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ABSTRACT

Finite-wavelength instabilities of a coupled density front with zero potential vorticity are found for the single-
layer and the two-layer problems, These instabilities result from the resonance between two distinct waves whose
real phase speeds coalesce. In the single-layer problem, the range of wavenumbers over which this coalescence
takes place decreases with increasing wavenumber; consequently, the instability exponents and the growth rates
also decrease. For shallow lower layers, the coalescence range increases with increasing wavenumber; at large
wavenumbers, the coalescence range becomes continuous, while the instability exponent is approaching a constant
value. The growth rate in the two-layer problem increases, therefore, linearly with wavenumber and the short
waves grow fastest. These short-wave instabilities are qualitatively reminiscent of small-scale features along

coastal fronts and in laboratory experiments.

1. Introduction

Linear instabilities on geostrophic fronts have been
studied extensively in recent years. A common sim-
plification is to regard the vertical structure as consisting
of two layers, each having uniform density, thus re-
placing the continuous density variation with depth by
a hydrostatic matching condition at the interface sep-
arating the two layers. This is a.good approximation
when a region of fast vertical density variation exists.

In a frontal problem, the interface between the two
layers intersects the more-or-less horizontal boundary
of the fluid, e.g., the ocean surface or bottom, along
the so-called free streamline. Away from the free
streamline, the front can either extend to infinity, as
in the Gulf Stream, or it can intersect the surface (or
the bottom ) along a second free streamline. The former
case is that of an isolated front, the latter is called a
coupled front.

Coupled fronts occur in the northward spreading of
Antarctic Bottom Water (AABW) in the South Atlantic
(Whitehead and Worthington 1982) and in the Den-
mark Strait overflow (Smith 1976). A particularly
tractable case of coupled front obtains by assuming
that the potential vorticity is zero throughout the upper
layer. In this case the velocity profile in the upper layer
is linear and hence, by geostrophy, the interface depth

* Permanent affiliation: Hebrew University of Jerusalem.
** Also Institute of Geophysics and Planetary Physics, UCLA.

Corresponding author address: Prof. Michael Ghil, Dept. of At-
mospheric Sciences, UCLA, 405 Hilgard Avenue, Los Angeles, CA
90024-1565.

© 1990 American Meteorological Society

is quadratic. These assumptions allow a rather complete
perturbation analysis to be carried out.

A linear stability analysis for a coupled front with
an infinitely-deep lower layer was carried out by Grif-
fiths et al. (1982, GKS hereafter). They found analyt-
ically an instability for very small wavenumbers, and
extended their study numerically to higher wavenum-
bers. The GKS instability has a finite wavenumber cut-
off, above which no instabilities were found.

In subsequent work, Paldor and Killworth (1987,
hereafter PK) studied the two-layer problem encoun-
tered when the dynamics of the lower layer is taken into
account for arbitrary upper-layer potential vorticity.
Using a combined expansion in both small wavenumber
and large depth ratio, they found another instability to
occur when the lower layer is not very deep. This insta-
bility vanishes when the lower layer becomes sufficiently
deep. On the other hand, PK showed that the long-
wave, GKS instability for a single layer can be extended
analytically to the two-layer problem, but vanishes when
the lower layer is sufficiently shallow. Paldor and Kill-
worth also extended numerically the two-layer growth
rate for both types of long-wave instability to finite
wavenumbers. They showed that the computed growth
rate fits the experimental data of GKS much better than
the single-layer growth rate. The transition between the
GKS instability and the two-layer one of PK occurs at
a large depth ratio of O(10?).

Both the GKS and PK approaches yield essentially
long-wave instabilities. The GKS experiments, how-
ever, indicate that the temporal growth of the insta-
bilities occurs over a wide range of wavenumbers. Much
of the growth takes place at short wavelengths, outside
the range of applicability of either the GKS or the PK
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stability analyses. In this paper we report on short-wave
instabilities of both the single-layer and the two-layer
fronts, which are not an extension of either the GKS
or the PK long-wave instabilities.

These additional instabilities result from a resonance
between two distinct waves, whose phase speeds co-
alesce within a certain wavenumber range. A contin-
uous two-layer instability curve is shown to exist for
large wavenumbers, provided the lower layer is suffi-
ciently shallow. This continuous growth-rate curve
breaks up into separate instabilities with smaller
growth, and eventually vanishes as the lower layer be-
comes deep enough.

The short-wave instabilities obtained here compete,
in a certain depth-ratio range and in the absence of
dissipation, with either the GKS or the PK instability.
A full theory of the observed instabilities will require
the inclusion of nonlinear terms and of dissipation,
which will resolve the competition between linear in-
stabilities and lead to an equilibrated, but probably
chaotic flow regime (Ghil and Childress 1987; Pedlosky
1987).

A first step in this direction was taken by Paldor
(1986), who developed a nonlinear, long-wave theory
for the single-layer front and obtained analytically both
solitary and standing waves of finite amplitude. The
amplitude-wavelength relation of these waves was
shown to be comparable with the experimental results
of GKS. Paldor’s nonlinear evolution equation could,
however, not be integrated numerically, because of the
ill-posedness of certain terms. Hence the effect of the
nonlinear terms on the GKS instability could not be
studied in detail. The equilibration of the linear insta-
bilities by dissipation and the nonlinear terms in the
two-layer problem is under study.

We treat the single-layer problem in section 2 and
two-layer instabilities in section 3. In section 4 we dis-
cuss the relevance of the results to observations of
oceanic frontal flows and to the GKS experiments, and
summarize our findings.

2. Single-layer instabilities
a. Formulation and methodology

The coupled density front of zero potential vorticity
is shown in Fig. 1. The complete formulation of the
single-layer problem was given in GKS and Paldor
(1986). For the reader’s convenience, we recapitulate
here just the governing equation. The nondimensional
eigenvalue equation for the single-layer problem, i.e.,
r—> oo, in Fig. 1, is

(Huy), — k*[H—(U—C)*1u’' =0, (2.1)

with subscripts denoting differentiation. Here u/'(y) is
the amplitude of the downstream velocity perturbation
(into the plane of the paper) having a wavenumber k
and phase speed C, H(y) = —y(y + 1)/2 is the mean
depth of the upper layer and U(y) = y + Y2 is its ve-
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FIG. 1. The coupled front of zero potential vorticity. The interface
depth is parabolic and its maximum value is (1/8)H, where H is a
height scale. The total depth is rH. The lower layer is initially at rest,
while the upper layer has an initial downstream velocity U; which
varies linearly with y. The single-layer problem corresponds to letting
r tend to infinity and the pressure in the lower layer approach zero.
The Denmark Strait overflow and northward spreading of AABW
correspond to an upside-down version of the figure.

locity. The two free streamlines are located, in this for-
mulation, at y = 0 and y = —1. For a complete deri-
vation of this equation see GKS (where the initial scal-
ing is slightly different, so the free streamlines are
located at y = i\/i) and Paldor (1986).

As usual, unstable modes are characterized by a
complex C and for these modes u' is also complex. The
long-wave (GKS) instability is obtained by expanding
1’ and C in a power series with respect to k; once Im(C)
is found analytically for small enough k it can be easily
extended numerically to higher k values. The easiest
way to find Im(C(k)) for all k is to increase k, starting
from a very small value, and at each k use as initial
guess the value of Im(C) found for the previous k.
This procedure works well in a range of k for which
the curve Im(C) versus k is continuous. Beyond the
cutoff value of this range there is no good initial guess,
and GKS found no instability for moderate or large k.

In order to find finite-wavelength instabilities, one
has to employ a numerical procedure that does not
necessitate a good initial guess. The procedure we used
is the following. First, the eigenvalue equation (2.1) is
symmetrized by defining a new independent variable
z = 2y + 1, so that the free streamlines are located at
z = =1 and the equation becomes

[(1 = z*)u];

+ (k?/4)(3z2—1—8Cz + 8C*Hu =0, (2.2)

where u(z) = u'(y).

Assuming kC ~ 1 in the long-wave limit, k — 0,
Eq. (2.2) becomes a Legendre equation with real ei-
genvalues

2kCY? =n(n+1), n=0,1,2,-+-. (2.3)
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The n = 0 mode violates the condition kC ~ 1 and
indeed, for k£ = 0, this mode is associated with the GKS
instability in Eq. (2.2). All other modes of (2.2) are
actually stable, i.e., have C real, when k is sufficiently
small.

To find finite-wavelength instabilities, we have to
solve Eq. (2.2) for arbitrary k and determine those k-
values for which C becomes complex. To achieve this,
we expand (2.2) in two Frobenius series about the two
singular points z = +1 and match the solutions at an
intermediate point, z = 0. The Frobenius series them-
selves are made continuous there by choosing the ap-
propriate scaling. For fixed k we then search for the
values of C at which the first derivatives of the two
Frobenius series are also continuous across z = 0. The
second derivatives are continuous, since both series
satisfy (2.2).

Specifically, we write the solution near z = +1 as

6:(2) = 3 am(l — z)™*.

Substitution of Eq. (2.4a) into Eq. (2.2) yields the in-
dicial equation «? = 0, i.e. the regular solution at z
= 1 has a simple Taylor series expansion. The coefli-
cients { a,, } satisfy the three-term recursion relation

(2.4a)

a = 1, (2.4b)
a, = —ag(k?/4)(1 + 2C)?, (2.4¢)
ay = ap[k*(3 + 4c)/21/8

—a[2 - k%31 +2C)?/21/8, (2.44)

Amer = {@m[m(m + 1) — K2(i + 2C)*72]

+ 1 K23 + 4C)/2 — a3k 4}/
2im+ 1), m=2. (2.4¢)

Near z = —1, the solution is

G- =2 b, (1 + z)™b, (2.5a)

with indicial equation 82 = 0. The recursion relation
for the coefficients { b, } is

bo =1, (2.5b)
by = —ho(k?/4)(1 — 2C)?, (2.5¢)
by = bo[k*(3 — 4C)/2]/8

+ b [2 = K31 — 2C)?/2]1/8, (2.5d)

bms1 = {bu[m(m + 1) — k*(1 = 2C)?/2]
+ b1 k(3 — 4C)/2 — bu_y3k2/4}/
2(m + 1)3,

mz= 2, (2.5¢)
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According to (2.4b, 2.5b), the two series are nor-
malized so that ¢.(*+1) = 1. Their radius of conver-
gence equals 2, so that at z = 0 both ¢, and ¢ converge
as (1/2)™ + O(k?/m?). In practice, O(100) terms in
the Frobenius series are sufficient to evaluate the func-
tions and their derivatives at z = 0 accurately enough
even for the largest values of k considered. Numerical
experiments with a larger number of terms confirmed
this estimate. In order to ensure that the functions and
their first derivatives are continuous at z = 0, their
logarithmic derivatives must be equal on both sides of
z = 0. This translates into the following condition on
C for arbitrary k:

0k, C) = (2 am)( 2 mby)
+ (2 b)) (2 may,) = 0;

here each of the Frobenius coefhicients a,, and b,,, de-
pends on k and C through the recursion relations
(2.4), (2.5).

For fixed k we have to find now the zero of the com-
plex function # = Re(f#) + Im(8) which depends on
C = C, + iC;. These zeros are found as follows. We
first choose a range of C; and a range of C,, C; < C;
< C}and C, < C, < Cy. Each range is divided into
six equal intervals and the values of Re(#) and Im(6)
are calculated at the 6 X 6 midpoints (j, /) of these
intervals. The two matrices thus obtained, 7
= Re(0(CY, c")) and 7;; = Im(8(C", C")) are
printed and we draw, in each matrix, the zero-crossing
line(s), i.e. the line(s) along which the functions
Re(#d;;) and Im(6;,) change sign. In the next step we
narrow the ranges of C, and C; by zooming into a region
in (C,, C))-space where a zero-crossing line in the Re(8)
matrix intersects a zero-crossing line in the Im(6) ma-
trix.

The procedure is repeated until the value of both
functions is less than 107>, while the zero-crossing lines
in the two matrices intersect each other. In some cases,
lines which appear to cross each other on a coarse scale
turn out to be parallel on a finer scale; in such cases
the search for a zero of 8 is stopped. This procedure is
a variant on bisection algorithms (Isaacson and Keller
1966), and the choice of six, rather than two or a larger
number of subintervals, is a matter of computational
expediency, dictated by experience. Still, the algorithm
is laborious, but detects all the zeros of 8 in any sub-
range of (C,, C;), and no initial guess is required.

(2.6)

b. Numerical results and analytical bound

The dispersion relation C; = C;(k) and the growth-
rate curve—kC; versus k—are shown in Figs. 2a and
2b. The real eigenvalues of the Legendre equation (2.3)
are also indicated for small k in Fig. 2a. These analytical
values agree very well with the numerical values for
the real modes obtained by our zero finder. The un-
stable GKS mode, emanating from the origin (k = 0,
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FIG. 2. The single-layer problem. (a) The real phase speeds and the instability exponents.
Dots indicate real eigenvalues derived from Eq. (2.3). Instabilities appear in the dashed regions
where two real phase speeds coalesce. The width of the coalescence regions diminishes with
increasing wavenumber and so does the size of the instabilities. (b) The growth rate associated
with the single-layer instabilities. Note that the instability exponents decay fast enough for the

growth rate to decrease with wavenumber.

C; = 0), is recalculated using the procedure described
above. The values of C;( k) obtained here for this mode
agree perfectly with those of GKS and PK.

In. addition to the real and the GKS long-wave
modes, our zero-finding procedure yields instabilities
for finite values of k, with several noteworthy features.
First, finite-wavelength instabilities are encountered

whenever either the real phase speeds of two modes
coalesce, C.(k; ny) = C,(k; ny), or the phase speed of
a certain mode vanishes, C,(k; n) = 0. Second, as k
increases, both C; (Fig. 2a) and the growth rate kC;
(Fig. 2b) decrease. Thus the GKS mode is the most
unstable one and other instabilities exist, but become
negligible as k becomes large.
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An analytical bound on-all single-layer instabilities
is obtained by letting both C and « in Eq. (2.2) be
complex, multiplying by u* (the complex conjugate
of u) and integrating the resulting equation between z
= —1 and z = 1 by parts. The imaginary and real parts
of the resulting integrals are, respectively,

2 1
%-8iC,-f lu|2(z — 2C)dz = 0, (2.7a)
-1

1 k2 1
"fl (1= zH)|u|* + Tf |u|?[32% — 1 — 8zC,
- -1
+8(C2 - C?)]dz = 0.
Equation (2.7a) implies that, for C; # 0,
1 1
2C,f Iulzdz:f z|u|%dz,
-1 -1
1e., |G| < .

Substituting Eq. (2.8) back into Eq. (2.7b) and rear-
ranging we get

(2.7b)

(2.8)

4 1
an (1 = z%)|u,|?dz

1
= fl u|?(3z2 -1 — 8|C|3%)dz, (2.9)
where |C|? = C,2 + C/? has to satisfy

1
SIClzf |u|%dz
-1

1 ) 4 1 V
=fl |u|?(32% — l)dz-Pf (1 = z%)|u,|?dz.
- -1
If u is normalized by fll |u|?dz = 1, Eq. (2.8) yields

cr=1 fl zlula'z2
41J

and (2.9) then implies

1 ' 1 2
8C,-2=3f122|u|2a’z—1—2[f zlulzdz]
- -1

1
"%f_l(l - z2%)|u|*dz.  (2.10)

The last two terms on the right-hand side (rhs) of
(2.10) are nonpositive semi-definite, yielding the bound

1
8C,-2<3J~ z22|u|?dz — 1
-1
1 1 5
$3f zzdzf |u|2d2—1=3[§-1]—1=1
-1 -1

1
22

or

|Cil < ~ 0.35. (2.11)

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 20

For an eigenfunction u with well-defined symmetry,
1.€.

u(—z) = xu(z),-

z|u|? is antisymmetric, and C, = 0. This will lead to
values of C; closer to the bound (2.11). The maximum
value encountered in Fig. 2a occurs indeed for C,(n
= () = 0, but the actual value of C; is about one fifth
of the bound calculated in (2.11), indicating that the
last term on the rhs of (2.10) is not negligible.

We turn now to the two-layer problem, where the
new finite-wavelength instabilities found in this section
appear as the asymptotic limits of two-layer, contin-
uous instabilities when the lower layer becomes infi-
nitely deep.

3. The two-layer problem

a. Numerical results

The two-layer problem corresponds to finite depth
ratio r in Fig. 1. The complete formulation for arbitrary
upper-layer potential vorticity was given in PK. The
nondimensional eigenvalue system can be written as

C[(r - H)py]y

= C(k*C?* = 1)h + kK*C(r — H)p— Up, (3.1)
(U-—QCQu+(1-U)v+¢=0, (3.2)
K(U-Cw+u+é¢,=0, (3.3)
hu—(hv')y+(U~C)h =0. (3.4)

Here H(y), U(y), C and k are the same as in section
2, h is the perturbation depth of the upper layer, u is
the downstream perturbation velocity of the upper
layer, v is the cross-stream perturbation velocity mul-
tiplied by i/k (i = V—_l), and p is the lower-layer pres-
sure, which is related to the upper-layer pressure ¢ by
the hydrostatic relation ¢ = p + A. The depth ratio, r,
appears now explicitly in the equations.

Equation (3.1) is the lower-layer equation obtained
when the two horizontal velocity components are
eliminated in favor of the pressure. Equations (3.2),
(3.3) are the x and y momentum equations in the upper
layer, respectively, while Eq. (3.4) is the continuity
equation for that layer. The boundary condition for
the lower layer is that p decay away from the two free
streamlines, by a proper choice, different for y > 1 and
for y < 0, of the solution to the equation p,, = k*p,
which is valid in the absence of the upper layer [see
PK, Egs. (2.7), (2.8)]. For the upper layer we require
only that the solutions be well behaved on the free
streamlines.

In the special case when the potential vorticity is
zero in the upper layer, i.e., U, = 1, we can eliminate
v, i and ¢ to get the pair of equations for ¥ and p
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Cl(r — H)p,}, = —C(k*C* - 1)(U - C)u

— [C(K*C* — 1) — kK*C(r — H) + Ulp, (3.5)

(Huy), = kK*[H — (U — C)*lu— k*(U — C)p. (3.6)

Equations (3.5), (3.6) possess badly-behaved solutions
near the fronts and have, therefore, to be integrated
away from the fronts.

We first symmetrize these equations in the same way
Eq. (2.1) was transformed into Eq. (2.2). The iterative
search for eigenvalues begins by guessing C for fixed k
and r and making two integrations from the front z
= +1 to the midpoint z = 0: one integration with p
=0,u=1atz=+1, and the second with p = 1, u
= 0 there. Two more integrations are carried out from
the other front, z = —1, to z = 0 with analogous initial
data. The solution is then taken to be a linear combi-
nation of these four trial solutions. Choosing the am-
plitude of p at z = —1 to equal 1, we determine the
three other constants by requiring that the jumps in u,
p and u, vanish at z = 0. The remaining jump, p,, is
now adjusted to zero by varying the guess for the phase
speed, C, using a zero-finding algorithm. Alternatively
one can find the eigenvalues, but not the eigenfunc-
tions, by requiring that the determinant of the 4 X 4
matrix containing the values of u, p, du/dz, dp/9dz
at z = 0 from the four runs vanish. The difference be-
tween the two determinations of the eigenvalues was
always insignificant, within the accuracy of Figs. 3
and 4.

.09
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We consider the eigenvalues first. Starting from ar-
bitrary k and large r, we take as an initial guess for C
the value found in section 2. Both k and r are then
varied at each step, using as an initial guess the value
of C obtained for nearby values of k and r. The resuit
is the dispersion curve, C;(k), shown in the top and
bottom panel of Fig. 3 for r = 0.25 and r = 1.0, re-
spectively. These values of r correspond to the lower
layer being 2 and 8 times deeper than the maximum
upper layer’s nondimensional depth of 0.125. The real
phase speeds C, obtained include only slight modifi-
cations of the branches of single-layer phase speeds de-
rived in section 2. Hence, at these values of r, the in-
stabilities are essentially those of the single-layer
problem.

Additional modes, neutral as well as unstable, appear
only when the lower layer becomes shallower (*“‘thin-
ner””) than the upper layer. We consider small r-values
since we shall be interested in coastal fronts as well (see
§4), where the total depth is small and the lower layer
is expected to be thin. In Fig. 4a we show the real and
imaginary parts of C for r = 0.15, i.e., when the min-
imum lower layer’s thickness is only a fifth of the max-
imum upper layer’s depth. The growth rates, kC;, as-
sociated with the instabilities of Fig. 4a are given in
Fig. 4b. Comparing Figs. 2 and 4 we notice that ad-
ditional real phase speeds exist for long waves (small
k). It is these long-wave neutral modes, related in an
essential way to the presence of a thin lower layer, that
coalesce at higher wavenumbers to yield the vigorous
short-wave instabilities encountered in Fig. 4.
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FIG. 3. Instability curves for the two-layer problem when the lower layer is deeper than the
upper layer. Upper panel r = 0.25, lower panel r = 1.0. Note that the short-wave instabilities do
not grow, and some even decrease, with decreasing r, whereas the long-wave instabilities grow

with decreasing r.
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FiG. 4. As in Fig. 2, but for a shallow lower layer, r = 0.15. (a) C, (upper panel) and C; (lower
panel); (b) growth-rate, kC;. The scparate coalescence regions merge into a continuous region

beyond k = 12.

The dependence of these finite-wavelength instabil-
ities on the depth ratio r, is shown in Fig. 5 for k = 20.
For r < 0.125 the problem is not defined. For r-values
above 0.2, i.e., when the two layers combined are only
about 50% deeper than the upper layer’s maximum
depth, the short-wave instabilities vanish.

In addition to the continuation method, proceeding
from large to moderate and small r, we also used the
self-starting zero finder described in section 2. No ad-
ditional instabilities were found.

The eigenfunctions of the homogeneous problem
(3.5, 3.6) exhibit the well-known boundary-layer be-
havior associated with singularities at the two end

points. From Egs. (3.5), (3.6) it is clear that the u-
components do have such singular end-point behavior,
since H = 0 at z = =1, while the p-components do
not. These observations are illustrated in Fig. 6. The
real and imaginary parts of the eigenfunction in u are
exponentially-large near-the free streamlines, while the
p-eigenfunction is regular there. The eigenfunctions
illustrated in Fig. 6 are for k = 10 (see Fig. 4) and are
typical of intermediate and large wavenumbers.

The symmetry associated with Legendre polyno-
mials and present to a good approximation for large r
and small &k, cf. Egs. (2.2), (2.3), is lost here. But each
eigenfunction having larger amplitude along one free
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FI1G. 5. The dependence of the instability exponent C; on the depth
ratio, r, for k = 20. The instability vanishes when r is above 0.2.

streamline has a mirror image associated with real
phase speed C, of opposite sign. The eigenfunctions
illustrated in Fig. 6 are for positive C,, i.¢., phase prop-
agation into the plane of the figure. The mirror-image
eigenfunctions “living” neag z = —1 propagate out of
the plane of the figure.

b. Analytical approximation

* The existence of additional long-wave neutral modes
in the two-layer problem can be demonstrated analyt-
ically by considering their kX — 0 limit. In the single-
layer problem, setting kK = 0 in Eq. (2.2) yields only
the trivial solution # = 1, with the eigenvalue C un-
determined, although for small but finite k, neutral
modes do obtain, cf. Eq. (2.3).

In the case of a shallow lower layer, nontrivial ei-
gensolutions exist for infinitely-long waves, k = 0. To
show this, we set £ = 0 in the symmetrized version of
Egs. (3.5) and (3.6), with z = 2y + 1; let us call these
symmetrical equations, analogous to (2.2), (3.5"), and
(3.6’). For k = 0, Eq. (3.6’) yields the trivial solution
u = uy = const, while Eq. (3.5’) becomes

[(8r— 1+ 2%)p,). = 2(z/C ~ 1)(p — Cup) = 0.
(3.7)
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The frontal boundary conditionsatz=+land z= —1
are p, = 0.

Defining & = p — Cuy, Eq. (3.7) yields the following
homogeneous equation for the function ®

[(8r — 1+ 2%)®,],—2(z/C—1)®=0. (3.8)

This equation cannot be easily solved for arbitrary
r, but in the limiting case when 6 = 8r — | = 0 a simple
solution is obtained. This solution is of course accurate
only to order 8, where 6 = 0.2 for r = 0.15. In the limit
6 —> 0, Eq. (3.8) becomes

[z22®,], — 2(z/C— 1)® = 0.
This has the simple solution
® = z71215[(82/C)' 2],

where J; is the Bessel function of the first kind and
order 3.

The first maximum of J3(y)/y occurs at y ~ 4.5
(Abramowitz and Stegun 1972, Table 9.2). This im-
plies that the first, namely the highest, value of Re(C)
is C, ~ 0.4, a value which compares reasonably well
(at order § ~ 0.2) with C, =~ 0.27 at k = 0 in Fig. 4a.

¢. Energy conversions

The energetics of the two-layer, coupled-front prob-
lem studied here parallels that of the two-layer, isolated-
front problem studied by Killworth et al. (1984). The
energy equation is obtained by multiplying the x and
y momentum equations of the two layers by the cor-
responding velocity perturbation and unperturbed
height, and the continuity equations of two layers by
the perturbed heights (depths). Taking the x-average,
denoted by angle brackets, and integrating with respect
to y one gets:

d%fEdy+f HU,,(uv)dy-Ff U{¢xp)dy

=0, (3.9)

where u, ¢, p, H and U are the same as in Eqgs. (3.1)-
(3.4) and v is the upper-layer velocity perturbation in
the y direction, while E, the perturbation energy, is
given by

= 1 92,1759 1,5
E—<H(2u +2kv)+2h

+(r~ H)(% w2 + % k2v22)> . (3.10)

where u,, v, are the velocity perturbations in the lower
layer.

Equation (3.9) shows that the perturbation energy
(3.10) can change either due to Reynolds stress in the
upper layer or due to phase differences between upper
and lower-layer pressure. Thus baroclinic energy con-
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versions can fuel the vigorous short-wave instabilities,
while the more-slowly growing, long-wave GKS insta-
bility had only barotropic energy conversion as an en-
ergy source.

4. Discussion and conclusions

The laboratory experiments described in GKS were
all conducted in a system where the total depth is only
between 1.1 and 8 times the upper layer’s maximum
depth. In almost all of their experiments, instabilities
grow rapidly on a large range of spatial scales. The
single-layer, long-wave theory of GKS fell short of ex-
plaining the observed results qualitatively, as well as
quantitatively. The PK theory, which took into con-
sideration the dynamics of the lower layer, could be
adjusted to account quantitatively for some of the ob-
served results.. But the experimentally observed vig-
orous short-wave growth is beyond the range of appli-
cability of the methods of PK, too, who merely ex-
tended long-wave results.

The theory presented in the preceding sections fills
this gap by providing the growth rates of the short waves

in both the single-layer and the two-layer problems. A
marked difference between the two problems becomes
apparent upon comparing Figs. 2 and 4. In the former,
the short-wave instabilities diminish with increasing
wavenumber and long waves dominate. In the latter
case, where the minimum thickness of the lower layer
is smaller than the maximum depth of the upper layer,
the trend reverses and the short waves dominate, with
a linearly increasing growth rate.

It is obvious that, at higher wavenumbers, some form
of dissipation will become physically significant, and
has to be included in the model. Dissipation will re-
verse, at sufficiently high k, the trend of the growth-
rate curve by adding a term proportional to —k?, and
lead to the selection of a given short wave with maxi-
mum growth rate.

A quantitative comparison between the GKS ex-
periments and our numerical results for the dependence
of the growth rate on depth ratio r is impossible, as no
direct measurement of the growth rate itself was re-
ported by GKS. It is possible, however, to estimate
visually the horizontal scale of the growing disturbances
in the GKS experiments. In comparing the dependence
of the selected wavelength with our results, we should
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keep in mind that wider upper layers, as well as faster
rotation rates, in the GKS experiments are both equiv-
alent to a smaller r in our theory. This is due to the
particular choice of depth scale H (Fig. 1) such that
the nondimensional width of the upper layer is always
1, while the nondimensional interface depth is a pa-
rabola of height Y. H is thus proportional to the width
squared and to /2, where f is the Coriolis parameter.

Let us compare therefore the dominant wavelengths
in the GKS experiments with different upper layer
widths and different rotation rates (their Figs. 9, 10,
11 and 12). From the pair of experiments shown in
Figs. 9 and 10, as well as from the pair of Figs. 11 and
12, it is readily apparent that smaller r-values lead to
much smaller scales dominating the growth of the per-
turbation. This qualitative observation is in excellent
agreement with the main results of our one- and two-
layer calculations.

In addition to the laboratory experiments of GKS,
there are numerous observations on the growth of per-
turbations along coastal fronts. A coastal front involves
a relatively rapid transition between upwelled cold wa-
ters and warmer surface waters. The rapid-transition
region can be approximated, as for isolated or coupled
fronts, by an interface. In the case of the coastal front,
this interface intersects the coast at some depth.

A coastal front studied intensively in recent years is
the California Current front, which forms along the
U.S. West Coast when cold, deep water upwells and
starts flowing perpendicular to the temperature gradient
because of geostrophy. It has long been observed that,
along the free streamline of this front, vigorously-
growing perturbations develop, which appear in sat-
ellite sea-surface temperature images as narrow and
long tongues of cold water extending seaward. The
along-coast width of these tongues is quite small, while
their cross-coast amplitude is very large (Flament et
al. 1985). Similar observations were reported by Ar-
none and LaViolette (1986 ) along the Mediterranean
coast of North Africa, and by Ikeda et al. (1984) off
Vancouver Island.

The presence of such vigorously-growing short-wave
perturbations on coastal fronts can be related to our
theory in the case in which the coastal current has a
vanishing mean downstream velocity right at the coast.
In this case, the symmetric problem encountered when
placing a vertical wall in the middle of the front shown
in Fig. 1 is very similar to the coastal-front problem.
It is necessary to explore the cases in which the angle
between the frontal interface and the coast, in a cross-
coast vertical plane, is both larger and smaller than
90°. But the present work suggests that the technique
used here will permit us to study short-wave instabilities
on coastal fronts as well.

NATHAN PALDOR AND MICHAEL GHIL
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To summarize,

1) The long-wave instabilities found analytically by
GKS, and explored further by PK, have the fastest
growth rate in the single-layer problem.

2) The short-wave instabilities of the two-layer front
reported in this work have the highest growth rate
overall; this growth rate increases linearly with wave-
number provided the maximum depth of the upper
layer exceeds half the depth of the two layers combined.

3) Baroclinic energy conversion helps fuel the rapid
growth of the short-wave instabilities in the two-layer
problem.

4) The growing perturbations are concentrated
along the free streamlines, traveling within the lighter
water to the right when looking from the heavier water,
in the direction of the mean flow.
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