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ABSTRACT

The propagation of finite-length velocity, discontinuities along a potential vorticity front is studied. The front
is oriented in a fundamentally north-south direction on the 8-plane. The potential vorticity on either side of

the front is constant.

According to a semigeostrophic theory, the shear disturbances propagate with a speed which depends on the
difference of the deformation radius across the front and on the local depth, 45, of the moving fluid layer at the
front. The disturbance steepens as it propagates. Breaking is predicted by the semigeostrophic theory at a time
which depends inversely on the propagation speed and the initial steepness of the perturbauon to the layer
depth. Small velocity discontinuities will grow as they propagate.

1. Introduction

The baroclinic theory of the formation region of
western boundary currents, such as the Gulf Stream,
identifies the point of separation of the current as the
position along the coast where isopycnal surfaces at
the base of the current rise to the surface, e.g., Charney
(1955). The simplest such models describe a western
boundary current in which the potential vorticity is
uniform in a single, uppermost, moving layer (the “1%2
layer” model). In such a case considerations only of
mass conservation and the assumption of geostrophic

balance for the downstream velocity imply that the

stream will separate a latitude where the Coriolis pa-
rameter, f, is exactly twice the value of the Coriolis
parameter, fo, at the starting latitude of the flow. This
point is also coincident with the point where the south-
ward propagation of a Kelvin wave is just arrested by
the northward velocity of the current. A similar but
increasingly severe limitation of the solution when
more than one layer is considered was found by Bland-
ford (1965) and, again, the critical points correspond
to the point of arrest of the slowest Kelvin wave.

On the other hand, a Gulf Stream model with non-
uniform potential vorticity will have a different point
of separation. Indeed for the 1% layer model referred
to above, the same simple mass considerations imply
that the latitude where the interface between the swiftly
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flowing current and the resting deep layer will surface
along the coast is given by the condition

[P e dZ) 1
1 (I%o(f ") So ’
where fj is the Coriolis parameter at the latitude where
the stream initiates and q., is the potential vorticity,
f/h, of the oncoming, westward flow of the upper layer
outside the boundary layer. If ¢, is independent of
latitude, the condition (1.1) implies that f/f, = 2 as
mentioned above. However, if ¢, increases (say)
northward, the point of separation of the stream will
occur farther north.

It is natural to wonder whether this retardation is in
any way related to the presence of a new class of waves
in the current associated with the presence of a potential
vorticity gradient.

Perhaps the simplest model in which to examine
such time-dependent dynamics is one in which the po-
tential vorticity variation is confined to a single front
separating two regions each with uniform potential
vorticity. Even this problem is rather complex, and the
present paper reports on some interesting dynamical
features of the frontal problem in the absence of the
coastal wall and its associated Kelvin wave. Thus, al-
though the separation produced the motivation for the
current study, the results of this paper unfortunately
are not directly applicable to that problem.

Nevertheless, the frontal dynamical problem pre-
sents sufficient features of interest of its own. The model
to be described represents the motion of fluid of density
p over a deep resting layer of density p + Ap. Two
regions, each of uniform potential vorticity, g, (n = 1,
2), are separated by the line x = xg(y, ) where x is
the eastward coordinate, y the northward coordinate,

(1.1)
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and 7 is time. The front separating the two regions is
oriented north-south on the 8-plane, i.c., the earth’s
sphericity is modeled by allowing the northward in-
crease of the Coriolis parameter, ie., f = f(y). A
semigeostrophic model is used in which the down-
stream, but not the weaker cross-stream velocity, is in
geostrophic balance. Such an approximation is valid
whenever the downstream scale is large compared to
the cross-stream scale.

The theory developed below describes the nonlinear
propagation of shear zones, i.e., discontinuities in
along-front velocity, along the frontal boundary. In
particular, the propagation speed of such shear zones
is shown to depend on the difference in the potential
vorticity across the front. Such disturbances are shown
to steepen while propagating downstream forming
“shocks” at a point determined by the steepness of the
initial disturbance, the cross-front potential vorticity
jump, and the g-effect. The effect is entirely absent in
quasi-geostrophic models in which the deformation
radius is necessarily independent of horizontal position
(e.g., Pratt and Stern 1986). The steepening will pro-
ceed to the point where the downstream scale contracts
to the order of the deformation radius forming a folded
zone of strong shear.

Section 2 describes the basic model and the appro-
priate mathematical formulation of the problem. Sec-
tion 3 describes the solution. Conclusions and further
discussion are presented in section 4.

2. The model

Consider the situation depicted in Fig. 1. A layer of
fluid of density p lies above a deep, resting fluid of
density p + Ap. The line x = xz(y, t) separates two
zones of different but uniform potential vorticity. The
layer’s velocity components are (u,, v,) to the east and
north, respectively, while subscripts # refer to the west-
ern (n = 1) and eastern (n = 2) regions of constant
potential vorticity. The frontal line xz(y, t) is oriented
essentially north-south, but its position is a function
of both latitude and time. The thickness of the upper
layer is #,, n = 1, 2, and it clearly must be continuous
at x = x to ensure continuity of pressure, determined
by the hydrostatic approximation across the front at
Xg, 1.C.,

h = h (2.1)

The downstream velocity, v, is in geostrophic bal-
ance with the cross-stream pressure gradient. Assuming
the hydrostatic approximation and the condition that
the lower layer be at rest, this implies that

oh,
Up = ,
fi "= Y ox
where f is the Coriolis parameter and v = g(Ap/p) is
the “reduced” gravity.

at x = xa.

n=1,2, (2.2)
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FIG. 1. A schematic showing the front at position x = xz(y, ).
The front separates two zones of constant potential, g, and g,. The
fluid has density p and lies over a resting layer of density p + Ap.

The equation of motion in the downstream direction
is

av,,+u aﬂ+v'3””+fu—- S
a " max gy T T TV gy
n=12 (23)

while mass conservation implies that

oh 9 ]
-4 — w) + — (vuh,) =0, =1,2. (2.4
a1 +ax(unh) ay(v ) , h= (2.4)

These equations imply that the potential vorticity,
g,, will be conserved where in the present context

_Lf + (8v,/8x)

qn /’l,, . > n=132"

(2.5)

The potential vorticity in each zone is initially con-
-stant but, in general, ¢; # ¢,. Since g, is conserved
within each region, g, will remain constant for fluid
on either side of the boundary line xz(y, ). On x = X3,
h, is continuous as manifested by (2.1). The second
required boundary condition is the kinematic condi-
tion. Since xp(y, ) is the boundary between fluid of
differing potential vorticities and since g, is conserved,
the boundary must move with the fluid. Thus,

) _ aXB

. axp
"o

n ) 2.6
Un oy (2.6)

on x=Xxg(y,t).
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This equation can be rewritten in a form that is more
suitable in the present problem. Assuming that ¢, is
not zero, i.e., that f + (dv,/dx) ¥ 0, multiplication
of (2.6) by the absolute vorticity f + (dv,/dx) yields
with the aid of (2.3) ‘

(91),, avn axB
— + "
“"(f+ ax) (f+ ax)( a ey
(%0, o, ok,
a ey Ty

il

)', 2.7)

or

f

6)(3 av,,
—L 42
o

0u dxn\ | (30 90, O
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oh,
dy

aXB
+ fo,— +
Jo ay Y

=0, on x=Xx5 (2.8)

Since

d _0v, Oxg | Ov,
5 X v, 1) = ax o ot

avn(-xBa Vs t)_%a;xg %
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H

the boundary condition (2.6 ) becomes
ox, B

dv,(B) dv,(B)
f_at_+ ot + on(B) dy

Oh(B) _

0 =1,2
ay 3 n 1’ bl

(2.9)

where
vn(B) = vn(xB(y9 t)3 Vs t)

hn(B) = hn(xB(ys t)s Y, t)

In deriving (2.9), the geostrophic balance for v,
(2.2), has been used to combine the last two terms in
(2.8).In (2.9), the ¢ and y derivatives are understood
to be taken affer the functions v, and 4, are evaluated
on x = xg. Thus the y derivatives in (2.9) are not at
constant x but follow the local position of the front.

Since xp is independent of # (2.9) implies that

8% [vi(B) — v2(B)]

+i[v12(8)— v*(B)

3y > ] =0 (2.10)

where the continuity of 4, at x = x has been used.

It follows from (2.10) that if v, is continuous all
along the front at any time ¢, then it must remain con-
tinuous. However, in this paper, situations will be con-
sidered for which v,(B) # v,(B) at t = 0 for some
interval in y, and it is the propagation of that shear
zone along the front that we wish to describe.
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Within each zone the potential vorticity is a constant.
Thus with (2.2) this yields as the equation for £,
a’ S f?

[ _._hn=__

=5 hn (2.11)

where g, is constant. Further, g, > 0.
The solutions which remain finite as | x — xz| —
co are

h = i + Aleh(z\f—xa)

7 (2.12a)
1
hy = f + Ao~ v2lxx8) 2.12b
2 = a 2€ : (2. )
where
172
= (22)
Y

is the inverse of the deformation radius in each zone.
Note that in quasi-geostrophic theory this factor must
be independent of horizontal position, but it is not
required within the present dynamical context. For
large | x — xaz|

S
L
Gn

hn

= hnoo’

1.e., the base of the layer asymptotes to a constant in
the x-direction which differs from one side of the front
to the other. Of course, these asymptotic values for A
increase northward as f increases.

Continuity of 4, (pressure) at x = xp yields

A1+£=A2+£Eh3(y,t), (213)
di a2
while using (2.12a,b) in (2.9) yields
6x3 ’Y>\|6A|
J at * f ot
s areola )]
+— A" +v{4, +=]|[=0, (2.14a)
ay[Zfz TN Ty
8oy
ot f ot
d 72>‘22 2 f
— A, +=||= 2.14
+ay[2f2 4, +7( ) q2> 0, (2.14b)

whose difference, with the aid of (2.13) yields

0 >\|+A2 0 Y 2 2
— 4|+ = |5 (2= A4
az( 7 1) ay[Zfz(l 2 )A,

X( f)_ﬁlz(t]z*‘ql)2

A +2L
! 24,27

=0. (2.
a ]0(15)
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Noting that A\, and f are independent of ¢, (2.15)

becomes
>\1+>\2§_@+i[ql @, , Sla— 42)} 0
S vl 2f 7 2 aa ’
(2.16)
while (2.14a) may be similarly rewritten as

%4.1&%4_ [‘hhgz

S
a f a 2 24, ] 0. (217)

2

9 hg
The term a— 2—}: can be eliminated between (2.16)

and (2.17) to obtain

6xB Y )\1)\2 E)hB ’Yﬂ [ 1 1 ]
IRV TVES W R s
where 3 =9 f/dy. Thus
Y NN 761[ 1]
xp = L 212 + + const.
P —-n) " 2f
(2.18)

A simple linear relation between /5 and x therefore
obtains modified by a westward shift of the frontal zone.
This shift occurs even if A itself is independent of time.
Thus, in a qualitative way, (2.16) may also be thought
of as an equation for the frontal line itself aside from
the B-shift described above. A steady solution of (2.16)
exits for which

1A27

_>\2f

A
vy(xp) = "‘fllAl = Va(xp) =

which with (2.13) implies that.

S
hs (ma)'*’ (2.192)
= f(T = NTh. (2.19b)

This solution consists of a jet flowing along the front
in the direction such that an observer looking down-
stream sees higher potential vorticity on the left. The
jetis steady relative to the front while the whole system
drifts westward at the rate

_aBfr 1
2f{41+¢12]'

3. Propagation of velocity disconfinuities

5= (2.20)

In this section we will consider the richer solutions
of the propagation equation, which occur when the
interface x3 is deformed from a straight line. From the
discussion of the previous section it is clear that this
implies that v, is discontinuous at xg whenever f/ /g
# (g:192)'/*. The situation is as depicted in Fig. 2. A
disturbance is made to the front between the two re-
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FI1G. 2. A schematic of the frontal disturbance showing (a) the
initial shear at time ¢ = 0 and (b), the shape of the front at ¢ = 5.

gions over some finite region in y. If the frontal position
increases, /15 increases by (2.18) and since

’YhB
fa’

it yields an increasingly anticyclonic shear zone at the
front. Such regions of sharp shear can be considered
as local peaks in vorticity, akin to point vortices. We
can imagine them as anomalous peaks in potential
vorticity introduced at the front, and the problem to
be considered is how they propagate and how xp(y, t)
and Az(y, t) evolve as the shear zone propagates.
Rewriting (2.16) as .

a1 _f_ o
+<ql—qz)5[57(hgz qlqz)]—o,

(3.2)

v2(xp)) = (A + X2) = (3.1)

0
% (vi(xs) —

>\| +>\26_}_l£
f

it is clearly useful to define the new dependent variable

)/
=|hg?——1]/2
( i 9192 4
which when inserted in (3.2) yields, after recalling that

=fqn/7a

op " Yhe(A — Ap) Op
ot f ay

The propagation speed for the disturbance may be
written in a number of ways:

(3.3)

=0. (3.4)

c—-l}l—B()\. = %), (3.52)
v 1/2
=h3(7) {a'? = @'}, (3.5b)
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(vhs) [(hlm) (hzw) J (3.5¢)
S

1/2
=y M2(g, 12 — qz”z)[Zp + _] . (3.5d)
992

Although the last of the forms is the most useful for
calculation, (3.5a) reveals that the propagation speed,
which is a function of the disturbance amplitude, Ap,
depends on the difference of the deformation radii on
either side of the front. Consequently, as direct analysis
shows, a quasi-geostrophic theory in which the defor-
mation radius must be independent of horizortal po-
sition would give rise to zero propagation speed.

The system (3.3), (3.5d) can be simply solved by
the method of characteristics. Introducmg the char-
acteristic variable, s, such that

dl

3.6
e (3.6a)
dy 120, 1/2 1/2{ S }1/2
— = - 2p + — , 3.6b
ds ¥ (@ q ") 2p 0 ( )

it follows that

dp
— = 0. 3.6¢c
s ( )

Thus in integrating (3.6b), p is held constant so
that the characteristic equations become, using f = f,
+ By

t=s

and

,y 1/2 ,Y 1/2
y=yo+[(—) —(—) ]5{2P611CI2 + f(n)}'7?
q> q:

6 2

viq~'?

- g7}, (3.7)

where )y is the position at ¢ = 0 of the particular char-
acteristic under consideration. On the other hand,
(3.6¢) implies that
p = p(Yo)- (3.8)
The evolution of the disturbance is governed in the
classical way (see, for example, Whitham, 1974, Chap-
ter 2) by the crowding together of characteristics in the
y—t plane. At any time ¢ the slope of p is given by

a
l (YO)

B_p
3y = (ﬂ) . (3.9)
o
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If we note that

2q1920(¥o) + f(30) = %‘;—) 0192,
then
;Z“%HKWN”—WqWﬁ£{ﬁ%£u
= 14 MO0~ X0 [Zl;,f Po 5‘—}}
=1+ tc(yo)[hlB ‘2’;’: szyo)]’ (3.10)

where /5( ) is the shape of the disturbance (the depth
of the moving layer at the front) at the initial instant,
t = 0. According to the long-wave theory developed
here, the disturbance will break whenever

Lo
t °)[ 2f(yo)]<°'

hg 3o
Thus if, for example, ¢(35) > 0 (g; > ¢2), then long-
wave breaking, which represents a folding of the shear
zone, requires only that

1 8hg(y0) < B

hg 3y 2 (o)
On an f-plane, this condition is equivalent to the clas-
sical situation in which the wave steepens on the for-

ward face of the wave (8h5/dy <0). The time at which
breaking will occur is

1 dhp B -
iz lC(yO)[hB Gyo 2f(y0):”max’

where the subscript, max, refers to the maximum value

of the quantity in the enclosed bracket as a function
of y5. Equivalently,

= [(vqu)"z—(vq )"2][

(3.11)

(3.12)

(3.13)

9 hB(.Vo)]
o [ (¥o) | ..

(3.14)

so that aside from the effect of the B-effect, it is the
steepness of the slope in the y direction of the base of
the layer in the initial data that determines the time to
breaking of the front. The time, ¢z, is also inversely
proportional to ¢,'/? — g,'/?, i.e., to the strength of
the potential vorticity jump across the front.

If, for example, we choose /., and /.., to be 400
and 800 meters, respectively, and /5 to be initially 600
meters with a characteristic scale of downstream vari-
ation of the order of 200 km, then c is of order 90 cm/
sec, and the time to breaking, ignoring the negligible
effect of 8 on these scales, would be of the order of two
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days, i.e., quite fast. The time 1z will simply linearly
increase with the scale length

( 1 dhg )"‘
hg dyo '

Of course, the theoretical prediction of wave break-
ing at ¢t = tp is based entirely on the semi-geostrophic
dynamics embodied in (2.2). If the motion initially
satisfies the requirements of semigeostrophy, i.e., that
d/dy < d/0dx, it will increasingly less do so with time
as the steepening implicit in (3.6) occurs. Motion on
smaller y scales will be dispersive. All that can be said
with confidence is that disturbances which are origi-
nally long compared with a deformation radius will
fairly swiftly steepen to scales that are short even in
the along-front direction.

Consider now the situation in which initially the
front is stationary (aside from the weak § drift) and

the velocity is continuous at the front. Then from
(2.19a,b) and (3.5a), it follows that

11
vs~f[)\—2—5\—1]—c,

(3.15)
so that the velocity of the fluid in this special case is
coincident with the propagation speed. Naturally, there
is no disturbance at the end point of this limit. Suppose
we consider a small perturbation to this system, i.e.,
let

U](XB) =V + U,1

UZ(XB) =V + v (316)
where V' = f(\7! — A1) and where |v},] < V but
v5 # v'. That is, we impose a small shear discontinuity
on the front. For now, let us ignore the y variation of
f so that V' is independent of y. Then, for as long as
the disturbance remains small, 6v = v, — v, will satisfy

a i}
—w+V_—ov=0. 3.17
% ov a ow=0 ( )

Thus small shear perturbations will propagate with the
mean speed, V, which, when it is continuous across
the front, is identical to ¢. However, the solution to
the full nonlinear equation will, by (3.9) and (3.10),
lead inexorably to an increase in both 845/dy and dhg/
dt. As a consequence, from (3.1), it follows that the
shear discontinuity across the front will increase with
time as the wave steepens. In this sense, flows along
the potential vorticity front are unstable with respect
to small “tears” in the along-front velocity. These tears
will increase as the frontal perturbation propagates and
sharpens.
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4. Discussion

A very simple, semigeostrophic model of perturba-
tions to a potential vorticity front oriented north-south
on the B-plane allows a straightforward analytical de-
scription of the propagation, steepening, and growth
of strong shear zones. These shear zones are modeled
as velocity discontinuities, finite in length, which prop-
agate along the front at a rate which depends on the
difference in the value of the potential vorticity across
the front. The propagation is an effect absent in a quasi-
geostrophic long-wave theory, depending, as it does,
on the horizontal difference of the Rossby deformation
radius which enters the dispersion relation for distur-
bances that propagate along the front. As in most non-
linear hyperbolic systems, the perturbation in both fluid
depth and frontal excursion steepen with time. The
long-wave theory, while predicting breaking, loses its
validity when the long-front scale shrinks to the cross-
front scale (deformation radius). Hence, the time for
breaking is most conservatively to be considered as the
time for the development of small-scale along-front
structures produced rather rapidly from initially long
perturbations. Whether this process has anything to do
with observed small-scale structures in coastal regions
is unclear at this stage. Direct shear instabilities on small
long-front scales could also, a priori, provide a further
mechanism for the production of such structures. Also,
very large initial meander amplitudes can lead to front
roll-up (breaking) even in quasi-geostrophic frontal
models in which the cross-front velocity remains con-
tinuous (Pratt 1988). This mechanism will vanish if,
as in the case studied here, the initial slope of the front
in the x, y plane is small.

It would be of interest, in view of the original mo-
tivation of this work described in the Introduction, to
include the presence of a wall at some finite distance
from the front. Then the Kelvin wave natural to the
wall region and the vorticity wave on the potential vor-
ticity front would interact. The consequences of that
interaction on the propagation and steepening of both
waves would be interesting, especially as the direction
of the Kelvin wave is fixed but that of the vorticity
wave depends on the ratio ¢»/q; . '
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