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ABSTRACT

The generation of long waves by short-wave groups propagating over a shear current is studied. The incident
wave groups consist of two co-linear short waves with slightly different frequencies. These short waves are
refracted by the shear currents. For certain angles of incidence caustics may exist and the short waves are
reflected back by the shear current. Similarly, caustics could also appear in the wave envelope, which propagates
in a different direction from that of the short waves. In the present paper, the treatment of caustics is not
considered. In the region where the shear current vanishes, the short-wave groups are accompanied by locked
long waves that propagate with the wave envelope of short waves at their group velocity. In the shear current
region, the refraction effects not only separate the propagation directions of the short waves and the wave
envelope but also generate free long waves, which propagate at the speed of V§E The free long waves could

also be trapped over the shear current region.

1. Introduction

The dynamical effects of a current on surface waves
are of interest in the refraction of swell by oceanic cur-
rents such as the Gulf Stream (Kenyon 1971), the
warm-core rings (Mapp et al. 1985), and internal-wave-
induced surface currents (Thompson, Gotwols and
Sterner 1988). Comprehensive reviews of refraction
theories of short waves over currents and their appli-
cations have been made by Peregrine (1976) and more
recently by Jonsson ( 1989). However, the incident sea
is seldom uniform and the amplitudes of short waves
modulate as wave groups. The refraction of wave
groups by a current and the generation of long waves
have not been carefully examined.

Using the concept of radiation stresses, Longuet-
Higgins and Stewart (1962) demonstrated that when
a train of periodical water wave groups propagates over
a constant depth, a second-order locked long wave exits
and propagates with the group velocity of carrier waves.
The propagation direction of the locked long waves is
the same as that of the wave envelope of the wave
groups. If the wave groups are diffracted by a vertical
structure or are refracted over a slowly varying depth,
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a different kind of second-order long waves could be
generated (Mei and Benmoussa 1984; Zhou and Liu
1987). These long waves propagate with a speed of

gh, where h is the local depth, in a direction unrelated
to the direction of propagation of the wave groups and
are, therefore, called free long waves. These long waves,
although second-order in magnitude, could play a sig-
nificant role in coastal oceanography problems, such
as sediment transport and bar generation, if they are
trapped and resonated in the nearshore area (Bowers

1977; Symonds and Bowen 1984; Roelvink and Stive

1989).

In this paper we focus on the generation and prop-
agation of second-order long waves due to the inter-
action of modulated waves and a shear current. The
current velocity field is assumed to be unidirectional
and varies slowly within a characteristic wave length.
The obliquely incident wave groups propagate with the
currents. The reflection of the wave groups by the shear
currents is assumed to be negligible. It is shown herein
that caustics could exist for both carrier waves and the
wave envelope. However, our present analysis for the
long waves excludes the caustics.

In the following section we summarize the governing
equations for the wave envelope of the wave groups
and the associated long waves. The assumptions and
approximations used in the paper are elaborated in
this section. In section 3 the results for the carrier
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(short) waves over a shear current region are presented.
The conditions for the existence of caustics in both
carrier waves and wave envelope are discussed. The
solutions for long waves are investigated in sections 4
and 5. The free long waves could either radiate away
from or be trapped within the shear current region,
depending on the angle of wave incidence and the cur-
rent velocity. Some numerical results are given in sec-
tion 6.

2. Governing equations

Consider a train of modulated sinusoidal water
waves propagating over a slowly varying shear current. -
The length- and time-scales of the wave groups are
much longer than those of the carrier waves. Denoting
ko and wg as the carrier wavenumber and frequency,
respectively, we assume that the wavenumber and fre-
quency of the wave envelope are ek and ewoCy,/Co,
where € < 1 and Cy and Cj, are the phase and group
velocity of the short waves propagating over a constant
depth /. The small parameter e characterizes the wave
slope of the carrier waves. The current velocity is as-
sumed to be O(ux ') times the orbital velocity of the
carrier waves and in the same order of magnitude as
the phase velocity Cy. We further assume that the cur-
rent velocity changes slowly within a typical wave-
length; i.e.,

(—1—— |VU| (2.1)

ko|U| ) 0®:
where U denotes the current velocity vector. We con-
sider the case where all small parameters are of the
same order of magnitude, i.e., O(u) = O(8) = O(e).
Typical numerical values for different physical variables
involved are: carrier wave period = O(10 s), group
and long-wave period = O(100 s), depth = O(20 m),
the length scale for the current = O(200 m), carrier
wave amplitude = O(2 m) and the maximum current
velocity = O(10 m s™!).
Introducing the slow variables

X=e, with x=(x,»); T=e, (22)
we can express the first-order free-surface displacement
and velocity potential in the following form:

¢= %A(X, T) exp[i(fx k(x)-dx — wot)] + %,
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_ igﬁcoshk(z + h)
2¢ coshkh

X exp[i(fx k(x)-dx — wot)] +*  (2.4)

where * denotes the complex conjugate of the pre-
ceeding term, A(X, t) is the modulated wave envelope,
and ¢ the intrinsic wave frequency

k-U. (2.5)

The wavenumber k(X ) is governed by the dispersion
relation

0 = Wy —

= gk tanhkh, with k= |k]|, (2.6)
and the irrotationality of the wavenumber vector,
VXk=0. (2.7)

The complex wave amplitude 4 varies slowly in both
space and time. For the case without currents Liu and
Dingemans [1989, Eq. (4.7)] derived an equation for
A. In a similar way it can be shown that 4 now satisfies

the following complex equation:
AZ R
Ce~ + U) ] =0, (2.8)

9 (A%,

T\ o £k
where V = (9/dX, 8/8Y ) and C, = do/dk is the local
group velocity. The real part of (2.8) leads to the well-
known wave action equation. At second order, the
mean water level £(X, T') and the wavegroup induced
long-wave velocity potential ¢ are governed by the fol-
lowing equations (Kirby 1983):

1 D® 2l Al?
= 2.9
: g DT 4gsinh?*kh’ (29)
£ kg|4|?
— Vé+—=—"—|=0, (2.10
% [EU th ! (2.10)
where
D 0
—_—= V. 2.11
DT 9T +U ( )
Taking the horizontal gradient of (2.9) yields
D 2| A|?
— Ve +V + = 2.12
pr T [gg 4 sinhzkh] 0, (2.12)

which is the depth-averaged horizontal momentum
equation, while (2.10) is the depth-averaged continuity

(2.3) equation. Eliminating ¢ from (2.10) and (2.12), we
obtain
D’® g |4]? gk d|4|’ gkl4|?
De_ - & - ~v. AL gl 23
pr TV U) gV - (hVE) =7 ( o ) 2sinh2kh oT 2 sinh2kh (213)
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The long-wave equation (2.13) has been derived by
Kirby (1983) using a mean Lagrangian method. If the
current velocity vanishes, (2.13) reduces to

3*®
W-gV'(hVQ)
2 2 2
g | 4] gk 9|A]
=%2_v. - .
2 (k w) 2 sinh2kh 8T ’ (2.14)

which has been derived by Chu and Mei (1970) using
the multiple-scales perturbation method. We stress that

92® 920 2%®
— 2V =+ (V- gh)—— —
oT? aray TV T 8M gy 3

in which the local short wavenumber k can be deter-
mined from the refraction

k(X) = (K, ky),

9%® g2
2

ky = k cosa,

ky = k sina = kg sinap, (2.17)

where o X) is the local angle of the carrier wave prop-
agation and the subscript zero denotes quantities as-
sociated with the incident waves.

The following normalized variables will be used in
the rest of this paper:

X T h
X—>-k:, T—>w—0, o —> wyo, h»g,
k- k. k, A ad, cga:—"cg, £~ k,(2a)%,

& - (2a)%we®, U—>-2U,

~ (2a) wo?, ko (2.18)
where «a is the incident carrier wave amplitude and &,
— 2
= we"/g.

3. Short waves over a one-dimensional shear current

In this paper, we focus our attention on one class of
shear currents where the velocity increases from zero
at X = X, to a maximum value, and then decreases to
zero again at X = X,. We consider only incident waves
propagating with the currents. Therefore, k, is always
a positive constant. It is well known from the geometric
optic theory that the wavenumber of the short waves,
k, over the shear current is always smaller than the
incident wavenumber, kp, and has a minimum value
at the location of maximum current speed. If the min-
imum wavenumber is greater than k,,, wave rays of the
short waves pass through the shear current; the direc-
tion of the wave propagation in the region X > X, is
the same as that of the incident waves. On the other
hand, if the minimum wavenumber is less than k,, k,
becomes zero at a certain location within the shear
current region and the rays are bent backwards. The
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governing equations (2.8) and (2.13) are valid only in
the range O(X, T') = O(1); for larger time and spatial
domains, higher-order effects must be considered.

In this paper the long waves generated by the re-
fraction of wave groups over a one-dimensional shear
current are investigated. The current velocity is spec-
ified as

U = (0, V(X)). (2.15)

The long-wave equation, (2.13), can be simplified to
be

3l 4|
ay .

+V
2 sinh2kh \ oT

[

gk (a|A|2 ) (2.16)

effects of reflection become important. In this paper
we will not study the cases involving caustics.

The incident wave groups considered here are the
superposition of two co-linear periodical wave trains
of slightly different frequencies, 1 = Q,, (the corre-
sponding wavenumbers are ko  Kq) with normalized
amplitudes 1 and b, respectively. Within the spatial
and time domain, O(X, 7') = O(1), the incident wave
envelope can be expressed as (see Liu et al. 1989):

ANX, Y, T) =exp(iXo) + bexp(—iXe), X <Xp
with
Xo(X, Y, T) = Ko(X — Xo) + KoY — QT (3.1)
where
KxO = Ky cosayg, Ky() = Ky sinao,
dw
Qo = KoCpo = Ko —,
0 0Ce0 0 diy
in which «p is the angle of incidence of the carrier
waves. We may choose either Qq or Kj so that (3.1) is
completely determined. For simplicity, we shall use Kp
= ko in the following analysis.

In the shear current region, Xy < X < X, the wave
envelope can be written as

A(X, Y, T) = A(X)[exp(ix) + b exp(—iX)],
Xo< X< X,

(3.2)

with
X
K. dX + KoY — QT

X = (3.3)

Xo
where the amplitude function 4(X) and the wave-
number component K,(X) are real functions of X.
Substituting (3.3) into equation (2.8), we obtain

Ax) = [%]Uz"‘“,

C,. (3.4)
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Q= V+C)Kp + KCy, (3.5)

where
c=1-kV, (3.6)
Ce, = Cecosa, C, = Cgsina. (3.7)

Using (3.2) and the definition for «, (3.7), in (3.5)

yields
k2
K(X)=k, +E—[E_l]’ (3.8)
where
2 =Qy— KoV (3.9)

is the intrinsic frequency of the wave envelope: The
effect of the Doppler shift on the envelope propagation
is included in (3.8). Because k, and K, are different,
the direction of propagation of the wave envelope, de-

fined as _
Ko
K./’

is different from that of the carrier waves.

As pointed out before, caustics could exist in the
carrier wave field and k, becomes zero along the
caustics. From the constancy of the y-component
of the wavenumber vector it follows that the
waves are trapped when (ky/k) sinag = 1, so that sina
= (ko/ k) sinay has no real solution for «. The corre-
sponding critical angle of incidence is

0= arctan(

9*® GZQ) (I+b2)d

2
—_ V — J—
(aT+ aY) ?- h(aX2+aY2

b(1 d
[MX[ |A12]+zk|A|22(

1
nh2kh

which suggests that the long-wave potential ® should
be decomposed into the steady-state and the dynamic
components:

= Bo(X) + 5 HX) exp[2i(K;o¥ — 2T)] +*.

(4.2)

For the steady-state component, (4.1) may be inte-
grated once to obtain
2

d<1>0= (1+5 )k Al +e

dx 8h
where c¢ is an integration constant. Equation (4.3) rep-
resents the wave-induced mass transport velocity com-
ponent in the x-direction. The steady-state velocity po-
tential does not affect the mean free-surface displace-
ment £ in (2.9).

The amplitude function of the unsteady long-wave

potential, ¢, satisfies

(4.3)
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. [k
Qo = arcsm(;o) . (3.10)
From (3.8) it can be shown that K, could also become
zero, if
z

T 2

sin“a = —— 3.11

n“a kCa ( )
is satisfied. Hence, the wave envelope could also ex-
perience caustics for certain combinations of angle of
wave incidence and current speed. Equating (3.2) and
(3.5) and using K, = 0 and (2.17), the result can be
written as a quadratic equation for sinag, and we find
the critical angle of incidence for the appearance of
caustics in wave envelope to be

1 kV 4koCpy Ce |2
koc[l+(1+—~—kV2 ) ”
(3.12)

K, and k, are computed for dimensionless depths [see
(2.18)] A = 0.5 and 1.0 with different current speed
V. As shown in Fig. 1, the caustics of the wave envelope
occur at a smaller current speed than that of the carrier
waves. Of course, the present theory becomes invalid
when any caustics appear.

= arcsin [

4. Long waves in the regions of zero current

In this section the second-order long waves are ob-
tained for the regions where current vanishes. Substi-
tution of (3.3) into the nondimensional form of (2.16)
yields

ke o
il

X
L )} exp[Zz( K.dX + KoY — QOT)] +*  (4.1)
Xo

2
fogorame - S {L 1]
+ik1,§|22( ! 1”exp[21 XdeX].
sthkh Xo
(4.4)

In the region of zero current velocity, X > Xp and X
< X, (4‘4) becomes
d’¢

ax: (Q"

Kioh) ¢

1 1 X
—ﬂkoﬂo(m C )}exp[zl ondX} s
(4.5)

where K, = K,o when X > X, and X < Xp. The long-
wave potential can be further split into two parts: the
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locked long waves and free long waves. The locked
long wave is the particular solution of (4.5), while the
free long wave is the homogeneous solution of (4.5).
Thus, the solution for (4.5) can be expressed as

X
b= ¢L exp[ZiL deX} + ¢p(X), (4.6)

Ko*h
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with
ib 1 1
=— Q +—=, (4.7
oL (0 = Koh) ko 0(sinh2k0h Cgo)’ (4.7)

where Ky* = K% + K2%. The corresponding mean free-
surface level can be calculated from (2.9)

(1+ b2 b (k0902
L=

16 sinhZkoh | 4(Q2 — KoPh) \ C,

Here the first term on the right-hand side of the above
equation represents the steady mean free-surface set-
down without wave groups. Mei and Benmoussa
(1984) also derived an equation equivalent to (4.8).
The locked long waves propagate in the same direction
and with same speed as those of the wave envelope.
The free long-wave potential ¢rin the region of zero

current velocity satisfies the following equation:

d? C?

dA(’sz + 4k02<—hg—° - Sin2a0)¢F =0, (49)
for X > X, and X < Xj. If the coeflicient in front of
¢r 1s positive, the free long waves must be outgoing
waves propagating away from the current region.

(¢r); = Bjexp[2i|N] - | X — X;|], (4.10)
where
C2
A= koz(—fg - sinZaO) , (4.11)

andj = 0 and |, for X < X and X > X, respectively.
Since C2,/h < 1, there always exist an incident angle
o such that A? becomes negative. In those cases (¢r) I
attenuates exponentially

(¢r)j = Bijexp[—2|A|- [ X — X;[], j=0, 1. (4.12)
The long waves are trapped over the shear current re-
gion.

5. Long waves over the shear current region

Over the shear current region, the long-wave poten-
tial can not always be obtained analytically. Numerical
solutions are usually required. Substituting (3.4) into
(4.4), we obtain

d*¢ 4 b (C,, d [k
49 2 is2_ g2 = _ P ke 4 | K
ax? (& T Keh)e 2/1{ 2 a’X[Cg]
O 1 ~fX
+ kZ C,. (sinh2kh+Cg)}exP[2l e K.dX|,
(5.1)
where
dk dk _  k,dv

d (k)_1 dk_ k4G dk a
dX\C,) CedX C2dX’ dx  C,dX’

2 sinh%koh

X
) exp[2i(f K. dX + K,pY — QOT” +* (4.8)
Xo

Ky, and K, ————f=
- -
o

and Ky —— g
-
o

Ky

FIG. 1. Wavenumber components for carrier waves, &, (dashed)
and wave envelope, K, (solid) for different angle of incidence, «;
(a)h=0.5and (b) h=1.0.
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and
ac__k v
ax o 2dx

G, oh 2kh dk

X {_l; " ¥ sinh2kh (tanh2kh B 1)] ax

The boundary conditions require the continuity of ¢
and d¢/dX along X = X, and X,. Thus

(5.2)

¢ + By = ¢(Xo) (5.3)
2le0¢L + 2B0(_ll)|>\| = %{'YO—) s for Xz = O,
(5.4)

oL exp(zi I deX) © B = (X)), (55)

X0

2ino¢Lexp(2i deX)+2B1(_il)l)\|

xg
_d¢(X1) 2>
=20 for MZ0, (56)

where ¢; is given in (4.7) and K in (3.8). Eliminating
B from (5.3) and (5.4), and B, from (5.5) and (5.6),
we obtain .

d¢(Xo) _

-
T 2( 1)I>x|¢(Xo)

=2[iKm—(‘f)|>\|]¢L, for A2Z0, (5.7)

d¢(Xy) i
o —2(_1)|M¢(X1)
. i i
=2[1Kx0—(_l)IA|:|¢LCXp(2I § deX),
for A2=Z0. (5.8)

Equations (5.1), (5.7), and (5.8) can be expressed as
simultaneous three-point difference equations with a
tridiagonal coefficient matrix. Once solutions for ¢ are
obtained, B, and B, can be calculated from (5.3) and
(5.5), respectively. Numerical examples are given in
the following section.

6. Numerical examples

Numerical computations were carried out for the
following current velocity profile:
1)] ] , (6.1)

2(X = Xo)
X —Xo

where V,, represents the maximum current velocity at

X = (X, - Xp)/2. For 0 < a9 < 7w/4, V,, was chosen

as 0.2 for 2 = 0.5 and 1.0 such that caustics did not

V(X)= %[1 +cos[1r(

VOLUME 20

appear in both the carrier wave field and the wave en-
velope. In Fig. 2, the long-wave potentials over the shear
current region are plotted for (X; — X;) = 1.0. For
normal incidence, the wave groups are not affected by
the shear current. The total long-wave potential for aq
= 0 shown in Fig. 2 is the locked long-wave potential
associated with the incident wave groups. The corre-
sponding amplitudes for the free long waves propa-
gating away from the current region, | By| and | B, |,
are given in Table 1. The amplitudes of the free long
wave are zero for the normal incident wave. The long

0.8 =0

°-37% 0.2 o4 o5 00 7.0

0.5

3% 5.2 0.4 0.8 LX) 1.0
X ——p

F1G. 2. Total long-wave potential over a shear current region for
different angle of incidence, ap. The normalized maximum velocity
is0.2; (a) h = 0.5 and (b) 4 = 1.0.
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TABLE 1. Wave amplitudes of free long waves at X, and X, | B, |
and | B, |, respectively, for Vm = 0.2, and (X, — X,) = 1.0.
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TABLE 3. Wave amplitudes of free long waves at X, and X, |5, ]
and | B, |, respectively, for ¥, = 0.2,and A = 1.0.

h (Xl - Xo)
0.5 1.0 0.5 2.0
g /6 /4 %/6 w/4 ap w/6 =4 /6 /4
| By | 0.146904 0.187476 0.026048 0.160288 | Byl 0.013903 0.144985 0.042669 0.176895
| By | 0.075690 0.438783 0.018943 0.063238  |B| 0.009837 0.088388 0.031651 0.049856

wave amplitudes increase as the angles of incidence
increase. The wave amplitudes also increase as the
depth becomes shallower. For the case where & = 1
and g = /4, the free long waves are trapped over the
current region.

In Table 2, the amplitudes of free long waves for
different maximum current velocity are shown. For a
fixed width of the shear current region, the amplitudes
increase as the current velocity increases. On the other
hand, when the maximum velocity, V,,, is fixed, the
free long-wave amplitudes decrease as the width of the
current region decreases for ap = 7 /6 and = /4 with
the exception that for oy = w/4 | B, | increases slightly
when the width decreases (Table 3).

7. Concluding remarks

The long waves generated by a train of modulated
periodical wave groups propagating over a uni-direc-
tional current field are investigated. It is shown that
the carrier (short) waves, the wave envelope, and the
free long waves propagate in different directions with
different speeds over the shear current region. The
locked long waves, however, always propagate with the
wave envelope. The free long waves could radiate away
from the current region or be trapped within the region,
depending on the angle of incidence and the current
velocity.

In the present paper, the wave reflection has been .
ignored. In the cases where the current velocity has a
discontinuity, such as a top-hat profile, the reflection
become important (e.g., Mei and Lo 1984; Kirby
1986). Similar to the approach used by Liu, Kostense,
and Dingemans (1989) for studying the long wave
generation by wave groups over a step, the present

TABLE 2. Wave amplitudes of free long waves at X, and X, | B, |
and | B, |, respectively, for # = 1.0, ap = 7/6, and (X, — Xp) = 1.0.

Vm
0.2 0.3 0.4 0.5
| By | 0.026048 0.034895 0.048923 0.057287
| By] 0.018943 0.027441 0.044201 0.063170

analysis may be extended to include the reflection
caused by the currents.
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