ω) = min

ω∈OC

J (ω) and

{ −∆uΩ = aδC in Ω
uΩ = 0 on ∂Ω
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2. If Ω is of class C2 then

−∂uΩ

∂ν
= k on ∂Ω.

For the first point, we will use the shape optimization tool in order to get the
minimum Ω of J then the Standard Maximum Principle and the Fourier expansion
will enable us to have a sufficient condition that C is strictly contained in Ω. For the
second point, the shape derivative together with the characterization of the C-gnp
(see Proposition 2.8 below) will give the overdetermined condition.

Remark 1.3. Theorem 1.2 says that if the line segment in the complex plane is
provided with a uniform density above a certain level, then there will exist a domain
containing compactly the line segment such that the given measure on the line segment
is equigravitational to the arc-length measure of the domain.

2 Preliminary results

Definition 2.1. Let K1 and K2 be two compact subsets of D. We call a Hausdorff
distance of K1 and K2 (or briefly dH(K1,K2)), the following positive number:

dH(K1,K2) = max [ρ(K1,K2), ρ(K2,K1)] ,

where ρ(Ki,Kj) = max
x∈Ki

d(x,Kj) i, j = 1, 2 and d(x,Kj) = min
y∈Kj

|x− y| .

Definition 2.2. Let ωn be a sequence of open subsets of D and ω be an open subset of
D. Let Kn and K be their complements in D. We say that the sequence ωn converges
in the Hausdorff sense, to ω (or briefly ωn

H−→ ω) if

lim
n→+∞

dH(Kn,K) = 0.

Definition 2.3. Let ωn be a sequence of open subsets of D and ω be an open subset
of D. We say that the sequence ωn converges in the compact sense, to ω (or briefly
ωn

K−→ ω) if

• every compact subset of ω is included in ωn, for n large enough, and

• every compact subset of ωc is included in ωc
n, for n large enough.

Definition 2.4. Let ωn be a sequence of open subsets of D and ω be an open subset
of D. We say that the sequence ωn converges in the sense of characteristic functions,
to ω (or briefly ωn

L−→ ω) if χωn converges to χω in Lp
loc(RN ), p 6= ∞, (χω is the

characteristic function of ω).

Theorem 2.5. If ωn ∈ OC , then there exists an open subset ω ⊂ D and a subse-
quence (still denoted by ωn) such that

1. ωn
H−→ ω
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2. ωn
K−→ ω

3. χωn converges to χω in L1(D)

4. ω ∈ OC

5. un converges strongly in H1
0 (D) to uω (un and uω are respectively the solutions

of P (ωn) and P (ω) ).

Furthermore, the assertions (1), (2) and (3) are equivalent.

For the proof of this theorem, see Theorem 3.1 and Theorem 4.3 in [1]. For the
equivalence between (1), (2) and (3), see Propositions 3.4, 3.5, 3.6, 3.7 and 3.8 in [1].
Notice that, in general, we do not have the equivalence between (1), (2) and (3) (see
for instance [7]).

Definition 2.6. Let C be a convex set. We say that an open subset ω has the C-sp,
if and only if

1. ω ⊃ int(C),

2. ∂ω \ C is locally Lipschitz,

3. for any c ∈ ∂C there is an outward normal ray ∆c such that ∆c∩ω is connected,
and

4. ∀ x ∈ ∂ω \ C Kx ∩ ω = f¡ ,where Kx is the closed cone defined by
{
y ∈ RN : (y − x).(z − x) ≤ 0, ∀ z ∈ C

}
.

Remark 2.7. Kx is the normal cone to the convex hull of C and {x}.
Proposition 2.8. ω has the C-gnp if and only if ω satisfies the C-sp.

For the proof of this proposition see Proposition 2.3 in [1].

Theorem 2.9. Let L be a compact subset of RN . Let fn be a sequence a functions
defined on L. We assume that the fn are of class C3 and

∣∣∣∣
∂fn

∂xi

∣∣∣∣ ≤ M,

∣∣∣∣
∂2fn

∂xi∂xj

∣∣∣∣ ≤ M,

∣∣∣∣
∂3fn

∂xi∂xj∂xk

∣∣∣∣ ≤ M,

where M is a strictly positive constant and is independent of n.
Define a sequence Ωn, by Ωn = {x ∈ L : fn (x) > 0} and suppose there exists

α > 0 such that |fn (x)| + |∇fn (x)| ≥ α for all x in L. If the Ωn have the C-gnp,
then there exists Ω of class C2 and a subsequence (still denoted by Ωn) such that Ωn

converges in the compact sense, to Ω.

For the proof of this theorem, see [2].

Remark 2.10. The aim of Theorem 2.9 is to give the C2 regularity of the minimum
Ω of J defined below. This in order to use the shape derivative and so to resolve
Problem (FB)µ. The proof of this theorem uses the following lemma
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Lemma 2.11. Let L be a compact subset of RN . Let fn be a sequence of functions
defined as Theorem 2.9. Suppose that Ω is an open subset of L such that

Ω = {x ∈ L : h(x) > 0} and
∂Ω = {x ∈ L : h(x) = 0} ,

where h is a continuous function defined in L. If the fn converge uniformly to h in
L, then the Ωn converge in the compact sense, to Ω.

3 Proof of Theorem 1.2

3.1 Ω contains strictly C

Using the variational formulation of the Dirichlet problem P (ω), we get
∫

ω

|∇uω(x)|2dx = a

∫

C

uω.

If uD denotes the solution of the Dirichlet problem P (D), by the maximum principle,
0 ≤ uω ≤ uD and so

J(ω) = −a

2

∫

C

uω +
k2

2

∫

ω

dx ≥ −a

2

∫

D

uD,

and inf J exists. Let Ωn be a minimizing sequence in OC . One can choose Ωn as in
Theorem 2.9 above and get the existence of a subsequence Ωnk

and of Ω which is of
class C2 such that Ωnk

K−→ Ω. Then, from Theorem 2.5, item 1 implies Ωnk

H−→ Ω ,
item 4 gives Ω ∈ OC and by item 3

∫
Ωnk

dx converges to
∫
Ω

dx. Now if unk
and uΩ

are respectively the solutions of P (Ωnk
) and P (Ω) then item 3 together with item

5 of Theorem 2.5 implies that
∫
Ωnk

unk
converges to

∫
Ω

uΩ when k tends to infinity.
Hence J(Ω) = min

ω∈OC

J(ω).

Now suppose, by contradiction, that ∂Ω intersects C at a point c. As we will
reason locally, we can suppose that c is in the origin. Let ε > 0, put Ωε = Ω∪B(0, ε)
and Iε = [−ε, ε] × {0}. Let uΩε be the solution of the Dirichlet problem P (Ωε). By
the maximum principle we have uΩε > uΩ in Ω. Then, as (C ∩ Ω) \ Iε ⊂ Ω and
uΩ = 0 ≤ uΩε on C \ Ω, we get

−a

2

∫

C\Iε

uΩε < −a

2

∫

C\Iε

uΩ.

Therefore

J(Ωε)− J(Ω) ≤ k2

2

(∫

Ωε

dx−
∫

Ω

dx

)
+

a

2

∫

Iε

uΩ − a

2

∫

Iε

uΩε(3.1)

≤ πk2ε2

2
+

a

2

∫

Iε

uΩ − a

2

∫

Iε

uΩε .(3.2)

To get a contradiction of our assumption, we need to prove the two following lemmas.
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Lemma 3.1.

(3.3)
∫

Iε

uΩ ≤ (k + ε)ε2.

Proof. Since 0 ∈ ∂Ω ∩ C, the optimality condition gives: −∂uΩ
∂ν (0) ≤ k (see Remark

3.3 below). Now, as uΩ = v − a
2 |y| where v is harmonic in Ω then uΩ is of class C1on

the closed higher half-plane. Consequently, for all ε > 0 there is a neighborhood Vε of
0 in the higher half-plane, such that

(3.4) ∀ x ∈ Vε : |∇uΩ(x)| ≤ k + ε.

The Mean-Value Theorem applied to the line segments ((−h, 0), (0, 0)) and ((h, 0), (0, 0))
(0 < h < ε), (3.4) implies

uΩ(−h, 0) ≤ (k + ε)h and uΩ(h, 0) ≤ (k + ε)h.

Therefore ∫ ε

−ε

uΩ(h, 0)dh ≤ (k + ε)ε2

which gives the inequality (3.3) .

Lemma 3.2.

(3.5)
∫

Iε

uΩε >
2aε2

π

[
−1

2
+

π2

8

]
.

Proof. Let vε be the solution of the following Dirichlet problem

(Pε)
{ −∆vε = aδIε

in B(0, ε)
vε = 0 on ∂B(0, ε).

By the maximum principle, we have uΩε > vε in B(0, ε) and thus
∫

Iε

uΩε >

∫

Iε

vε.

Let w = −a
2 |y| be the fundamental solution of −∆w = aδIε . If wε = vε − w then wε

satisfies: 



∆wε = 0 in B(0, ε)

wε =
aε

2
| sin(θ)| on ∂B(0, ε).

Since wε(r, 0) = vε(r, 0) for all r ∈ [0, ε], then
∫

Iε

vε =
∫

Iε

wε.

But
wε(r, θ) =

∑

n≥0

anrn cos(nθ) +
∑

n≥1

bnrn sin(nθ),
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wε(ε, θ) =
aε

2
| sin(θ)|

and
| sin(θ)| = 2

π
− 4

π

∑

p≥1

1
(2p)2 − 1

cos(2pθ)

then

wε(r, θ) =
a

π


ε− 2

∑

p≥1

ε1−2p

(2p)2 − 1
r2p cos(2pθ)


 .

Therefore
∫

Iε

wε(r, 0) dr =
∫ ε

−ε

(a0 +
∑

p≥1

a2pr
2p)dr

= 2a0ε +
∑

p≥1

2a2pε
2p+1

2p + 1

=
2aε2

π


1− 2

∑

p≥1

1
(2p + 1)((2p)2 − 1)


 .

Now, since
∑

p≥1

1
(2p + 1)((2p)2 − 1)

=
3
4
− π2

16

then ∫

Iε

uΩε >

∫

Iε

wε(r, 0)dr =
2aε2

π

[
−1

2
+

π2

8

]
.

End of the proof of Theorem 1.2
Now thanks to (3.3) and (3.5), the inequality 3.2 becomes

J(Ωε)− J(Ω) <
1
2

(
ak + πk2 − π2 − 4

4π
a2

)
ε2 +

a

2
ε3.

or again

J(Ωε)− J(Ω) <
k2

2

(
a

k
+ π − 0.46

a2

k2

)
ε2 +

a

2
ε3.

If we put t = a
k , the sign of

P (t) = −0.46t2 + t + π

is negative if t ≥ 3.92.
It follows that if a ≥ 3.92k then J(Ωε) < J(Ω) which contradicts the minimality

of Ω.
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3.2 The overdetermined condition: −∂uΩ

∂ν
= k on ∂Ω

Put J(Ω) = 1
2

[
J1(Ω) + k2V (Ω)

]
where

J1(Ω) = −
∫

Ω

|∇uΩ(x)|2dx,

and
V (Ω) =

∫

Ω

dx.

Let us consider a deformation field θ ∈ C2
(
RN ;RN

)
. Since Ω is of class C2, then the

classical Hadamard formula gives the derivative of J with respect to the displacement
θ (or in the direction θ) (see [8, 10]).

dJ1(Ω; θ) = −
∫

∂Ω

(
−∂uΩ

∂ν

)2

θ · ν dσ − 2
∫

Ω

∇uΩ · ∇u′(x)dx

where ν is the outward normal vector to ∂Ω and u′ the derivative of uΩ which is
defined as the solution of the following problem:

(3.6)

{ −∆u′ = 0 in Ω

u′ = −∂uΩ

∂ν
θ · ν on ∂Ω,

and
dV (Ω; θ) =

∫

∂Ω

θ · ν dσ.

Then

(3.7) dJ(Ω; θ) =
1
2

[∫

∂Ω

k2θ · ν dσ −
∫

∂Ω

(
−∂uΩ

∂ν

)2

θ · ν dσ

]
−

∫

Ω

∇uΩ · ∇u′(x)dx.

Using the Green formula,




dJ(Ω; θ) = 1
2

[∫
∂Ω

k2θ · ν dσ − ∫
∂Ω

(−∂uΩ
∂ν

)2
θ · ν dσ

]

+
∫
Ω

uΩ∆u′(x)dx− ∫
∂Ω

uΩ
∂u′

∂ν
θ · ν dσ.

According to (3.6) and (3.7) ,

dJ(Ω; θ) =
1
2

[∫

∂Ω

k2θ · ν dσ −
∫

∂Ω

(
−∂uΩ

∂ν

)2

θ · ν dσ

]
.

Now since Ω is the minimum of J , then dJ(Ω; θ) ≥ 0 for every admissible displacement
θ. Therefore

(3.8)
∫

∂Ω

(
k2 −

(
−∂uΩ

∂ν

)2
)

θ · ν dσ ≥ 0 for every admissible displacement θ.
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We mean by admissible displacement the one which allows us to keep the C-gnp or
the C-sp (according to Proposition 2.8 above ). Since Ω has the C-gnp, it satisfies
the C-sp. This together with the fact that C is strictly contained in Ω implies

∀ x ∈ ∂Ω Kx ∩ Ω = f¡ .

For t sufficiently small, let Ωt = Ω + tθ (Ω) be the deformation of Ω in the direction
θ. Let xt ∈ ∂Ωt. There exists x ∈ ∂Ω s.t xt = x + tθ(x). Using the definition of
Kxt

and the equality above, it is obvious to get (for t small enough and for every
displacement θ) :

∀ xt ∈ ∂Ωt Kxt
∩ Ωt = f¡ ,

which means that Ωt satisfies the C-sp (and so the C-gnp) for every displacement θ
when t is sufficiently small. Then, using θ and −θ, and the fact that the set of the
functions θ · ν is dense in L2(∂Ω), we deduce

−∂uΩ

∂ν
= k on ∂Ω.

Remark 3.3. In the case where ∂Ω ∩ C 6= f¡ , if there exists x ∈ ∂Ω ∩ C such
that θ (x) · ν (x) ≤ 0 then the inward normal at xt doesn’t intersect the line segment
C. So to keep the C-gnp the displacements θ must satisfy θ (x) · ν (x) ≥ 0 for all
x ∈ ∂Ω ∩ C. So (3.8) implies

−∂uΩ

∂ν
(x) ≤ k ∀ x ∈ ∂Ω ∩ C.

4 Final remarks

Remark 4.1. Using the notion of quadrature domains, B. Gustafsson and H. Shahgho-
lian showed in [6] that in the case where µ = aδ[−1,1]×{0} the problem (FBµ) admits
a solution if a ≥ 24πk.

Remark 4.2. It is not hard to see that in the case where µ = aδ[−1,1]×{0}, if
(Ω, uΩ) is a regular solution of the problem (FBµ) then a > 2k. Question: Is
the converse true? The answer seems to be no.

Remark 4.3. Set
OP = {ω ∈ OC and |∂ω| ≤ cst} .

where |∂ω| denotes the perimeter of ω. Using the same arguments as above, one can

prove that:

1. If a ≥ 3.92k then there exists Ω ∈ OP which contains strictly C and such that
J (Ω) = min

ω∈OP

J (ω) and

{ −∆uΩ = aδC in Ω
uΩ = 0 on ∂Ω
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2. If Ω is of class C2 then there exists a Lagrangian multiplier λ (Ω) s.t

−∂uΩ

∂ν
=

√
λ (Ω) H∂Ω + k2 on ∂Ω.

where H∂Ω is the mean curvature of ∂Ω.

Remark 4.4. In [3], the authors gave sufficient condition of existence for the following
free boundary problem




−∆uΩ = µ in Ω
uΩ = 0 on ∂Ω
−∂uΩ

∂ν =
√

λH∂Ω + k2 on ∂Ω

where Suppµ has a nonempty interior and λ and k are two positive constants.

References

[1] M. Barkatou, Some geometric properties for a class of non Lipschitz-domains,
New York J. of Math. 8 (2002), 189-213.

[2] M. Barkatou, D. Seck and I. Ly, An existence result for a quadrature surface free
boundary problem, CEJM 3 (1) (2005), 39-57.

[3] M. Barkatou, D. Seck and I. Ly, An existence result for an interior electromag-
netic casting free boundary problem, CEJM 4 (4) (2006), 573-584.

[4] D. Gilbarg and N. S. Trudinger, Elliptic partial equations of second order,
Springer-Verlag 1983.

[5] G. Gidas, Wei-Ming Ni, L. Nirenberg, Symmetry and related properties via the
maximum principle, Comm. Math. Phys. 68 (1979), 209-300.

[6] B. Gustafsson and H. Shahgholian, Existence and geometric properties of solu-
tions of a free boundary problem in potential theory, J. für die Reine und Ang.
Math. 473 (1996), 137-179.

[7] A. Henrot and M. Pierre, Variation et optimisation de formes, une analyse
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