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ABSTRACT

Motivated by the general objective of pursuing oceanographic process and data assimilation studies of the
complex, nonlinear eddy and jet current fields observed over the continental shelf and slope off the west coast
of the United States, we investigate the use of intermediate models for that purpose. Intermediate models contain
physics between that in the primitive equations and that in the quasigeostrophic equations and are capable of
representing subinertial frequency motion over the O( 1) topographic variations typical of the continental slope,
while filtering out high-frequency gravity-inertial waves. As an initial step, we compare and evaluate several
intermediate models applied to the fplane shallow-water equations for flows over topography. The accuracy
and utility of the intermediate models are assessed by a comparison of exact analytical and numerical solutions
with those of the primitive shallow-water equations (SWE) and with those of the quasi-geostrophic equations
(QG). The intermediate models that we consider are based on the geostrophic momentum (GM ) approximation,
the derivation of Salmon (1983 ) utilizing Hamilton’s principle (HP), a geostrophic vorticity (GV') approximation,
the quasi-geostrophic momentum and full continuity equations (IM), the linear balance equations (LBE), the
balance equations ( BE), the related balance-type (HBE, BEM, NBE) and modified linear balance equations
(LQBE), the slow equations (SE) of Lynch (1989), and the modified slow equations (MSE). In Part I, we
discuss the intermediate models and develop formulations that are suitable for numerical solution in physical
coordinates for use in Parts II and IIl. We investigate the capability of the intermediate models to represent
linear ageostrophic coastally trapped waves, i.e., Kelvin and continental shelf waves, and demonstrate that they
do so with accuracy consistent with standard linear low-frequency approximations. We also assess the accuracy
of the models by a comparison of exact nonlinear analytical solutions to the SWE for steady flow in an elliptic
paraboloid and for unsteady motion of elliptical vortices in a circular paraboloid with corresponding analytical
solutions to the intermediate models and to QG. General results from the exact solution comparisons include
the following. Many of the intermediate models are capable of producing more accurate solutions than QG
over a range of Rossby numbers 0 < e < 1. In some cases, the intermediate models provide accurate approximate
solutions where QG is not applicable and fails to give a relevant solution. Considerable parameter-dependent
variation in quality exists, however, among the different intermediate models. For the particular problems
considered here, BE, HBE, BEM, NBE, and MSE reproduce the exact results of the SWE while LBE and LQBE
give the same approximation as QG. The accuracy of the models is typically in the order GV, GM, IM, HP,
and QG, with GV most accurate and IM and HP sometimes less accurate than QG.
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1. Introduction

We are interested in understanding the dynamical
processes involved in the formation and maintenance
of the complicated eddy and jet current fields observed
over the continental margin off the west coast of the
United States (e.g., Kosro and Huyer 1986; Huyer and
Kosro 1987). Since these flow fields appear to be
strongly nonlinear, the use of an appropriate numerical
model for process and data assimilation studies is in-
dicated. Based on the success of a quasi-geostrophic
model in data assimilation studies of mesoscale eddies
in a nearby region offshore in the California Current
(Robinson et al. 1984; Robinson et al. 1986) and on
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the assumption that the eddies and jets observed nearer
to shore over the continental shelf and slope have rea-
sonably similar time and space scales, we have been
motivated to look for a model with the dynamical sim-
plicity and robustness of quasi-geostrophy that will, in
addition, remain valid over the O( 1) topographic vari-
ations typical of the continental slope. Intermediate
models (McWilliams and Gent 1980) seem to offer
promising possibilities in this regard. These models
contain physics intermediate between that in the quasi-
geostrophic approximation and that in the full primi-
tive equations. In particular, they are capable of rep-
resenting flows over O( 1) topographic variations, with
accompanying O( 1) variations in the height of density
surfaces, for which the quasi-geostrophic approxima-
tion is not valid. In addition, intermediate models sys-
tematically filter out the high-frequency gravity-inertial
waves present in the primitive equations. This latter
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fact may lead to simplifications, relative to the primitive
equations, in the application of intermediate models
to data assimilation studies. In fact, although existing
intermediate models have been developed with other
atmospheric and oceanic flow problems in mind, the
study of the mesoscale dynamics of oceanographic flow
over the continental margin would seem to provide an
obvious area for their application.

Intermediate model approximations were reviewed
by McWilliams and Gent (1980). Since that time, these
authors have completed a substantial amount of further
study on intermediate models in general (Gent and
McWilliams 1982) and on the balance equations (BE)
in particular (Gent and McWilliams 1983a,b; Gent and
McWilliams 1984; Norton et al. 1986; McWilliams et
al. 1986). The geostrophic momentum (GM ) approx-
imation described by Hoskins (1975 ) results in another
intermediate model that has been widely used in the
study of atmospheric motions (e.g., Hoskins 1982).
The GM approximation is frequently employed in
conjunction with a transformation to geostrophic co-
ordinates, after which the model is referred to as the
semigeostrophic equations.

Although different intermediate models have been
derived and have existed for several years, there remains
in general a shortage of numerical solutions, compar-
ative studies, and model evaluations. We note that our
objective of employing the model for data assimilation
studies in fixed geographical locations, essentially re-
quires that solutions be obtained in physical coordi-
nates. For some intermediate models methods for ob-
taining numerical solutions in physical coordinates
have not been formulated and for others the devel-
opment of new procedures has been required (Norton
et al. 1986). In particular, at present there exist no
applications of intermediate models to oceanographic
flow fields over bottom topography typical of the con-
tinental margin. As a consequence, our initial objective
has been to understand the capabilities and limitations
of different intermediate models and to assess the ac-
curacy of their solutions for rotating, stratified ocean-
ographic flows over topography.

In order to initiate a comparative study that begins
to meet these objectives, we have chosen to apply a set
of intermediate models to the f-plane shallow-water
equations. Although in that case the effects of stratifi-
cation are only partially represented by the free surface
deformations, we felt that this would provide a valuable
test in the simplest possible circumstance that would
retain a great deal of the important physics. We note
that the response to atmospheric forcing of currents
on the continental shelf off the U.S. west coast is
strongly influenced by dynamics associated with
ageostrophic coastally trapped wave motions that have
a strong barotropic component (e.g., Allen and Kundu
1978; Denbo and Allen 1987). These waves must be
represented properly by any data assimilation model
and it is clearly of benefit to investigate this matter first
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in the simplified context of the barotropic shallow-wa-
ter equations.

We have proceeded with this comparative study by
evaluating the accuracy of solutions from different in-
termediate models and from the quasigeostrophic ap-
proximation, relative to those from the primitive
equations, for flows over topography. An extensive set
of numerical finite-difference solutions for initial-value
problems has been obtained and the results will be pre-
sented in Parts II (Barth et al. 1990) and 1II (Allen et
al. 1990). We also assess the accuracy of the different
intermediate models by comparing some exact nonlin-
ear analytical solutions that exist for the shallow-water
equations (Ball 1965; Cushman-Roisin et al. 1985),
both with and without topography, with corresponding
analytical solutions of the intermediate models. The
exact solutions to the shallow-water equations hold for
restricted circumstances and thus are not as general as
those obtainable by numerical solution, but appear in
this case to provide useful comparisons. Moreover, the
opportunity to obtain analytical expressions for the er-
rors introduced by various approximations in nonlinear
solutions is rare and we feel that it should be exploited.

The outline of this paper is as follows. In section 2,
we recall the shallow-water equations (SWE) and the
resulting relations for potential vorticity and energy
conservation. For comparison with the intermediate
models, we also record the quasi-geostrophic (QG) ap-
proximation to these equations. In section 3, we present
a number of intermediate models for the shallow-water
equations. These include the geostrophic momentum
(GM) approximation of Hoskins (1975), the geo-
strophic vorticity (GV) approximation (Sutyrin and
Yushina 1986a,b), the equations (HP) of Salmon
{1983) for nearly geostrophic flow, a model (IM) based
on the quasi-geostrophic momentum and full conti-
nuity equations (Williams 1985; Cushman-Roisin
1986), the balance (BE) and linear balance equations
(LBE) (e.g., Gent and McWilliams 1983a), and the
slow equations (SE) of Lynch (1989). We also for-
mulate and present a set of different balance-type
equations (HBE, BEM, NBE), modified linear balance
equations (LQBE), modified slow equations (MSE),
and we further develop a geostrophic vorticity (GV)
model. In several cases, we reduce the original model
equations to a form that is appropriate for numerical
solution in physical coordinates for use in Parts II and
III. In section 4, we examine the behavior of the in-
termediate models in a limit for which we expect them
to reduce to the quasi-geostrophic approximation and
we evaluate the capability of the intermediate models
to represent linear ageostrophic coastally trapped
waves, 1.e., Kelvin and continental shelf waves. In sec-
tions 5 and 6, we present exact solutions to the shallow-
water equations and to the different intermediate
models for steady flow in an elliptic paraboloid (Ball
1965) and for unsteady flow in a circular paraboloid.
The latter time-dependent motions reduce to the Ro-
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don solutions of Cushman-Roisin et al. (1985) in the
absence of topography. A comparison of the exact so-
lutions and a summary of results are given in sections
7 and 8. A summary of the equations for all of the
intermediate models (except SE) and for QG, expressed
in a common formulation related to that utilized for
BE, is given in appendix C.

2. Formulation
a. Shallow-water equations—SWE

We concentrate on rotating fluid flows governed by
the inviscid shallow-water equations (SWE) on an f-
plane. Dimensionless variables similar to those in Ped-
losky (1987) are utilized so that in Cartesian coordi-
nates (x, y) the continuity and momentum equations
are

efn + (hu), + (h), = 0, (2.1a)
eu, + e(uu, + vuy,) — v = —1q,, (2.1b)
€ + e(uv, + vvy) + u = —1,, (2.1¢c)
where
h=eFnp+1— hp, (2.1d)

eFm is the elevation of the free surface relative to the
undisturbed depth of the fluid H = 1 — Ag where Ap(x,
») is the height of the bottom topography, (u, v) are
velocity components in the (x, y) directions, and ¢ is
time. Subscripts (x, y, t) denote partial differentiation.
There are two dimensionless parameters, the Rossby
number ¢ and F,

e=U/(fL), F=fL?/(gD), (2.2ab)

where L, D, and U are characteristic values for, re-
spectively, a horizontal scale, the undisturbed fluid
depth, and a horizontal fluid velocity, f is the Coriolis
parameter, and g is the acceleration of gravity. The
parameter F is the square of the ratio of the horizontal
length scale L to the Rossby radius of deformation dz
= (gD)'?/f. Asin Pedlosky (1987), the dimensionless
variables (x, y), t, (u, v), hg, and 5 have been formed
from their dimensional counterparts by using the char-
acteristic scales L, L/ U, U, D, and eFD, respectively.

We will find it convenient in many instances to uti-
lize (2.1a, b, ¢) in the equivalent forms

eFn, + (Hu), + (Hv), + D=0, (2.3a)
e, — (1 +e)v=—-B,, (2.3b)
e+ (14 ef)u=-8,, (2.3c)

where

B=n+eK, K= %(u2 +0?), (2.3de)

H = eFq — hp, (2.3f)
B is the Bernoulli function,
§=0x— Uy, (2.3g)
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is the vertical component of relative vorticity, and
D=u,+v, (2.3h)

is the horizontal divergence.
‘ An equation for {, readily derived from (2.3b, c),
is
(&t ube+ovh)+H(ef+1)D=0.
Likewise an equation for D,
(D, + uD, + vD, + D?
+ 2(veuy — Vyuy)] — £ = =V, (2.5)

(2.4)

where V2 is the horizontal Laplacian operator, also fol-
lows from (2.3b, ¢).
By combining (2.4) and (2.1a), we obtain

O+ uQ, +vQ, =0, (2.6)

where

0= +¢€/h (2.7)

is the potential vorticity which is thus conserved fol-
lowing fluid particles moving with velocity (u, v). The
combination of (2.6) multiplied by £Q and (2.1a)
multiplied by Q? yields an equation for the conserva-
tion of potential enstrophy density 2Q?,

(hQ?), + (uhQ?), + (VhQ?), = 0. (2.8)

A similar relation may be derived for an arbitrary
function Fn(Q) which replaces Q2 in (2.8).
An additional useful equation

Qr, + (uQL)x + (vQL), = 0, (2.9a)
for
Q.=¢—-H, (2.9b)
where .
H=H/e= Fn— ¢ 'hg, (2.10)

follows from the subtraction of (2.3a) from (2.4).
The SWE (2.1) also imply the following relation ex-
pressing the conservation of energy,

e(hK+%Fn2> + (uhB), + (vhB), = 0. (2.11)
13

Initial-boundary-value problems for (2.1) require the
specification at £ = 0 of u(x, y, 0), v(x, y, 0), and
7(x, vy, 0) and the vanishing of the normal component
of velocity at rigid boundaries.

b. Quasi-geostrophic equations—QG

We are interested in approximate solutions to the
SWE (2.1) in the limiting case of small Rossby number,
i.e., for

e<1, (2.12)
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with, in general, F = O(1). The standard approxi-
mation in this case results in a governing equation for
quasi-geostrophic (QG) flow that is systematically de-
rived in Pedlosky (1987) by expanding the variables
in an asymptotic expansion in powers of ¢. For com-
parison with the intermediate models, it is useful to
recall the steps and the results of that derivation below.

The velocity components and interface height are
expanded, e.g., as

1 =10+ em + O(?), (2.13)
where
Up = —Toy, Vo = Tox, (2.14a,b)
$o = Vox — Ugy = Vng. (2.15)
The O(e) momentum equations are
Uor — $oVo — vy = =By, (2.16a)
Vo + oo + uy = =By, (2.16b)

where
Bi=m+ Ky, Ko= % (1 + v?). (2.16¢,d)

The vorticity equation follows from (2.16):
Sor + UoSox + VoSoy + Dy = 0, (2.17)

where

(2.18)

The continuity equation (2.1a) is approximated by

Fro, — tohg, — vohg, + Dy =0,  (2.19)

D] = Uy + Viy.

where it is assumed that
0 =0(1), hp=e'hyg=0(1). (2.20a,b)
An equation for quasi-geostrophic potential vortic-
ity,
Qo= $o— Fno+ ¢ 'hg, (2.21)

may be derived by eliminating D; from (2.17) and
(2.19):

Qo + 1pQox + 900y = 0, (2.22)

and it expresses the conservation of Q, following fluid
particles moving with velocities (g, vo). Eq. (2.22)
may be written in terms of the single variable 7o,

(Vim0 — Fno) = —J(mo, Vmo + ¢ 'hp), (2.23)

where the operator J(a, b) = a.b, — b.a, is the Ja-
cobian, and thus provides a single governing equation
for quasi-geostrophic flow.
An equation for the conservation of QG potential
enstrophy follows from the multiplication of (2.22) by
0+

Qd + (40Q0%)x + (v0Q0*)y = 0. (2.24)
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The QG approximation also implies a corresponding
form of energy conservation which may be derived
from (2.16) and (2.19) and is

(Ko + % Fnoz) + G2+ GY) =0, (2.25a)
t
where
Go(x) = uOK() + (ul + my)")o — u0n0€_1h33 (225b)
Go” = voKo + (v — m1x) 10 — vomoe 'hp,  (2.25¢)

and where (u; + n;,) and (v, — ny,) in (2.25b, ¢) may
be found in terms of 5, from (2.16a, b).

Initial-value problems require the specification at ¢
=0 of n(x, y, 0). At rigid boundaries the no-normal-
flow condition of the SWE translates in the QG ap-
proximation to the requirement that

o = Cj(1), (2.26)

for each connected boundary j = 1, 2, « - -, where the
C; are determined so that the integral constraints cor-
responding to conservation of mass and the conser-
vation of circulation around each boundary are main-
tained (McWilliams 1977).

3. Intermediate models

A number of different intermediate models for the
J~plane SWE are described in this section. To achieve
the objective of representing small Rossby number
flows with O(1) variationsin & = efp + 1 — hg, which
may result either from O(1) variations in the bottom
topographic height A5 or in the interface displacement
eFn, most of the intermediate models below retain the
full continuity equation (2.1a). The need to include
the complete representation of #in (2.1a) is clear from
the objective, and this in turn implies limitations on
approximations that may be made in (2.1a) for u and
v. For example, consider the continuity equation (2.1a)
written in the form

eFn, + uhy + vh, + hD = 0, (3.1)

as in the derivation of the QG approximation. If & is
represented in all terms by (2.1d), then expressions
for u and v that include the divergent parts that con-
tribute to D must be retained in ©A, and vh, to conserve
mass properly, i.e., so that the differentiated terms in
(3.1) can be recombined and the divergence form of
(2.1a) restored. The use of (2.1a) implies that a
boundary condition at rigid walls consistent with con-
servation of mass is that the normal component of the
velocity (u, v) vanish.

It should be noted that, in general, intermediate
models may involve no more formal accuracy in
Rossby number ¢ than the quasi-geostrophic approx-
imation (McWilliams and Gent 1980). The properties
of the intermediate models concerning the conservation
of potential vorticity on fluid particles and conservation
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of energy and potential enstrophy are summarized in
Table 1. In addition, the equations for the models are
summarized by expressing them in a common for-
mulation in appendix C.

a. Intermediate model—IM

This intermediate model is probably the closest to
QG in that it is based on similar momentum equations,
but unlike QG utilizes the full continuity equation. It
is obtained by iteration of the momentum equations
(2.1b, ¢) written in the form,

u=—n,— e(uv, + vvy) — evy, (3.2a)
v =1yt e(uu, + vuy) + euy, (3.2b)

using
Ug = —ny, Vg = N, (3.3a,b)

as a first approximation in the O(¢) terms on the right-
hand side. The resulting approximate momentum
equations are,

UG, — €§6Ug — U = — By, (3.4a)
€U, + €§gug + u = —Bg,, (3.4b)

where
§6 = Vgx — Ugy = Ven, (3.4c)

86 =79+ GKG, KG = ';' (uGZ + ‘UGZ). (34d,e)

In this intermediate model and in many of those that
follow, we assume that the adopted momentum equa-
tions, such as (3.4a, b), provide the defining relations

TABLE 1. Properties of the shallow water equations, the quasi-
geostrophic equations, and the intermediate models with regard to
the existence (marked by a check) of analogues of potential vorticity
conservation on fluid particles and to the conservation of energy.

Model Potential vorticity* Energy
SWE v v
QG v v
™M

GV g

GM v v
HP v v
BE v

LBE

LQBE v

HBE

BEM v

NBE v

SE v

MSE

* All models (except SE; see section 3k) that have analogues of
potential vorticity conservation on fluid particles have corresponding
conservation equations for potential enstrophy, e.g., (2.8), (2.24), and
(3.13).
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for approximate values of (u, v) that are retained in
the continuity equation (2.1a).
The vorticity equation implied by (3.4) is

€($ot + uc$ox + v6$6y) + D = 0.

A single equation for  may be obtained by substituting
the expressions for # and v from (3.4a, b) in the con-
tinuity equation (2.1a) (e.g., Williams 1985; Cushman-
Roisin 1986; Hukuda and Yamagada 1988):

(h’?xt)x + (h"lyr)y — Fy,
= —¢ ' J(h, Bs) — J(n, hic).

(3.5)

(3.6)

Boundary conditions for (3.6) on 7 at solid walls may
be obtained by using (3.4) to determine the normal
component of velocity (u, v) and by setting that equal
to zero. In the numerical solutions in Parts II and III,
(3.6) is regarded essentially as a linear equation in 7,
with 5 known. Since # > 0, Fn, and the highest deriv-
ative terms hV?y, retain opposite signs which implies,
with appropriate boundary conditions, the existence
of a unique solution for 7, (e.g., Garabedian 1964,
Chaps. 7, 8).

A disadvantage of this model is that conservation
statements, corresponding to those for potential vor-
ticity (2.6) or energy (2.11) in the SWE, have not been
found. The relation of IM to the linear balance equa-
tions (LBE) (e.g., Gent and McWilliams 1983a) is dis-
cussed in section 3f.

For comparison with results from other models, it
is useful to note that if the approximate momentum
equations (3.4) of IM are used to obtain an estimate
for an O(e) correction to the geostrophic vorticity by
forming a divergencc equation, we find

§ = $av = o — €J(ug, vg).

We mention that the governing equation (2.23) for
QG may be derived in a manner similar to that used
to obtain (3.6) for IM by substituting # and v from
(3.4a,b) in the following approximate form of the con-
tinuity equation (2.3a):

eFn, + (Hug)x + (Hvg), + D=0. (3.8)

In the QG approximation H = O(¢) and from (3.4)
D = O(e), so that all of the leading order terms are
consistently retained in (3.8).

(3.7)

b. Geostrophic vorticity—GV

Advection of geostrophic vorticity by # and v and
the consequent conservation of geostrophic potential
vorticity is insured here by finding approximate
expressions for ¥ and v from iteration of the momen-
tum equations as written in (2.3b, ¢), i.e., from

u=(1+e)(—B,— ev,), (3.92)
v=(1+e) By + ewr), (3.9b)
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where the iteration is carried out separately in the nu-
merator and in the denominator. This corresponds to
retaining the full ¥ and v in the rotation termsin (2.3).
The resulting approximate momentum equations are

eugy — (e§g + 1)v = —Bgy, (3.10a)
Vg, ¥ (e§g + 1)u = —Bg,. (3.10b)

The vorticity equation
e($g + ulox + i) + (e + 1)D =0, (3.11)

follows from (3.10a, b). The combination of (3.11)
and (2.1a) gives

QGt + uQGx + vQGy = 05 (3123)

which implies the conservation of geostrophic potential
vorticity

Q¢ = (1 + €{G)/h, (3.12b)

following fluid particles moving with velocities (1, v)
(3.10). The combination of (3.12a) and (2.1a) yields
an equation for the conservation of geostrophic poten-
tial enstrophy 2Q¢?,

(hQ&*) + (huQc’)x + (hvQG), = 0. (3.13)

A potential enstrophy conservation law will follow in
general for the subsequent intermediate models that
retain (2.1a) and that conserve some approximate form
of potential vorticity following fluid particles as in
(3.12). :

One equation for 7 is obtained by substituting # and
v from (3.10) in (2.1a):

(hemx)x + (hony)y — Fn, = —€ ' J(hg, Bg), (3.14a)
where

he = h/(1 + €66). (3.14b)

Boundary conditions for (3.14) on 7 at solid walls may
be obtained by using (3.10) and setting the normal
component of (u#, v) equal to zero. Similar to IM,
(3.14a) is regarded as a linear equation in #, in the
numerical solution procedure. The condition (1 + €{5)
> 0 implies A > 0 and ensures the retention of opposite
signs on the terms Fy, and hV2a,.

An equation expressing the conservation of energy
has not been found for this model. The GV model was
formulated and applied by Sutyrin and Yushina
[1986a,b; 1988]. The approximation (3.10) on which
GV is based was also mentioned briefly by Schir and
Davies (1988).

¢. Geostrophic momentum—GM

The geostrophic momentum approximation was
described by Hoskins (1975) and attributed there to
Eliassen (1948). It has been widely applied to studies
of atmospheric motion (e.g., Hoskins 1982) where it
is frequently employed in conjunction with a trans-
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formation to geostrophic coordinates, after which the
model is referred to as the semigeostrophic equations.

In GM, advection of momentum, assumed to be
represented by the geostrophic values ug and vg, by
the full # and v velocities is retained so that (2.1b, ¢)
are approximated by

(3.15a)
(3.15b)

Separate expressions for # and v may be obtained by
algebraic manipulation of (3.15):

u=(1+eou)"'[—Bg — eV
+ €*(uUgyV6 — Vyplic)], (3.16a)
v = (1 + elom) [ Box + et

e(uc + uugx + vug,) — v = —n,,

(Vg + uvgy + VUgG,) + u = —n,.

+ €X(VoxlG — UoxVai)], (3.16b)

where _
Som = §c + eJ(uUg, vg). (3.17)

An equation for {g follows directly from (3.16) by
forming D from u and v:

e $omr T USomr + Viomy) + (eSoar+ 1)D = 0. (3.18)
The combination of (3.18) and (2.1a) gives

Oem: + uQcmx + V0suy = 0, (3.19a)

which expresses the conservation of geostrophic mo-
mentum potential vorticity

Qom = (1 + Saan)/ b, (3.19b)

following fluid particles moving with velocities (u, v)
(3.161\63)i.ng1e equation for 7 is obtained by substituting
(3.16a, b) in (2.1a):
(hommx)x + (RGarnn)y — Fne + €J(nx, harny)
— eJ(ny, houne) = —€ ' J(hGu, Bs), (3.20a)
where
hea = h/(1 + €lcar)- (3.20b)

Again, the zero normal flow boundary condition on
(u, v) may be expressed in terms of n by utilizing
(3.16). Also, (3.20a) regarded as a linear equation for
. 1s elliptic as long as (1 + €{gar) > O.

The GM model, (3.15a,b)and (2.1a), possesses the
energy conservation equation

e(hKG+%Fn2) + (uhBg)x + (VhBg), = 0. (3.21)
t

If a divergence equation is formed from the GM
approximate momentum equations (3.15), we obtain
§= ¢ — 2[J(u, v6) + J(ug, v)]. (3.22)

which to O(¢) is equivalent to (3.7) for {4y It is curious
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that the O(¢) corrections to {; in {zpand in {ssinvolve
the same function J(ug, vg), but that they differ in
sign and magnitude. An implication of the difference
between (3.17) and (3.22) is that the geostrophic mo-
mentum vorticity {gas in Qg differs at O(e¢) from the
vorticity (3.22) of the advection velocities in the equa-
tion (3.19) for Qg with error [ — $oarl > (& — &6l

d. Salmon’s equation—HP

Salmon (1983) has derived a set of approximate
equations for nearly geostrophic flow in a fluid gov-
erned by the shallow-water equations in an original
manner by making approximations in the Lagrangian
before applying Hamilton’s Principle. Approximations
in the Lagrangian that do not break time and particle-
label symmetries are utilized and, as a result, the de-
rived approximate equations conserve analogues of to-
tal energy and potential vorticity (see also Salmon
1985, 1988a,b). The procedure of Salmon (1983) is
followed in appendix A to obtain approximations to
the SWE when bottom topographic variations are
present. The resulting momentum equations are

(3.23a)
(3.23b)

e — (e§g + 1)v = —Bppy,
Vg, + (Gfg + l)u . —'ﬁypy,

where

zﬂp =9+ % f(ugz + sz + e2uGuA + észvA)

+ (¢/F)h$y — (¢/F)(—u hgy, + v4hg), (3.23c)
$4 = Vgx — Uy, (3.23d)
Uu=ug+euy, v=vg+ evy. (3.24a,b)

For hp = 0, (3.23) are equivalent to Saimon’s (1983)
equations (4.6).

The vorticity equation for { is the same as (3.11)
in GV and again (3.11) and (2.1a) may be combined
to imply the conservation of geostrophic potential vor-
ticity Qg (3.12). The resulting equation expressing en-
ergy conservation is discussed in appendix A. For the
solution of (3.23) and (2.1a), it is necessary to utilize
diagnostic equations, e.g., those for 14 and v, (Al3a,
b) which are derived in appendix A.

For comparison with the other models and for use
in section 4, we substitute # and v from (3.23) in (2.1a)
to obtain

(hgnx)x + (hony)y — Fn, = —€e ' J(hgy, Byp).
(3.25)

In this case (3.25) is not an equation for 5 alone, since
Byr(3.23c) depends on u, and v, and those variables
are obtained from the solution of the diagnostic equa-
tions (A13a, b). Boundary conditions are discussed in
appendix A.

Note that the difference between this model and GV
is represented by the difference between Bpp (3.23¢)
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and B¢ (3.4d) as may be seen by a comparison of the
momentum equations (3.23) and (3.9) or of (3.25)
and (3.14a). Evidently, it is the presence of the addi-
tional terms in B ;p that results in energy conservation
in HP.

e. Balance equations—BE

The balance equations (Charney 1955, 1962; Bolin
1955, 1956; Gent and McWilliams 1983a) are obtained
by a procedure that is different than that used for the
previous models. In this case, the velocity components
are written as the sum of rotational and divergent com-
ponents,

u=—yY,+ ey, v=yYx+ex, (3.26ab)

so that
=0, —u,= VY, (3.27)
D =u,+ v, = VX, (3.28)

The governing equations, in addition to the conti-
nuity equation (2.1a), are obtained from the vorticity
(2.4) and divergence equations (2.5) by substituting
for 1 and v from (3.26) and retaining O(1) and O(e¢)
terms. For the shallow-water equations, this results in
retention of all the terms in the vorticity equation (2.4),

Grube+ ol +(1+e)Vx =0, (3.29)

and, from (2.5), in an approximate divergence or bal-
ance equation,

§=VY =Vi—2J(s¥,).  (3.30)

The approximate governing equations are then
(2.1a), (3.29) and (3.30). The vorticity equation (3.29)
combines with (2.1a) to give the conservation of po-
tential vorticity following fluid particles moving with
velocity (1, v) (3.26) as in (2.6). To insure consistency
of (2.1a), (3.29) and (3.30), an omega equation, de-
rived by substituting (3.29) and V2 (2.1a) in the time
derivative of (3.30),

V2D — FD = eF(u{, + v$, + €Vx)
= V2 [(Hu), + (H0),] = 22 FI (Y, ¥y)s  (3.31)

is frequently used in place of either (2.1a) or (3.29) in
numerical solution procedures (Gent and McWilliams
1983a; Norton et al. 1986).

An alternate solution procedure, which we briefly
outline in appendix B, utilizes (2.9) for @;,(3.29)and
(3.30). In fact, most of the intermediate models dis-
cussed here, as well as QG, can be formulated in a
manner similar to this. A summary is given in ap-
pendix C.

No equation expressing energy conservation has
been found for BE applied to the SWE (Gent and
McWilliams 1984 ). Note that this situation differs from
BE in the continuously stratified case where, in periodic
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domains with a rigid lid and no topography, energy is
conserved (Lorenz 1960), but potential vorticity on
fluid particles is not. We note that for the shallow-
water equations, BE and QG are potential vorticity
conserving models that have in common the property
that the relative vorticity in the approximate potential
vorticity Q is derived from the advection velocities in
the equation for Q (LQBE and BEM, sections 3g and
3i, also have this property). In addition, BE and BEM
are the only models for which the relative vorticity in
the conserved Q is exactly that given by the implied
divergence, or balance equation (see appendix C). The
momentum equations that correspond to the trunca-
tion of the vorticity and divergence equations in BE
do not follow directly from (2.1b, ¢), but involve im-
plicitly defined force potential correction terms and
are referred to as the equivalent momentum equations
(Gent and McWilliams 1983a). Methods to obtain
numerical finite-difference solutions of BE are de-
scribed in Norton et al. (1986), appendix B, and in
Parts II and IIl. Application of boundary conditions
at rigid walls is discussed in Gent and McWilliams
(1983a) and in Part III.

/- Linear balance equations—LBE

In LBE (Gent and McWilliams 1983a) the velocity
components are represented as in (3.26), but only O(1)
terms are retained in the approximate divergence
equation ( 3.30) so that the equation of balance is linear,

Vi = Uy, (3.32)
which implies, for our f-plane problems,

¥ =1 (3.33)

Likewise, only lowest order terms are retained in the
vorticity equation which with (3.33) is

Sot 4 Uglox + Vglay + VX =0,  (3.34)

where ug, vg, and {g are defined in (3.3) and (3.4c).
The continuity equation (2.1a) becomes

eFn + [(ug + 6Xx)I:I]x
+ [(v + ,)H], + 92X = 0. (3.35)

The governing equations are then (3.34) and (3.35).
The LBE have no relations expressing conservation of
potential vorticity or energy. Solution procedures are
discussed in Part II.

Asin BE, implicitly defined terms in equivalent mo-
mentum equations are required for consistency with
(3.32) and (3.34) (Gent and McWilliams 1983a). We
note, however, that since LBE are governed by (3.34)
and (3.35), we may assume alternatively that the ap-
proximate momentum equations (3.4) for IM [which
imply (3.34)] hold, while (2.1a) is separately approx-

imated by (3.35). This procedure is similar to the -

method used in connection with (3.8) to obtain QG.
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With this formulation, (3.32) is only a leading order
approximation to the balance equation (3.7) implied
by (3.4), as is the case in QG and IM, and the O(e)
correction term in (3.7) is assumed to be balanced by
a streamfunction correction rather than an implied
force potential. Because of the similarity with the QG
and IM models, we prefer the interpretation of the LBE
model (3.34) and (3.35) based on the approximate
momentum equations (3.4) and will utilize that in the
subsequent discussions.

Note that the vorticity equation (3.34) in LBE is
stmilar to that in IM (3.5) and both models use (2.1a).
The approximations differ, however, in that for LBE
the u and v in (3.35) have vorticity {z, whereas in IM
the uand vin (2.1a) have vorticity {#(3.7). [Compare
also (C5) and (C10).]

g. Linear balance equations (potential vorticity con-
serving)—LQOBE

We point out that a model similar to LBE and GV
that conserves potential vorticity may be constructed
by retaining some of the O(¢) terms in the vorticity
equation (3.29) which becomes

$or + (U + €X)$ox + (V6 + €X;) Sy

+ (1 + €efg)Vx = 0. (3.36)
Thus, LQBE is governed by (3.35) and (3.36). These
imply
Qo + (ug + X)) Qx + (V6 + €X,)0g, = 0, (3.37)

so that Qg is conserved on particles moving with ve-
locities (ug + €X,, Vg + €X,). We have found no equa-
tion expressing conservation of energy for LQBE. Sim-
ilar to LBE, we may assume that approximate mo-
mentum equations are

(3.38a)
(3.38b)

which imply (3.36). Procedures for obtaining numer-
ical solutions and applying wall boundary conditions
are discussed in Parts II and III.

eug, — e§g(Vg + €X,)) — v = —Bgy,

evg + e{g(ug + eXy) +u= —ﬁ(;y,

h. Hybrid balance equations—HBE

We have noticed that an additional set of models
(HBE, BEM, NBE) based on approximations similar
to those involved in the formulation of BE may be
derived directly from approximate momentum equa-
tions. These models are of interest because of the pos-
sibility that the existence of approximate momentum
equations might help clarify the formulation of con-
sistent boundary conditions at rigid walls (Part III).

In HBE, approximate momentum balances are ob-
tained by substituting (3.26) in (2.3b,c) and retaining
O(¢) terms. Using the notation

Up = —y),, UVr =1y, (3.39a,b)
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we obtain
€UR; — €{Vgr — UV = —Bg,, (3.40a)
€Vp; + fg‘uR +u= _2Rya (3.40b)
where
Br=1+ ; (ug? + v:2). (3.40¢)

The vorticity equation, implied by (3.40) is
e(§ + urS + 0rE)+ D =0, (3.41)

while the divergence equation formed from (3.40) re-
duces exactly to the equation of balance,

§=V=Vin—Ql(Yx ).  (342)

The governing equations for HBE are then (3.41),
(3.42), and (2.1a), with velocity components defined
by (3.26) and (3.39).

Numerical finite difference solutions of HBE may
be obtained by methods similar to those used for BE
(Norton et al. 1986; Part II). An alternative solution
procedure may be formulated by using the momentum
equations and substituting u and v from (3.40) in
(2.1a), which gives

(h‘pxt)x + (h‘//yt)y - F’?z
= —¢e" J(h, Br) — J(, htr). (3.43)

Equations (3.42) and (3.43) form two coupled gov-
erning equations for ¥ and n. Numerical finite differ-
ence solutions of (3.42) and (3.43) are found for doubly
periodic domains in Part II. In that case, the variable
X, which has been eliminated from (3.42) and (3.43),
does not have to be found explicitly. Aspects of this
solution procedure are discussed in appendix B.

No conservation statements for potential vorticity
or for energy have been found for HBE. Note that HBE
may be considered as an extension of IM, with the
difference between the two being the inclusion in HBE
of the O(¢) term in the balance equation (3.42). If that
term is dropped, such that V% = V5 and ¢ = 5, HBE
reduces to IM. Although the HBE model does not have
potential vorticity conservation, it does have approx-
imate momentum equations which imply the balance
equation (3.42) exactly. Consequently, we thought that
it would be useful to evaluate the accuracy of HBE in
Part II to help clarify the importance in an intermediate
model of retaining the balance equation (3.42) (by
comparison of HBE with IM) and of possessing po-
tential vorticity conservation (by comparison of HBE
with BE).

i. Balance equations (based on momentum equa-
tions)—BEM

A model very close to BE may be derived from (2.1a)
and the following approximate momentum equations:
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e, — (5 + 1) = —Bgy, (3.44a)
eVr, + (e§ + 1)u = —Bg,. (3.44b)

These are similar to (3.40) for HBE with the exception
that the full # and v are retained here in the rotation
terms. The vorticity equation (3.29) follows from
(3.44a, b) and (3.29) combines with (2.1a) to give
conservation of potential vorticity (2.6) on fluid par-
ticles moving with velocity (3.26), as in BE.

The governing equations are thus (2.1a), (3.29),
and the equation of balance,

§ =V = Vi~ QJ(Yx, ¥y) — €J(§,X),  (345)

which follows from (3.44a, b). The only difference be-
tween BEM and BE is the inclusion of the extra O(e?)
terms in (3.45) compared to (3.30). No relation ex-
pressing conservation of energy has been found for
BEM. Numerical finite difference solution procedures
for BEM are discussed in appendix B and Part II. Ap-
plication of wall boundary conditions is discussed in
Part II1.

J. Near balance equations—NBE

The NBE model utilizes momentum equations sim-
ilar to (3.44a, b) for BEM with the exception that the
streamfunction is expanded as

¥ =1yt Y, (3.46)
and we assume
etigor — (1 + €fro)V = —Brox, (3.47a)
€Uror + (1 + €fro)u = —Broy,  (3.47b)
where
Uro = —VYoy, Vro = Yox, (3.48a,b)

fro = Vo, Bro =1+ 3 ko + vho). (348c.d)

The equation of balance,

Vo = Vi1 — 2J(Yaxs Yoy)s (3.49)

which follows from approximating the divergence
equation found from (3.47) to O(e) is also assumed
to hold.

The vorticity equation implied by (3.47) is

€($ror + USrox + Vroy) + (§ro + 1)D =0, (3.50)
which combines with (2.1a) to give
Oror T 1Qxrox + VQxoy = 0, (3.51a)

expressing the conservation of NBE potential vorticity

Oro = (1 + €§ro)/ h, (3.51b)

following fluid particles moving with velocities
(u,v)(3.47).
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Substitution of ¥ and v from (3.47) and (2.1a) gives

(hroYoxt)x + (hroVoy)y — Fn,

= —¢ ' J(hpo, Bro), (3.52a)

where
hro = h/(1 + €{ro). (3.52b)

Similar to (3.42) and (3.43) for HBE, (3.49) and (3.52)
form two coupled governing equations for n and .
Numerical solutions to these equations for flow in
doubly periodic domains are presented in Part II where,
as with HBE, the variable X does not have to be cal-
culated. Aspects of the solution procedure are discussed
in appendix B. Boundary conditions for solid walls are
discussed in Part III. We will assume in subsequent
discussions that these boundary conditions, and those
for BE, HBE, and BEM, are such that for the limit
¢ = 0 the reduction of the equations of balance
(3.30), (3.42), (3.45), and (3.49) to V¥ = V% im-
plies ¥ = 7.

As is the case for the BE, no equation expressing
energy conservation has been found for NBE. Note
that this derivation of NBE follows the same idea as
that used for GV with an additional O(¢) correction
from (3.49) retained in ¥ here. If we expand ¥ =
+ ¢y, in place of (3.46) so that (3.49) becomes V2,
= V2p and ¥, = n, NBE reduces to GV.

k. Slow equations—SE

Using ideas of normal mode initialization, Lynch
(1989) has recently derived a set of approximate equa-
tions to model low frequency atmospheric motions.
His derivation is applied to the shallow water equations,
which are represented by equations for the divergence
D (2.5), the potential vorticity @ (2.6), and by an
additional equation,

eFI, + V2D — FD = eF[(u{), + (v$),)

— V[(Hu), + (Hv),], (3.53)
for the geostrophic imbalance,
I=Vy—¢, (3.54)

where (3.53) follows from combining V2 (2.1a) and F
(2.4). In addition, the derivation procedure utilizes
(2.9) for Q;, the linearized potential vorticity.
Considering linear approximations to (2.5), (2.9),
and (3.53), Lynch (1989) argues that, since slow (low-
frequency rotational) modes are time-independent,
geostrophic and nondivergent while fast (high-fre-
quency gravity wave) modes have zero linearized po-
tential vorticity, the time derivatives of D and I project
onto the fast modes and the time derivative of Q; pro-
jects onto the slow modes. Thus, approximate equa-
tions are derived by dropping the time derivatives of
D and I (associated in the linear limit with the fast
modes) in (2.5) and (3.53), respectively, and by re-
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taining the full potential vorticity equation (2.6). The
resulting slow equation (SE) are

=V —J(u, v)+ el(uD), + (vD),], (3.55)
V2D — FD = eF[(uf), + (09),]
~ V[(Hu) + (Hv),], (3.56)

and (2.6). Methods for solving the SE numerically are
outlined in Lynch (1989) and are also given in Part
11, where a decomposition of the velocity components
u and v into rotational and divergent parts as in (3.26)
1s utilized. The neglect of D, in (3.55) results in an
equation of balance, similar to (3.30) in BE, but with
more terms retained. The neglect of I, in (3.56 ) results
in an equation somewhat similar in form to the omega
equation (3.31) in BE, but with the last term in (3.31)
absent in (3.56).

There is a basic difference between SE and the in-
termediate models discussed previously in that the full
continuity equation (2.1a) is not retained in SE. This
is a result of the fact that (3.55) and (3.56) are not
consistent with (2.1a) and (2.4). We note that equiv-
alent continuity and vorticity equations for SE that are
consistent with the conservation of potential vorticity
(2.6) may be written in the form,

eFn, + (uH), + (vH), + D+ hD' =0, (3.57)

&+ (U + (K] + D+ (1 +e)D' =0, (3.58)
where we use the notation
D' = u\ + v}, (3.59)

and where the total velocity components here are des-
ignated by

Ur=u-+u', (3.60a,b)

Equations (3.57) and (3.58) may be derived from
(2.1a) and (2.4) by using the velocity components
(3.60) and neglecting certain terms. We have not found
corresponding consistent momentum equations that
imply (3.58), however.

An equation for D’ follows from the requirement
that (3.57) and (3.58) be consistent also with (3.53)
and (3.56). Substituting V2 (3.57) and F (3.58) in the
time derivative of ¢F (3.55) and then subtracting
(3.56), we obtain

V2(hD") — (1 + €)D’
= e2F[2J(u, v) — (uD), — (vD),],. (3.61)

A nonzero value for the right hand side of (3.61) may
be expected in general and that will require the exis-
tence of D' # 0. A nonzero value of D' implies that
the flux terms in the equivalent continuity equation
(3.57) are not in divergence form and that mass is not
necessarily conserved locally. To assess the global con-
servation of mass, we consider solutions in doubly pe-

vr=v+0v.
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riodic domains. From the area integral of (3.57) over
the domain, we obtain

eF fJ. ndxdy = —Jf hD'dxdy. (3.62)

Although in the numerical solution procedure in Part
I1, it is not necessary to calculate D’ explicitly or to
consider (3.61), the numerical results confirm through
nonzero values of the left hand side of (3.62), that D’
# 0. Thus, the SE do not necessarily conserve mass
globally either.

Note also that although the SE model conserves po-
tential vorticity on fluid particles (2.6), because of the
implied approximation (3.57) to the continuity equa-
tion, a conservation equation for potential enstrophy
similar to (2.8) does not exist. On the other hand, we
note that the area integral of (3.61) over the doubly
periodic domain gives

ff (1 + ¢)D'dxdy = 0, (3.63)
which from (3.58) implies
ff Gdxdy = 0, (3.64)

so that this property of the SWE implied by (2.4) is
preserved. No statement expressing energy conserva-
tion has been found.

The relaxation in SE of the requirement that the full
continuity equation (2.1a) be retained is a marked de-
parture from the other intermediate models that utilize
(2.1a). We thought this different feature of SE made
it an interesting model to include in the evaluations
involving numerical solutions in doubly periodic do-
mains in Part II. The failure of SE to conserve mass
globally, however, seems to be a potentially trouble-
some property. In addition, the lack of readily identi-
fiable approximate momentum equations makes some
applications, including those in section 6, difficult. Be-
cause of these drawbacks, we omit SE from further
discussion here, but include some numerical results in
Part IL. In order to retain a model that is based on the
same idea, however, we follow Lynch’s (1989) pro-
cedure and formulate a set of modified slow equations
(MSE) that conserve mass globally as described in the
next section.

. Modified slow equations—MSE

For this model, the procedure utilized by Lynch
(1989) in deriving the SE is followed with the exception
that (2.9) for Q; is retained rather than (2.6) for Q.
The MSE thus consist of (3.55), (3.56) and (2.9). We
remark that the retention of (2.9) seems to be at least
as consistent with the rationale for the derivation of
SE, based on linear wave modes, as is the retention of
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(2.6). Numerical solution procedures and results for
MSE are presented in Part II.

Similar to SE, we can identify equivalent continuity
and vorticity equations for MSE that are consistent
with (2.9) and that follow as approximations to (2.1a)
and (2.4). These are

eFn, + (uH), + (vH),+ D+ D' =0, (3.65)
d&+ (ud + (v),)+ D+ D' =0, (3.66)

where the notation (3.59) and the definitions (3.60)
are again utilized. In this case, it is also useful to rep-
resent ¥ and v in terms of Y and X as in (3.26) so that
(3.27) and (3.28) hold and further to define

U =exy, v =eX,, (3.67a,b)

so that

D' = VX (3.68)
Moreover, we can identify approximate momentum
equations,

—eYy — §v — vr = —B,, (3.69a)
Yy + e§u+ ur=—38,, (3.69b)

where B is defined as in (2.3d), that imply both the
equivalent vorticity equation (3.66) and the MSE
equation of balance (3.55).

An equation for D’ follows from the requirement
that (3.65) and (3.66) be consistent with (3.55) and
(3.56). Substituting V2 (3.65) and F (3.66) in the time
derivative of (3.55) and subtracting (3.56), we obtain

V2D' — FD' = €F[2J(u, v) — (uD), — (vD),],.
(3.70)
As in (3.61) for SE, a nonzero value for the terms on
the right hand side of (3.70) will imply D’ # 0. In
MSE, however, the flux terms in the equivalent con-
tinuity equation (3.65) are written in divergence form
and mass is conserved globally. The area integrals over
a doubly periodic domain of (3.65) and (3.66) give
(3.64) and
ff mdxdy = 0,

as in the SWE.

The MSE do not conserve potential vorticity on fluid

particles exactly and a conservation law for energy has
not been found.

(3.71)

4. Limiting cases

All of the intermediate models discussed in section
3 (except SE) and QG are given in a common for-
mulation in appendix C. The behavior of the in-
termediate models in the relevant limiting cases of
quasi-geostrophic flow and linear ageostrophic coast-
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ally trapped waves may be readily found from this for-
mulation.

a. Quasi-geostrophic limit

* For the limit e = 0, i3 = ¢ 'hg = O(1), F = O(1),
and with # expanded as in (2.13), all of the interme-
diate models in appendix C reduce to the QG (2.23)
[or (C4a, b)]. For IM, GV, and GM, this may also be
seen from the governing equations for 5 (3.6), (3.14),
and (3.20) which reduce directly to (2.23). In this limit,
wall boundary conditions for the intermediate models
will likewise reduce to (2.26). Note from (C13d) that
the reduction of HP to QG for ¢ = 0 appear to depend
on the requirement F = O(1) > O(¢). The behavior
of HP in the limit F — 0 with Az # 0 is inaccurate as
shown from the exact solutions in sections 6 and 7.

b. Linear ageostrophic coastally-trapped waves

As mentioned in section 1, the importance of linear
ageostrophic coastally trapped wave motion to the ob-
served behavior of continental shelf flow fields is well
known. Consequently, the ability of intermediate
models to represent these waves properly is of direct
interest and is examined below.

The linear shallow-water equations for motion over
O(1) topographic variations are

eFn, + (Hu), + (Hv), = 0, (4.1a)
€Uy — V= Ty, (4.1b)
e, +u=—nq, (4.1c)
where H = 1 — hg. It follows from (4.1b, ¢) that
Lu=—n,—eny, Lv=n—en, (4.2ab)
where
L =1+ €299 (4.2¢)

Substituting (4.2a, b) in £ (4.1a), we obtain a'single
equation for :

[(Hux)x + (Hny)y — FLyl, = —'J(n, hp). (4.3)

For definiteness, we assume that when solid boundaries
are utilized in the following discussion, they exist at
constant values of y, e.g., ¥ = o, such that v (y = y,)
= 0 and Az, (¥ = yp) = 0. In that case, (4.2b) implies
a boundary condition for (4.3) of

ne—en, =0, at y=y,. (4.4)

For all of the intermediate models, except for HP
which is considered separately below, the following
single governing equation for n may be found in the
linear limit:

[(Hn)x + (Hny)y — Fnlo = —¢ 7' J(n, hg), (4.5)

. with wall boundary condition given by (4.4). This re-
sult may be obtained from the linear limit of the equa-
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tions in appendix C, which include V4 = V25 and V?x
= —V%), or V2x = —V?y,. We assume that wall bound-
ary conditions (Part III) are such that these equations
imply ¥ = n and X = —17,. Consequently, (4.4) follows
from (C1b). The corresponding QG linear equation is

[V10 — Fno)e = —¢ ' J(no, hg), (4.6)

with boundary condition (2.26).

We can see that the intermediate model equation
(4.5) is the same as (4.3) with .L approximated by 1,
and that both (4.5) and (4.3 ) have the same boundary
condition (4.4). In fact, (4.5) and (4.4) are the same
equation and boundary condition that are derived in
the standard linear low-frequency approximation for
subinertial frequency motion, where it is assumed that

(4.7a,b)

and £ is replaced by 1 in (4.2a, b). The intermediate
models consequently represent linear ageostrophic
coastally trapped waves with the same accuracy as the
standard linear low-frequency approximation (4.7a, b).
The QG approximation (4.6), on the other hand, drops
all the H variability on the left hand side of (4.3) and
replaces boundary condition (4.4) with (2.26).

As an example, we consider coastally trapped Kelvin
waves for fluid in the region y = 0 with coast at y,
= 0 and a flat bottom (43 = 0) in which case (4.3)
from the linear SWE becomes

Ezut, < u, ezva < v,

[ + 0y — FLyl, = 0. (4.8)
Coastally-trapped wave motion of the form
n = Cexp(—iwt + ikx — ry), 4.9)
satisfying (4.8) and (4.4), exists with
r=rew=F'2, (4.102)
«w = ewsw = k[ rsw. (4.10b)

For the intermediate models, with Az = 0, (4.5) is
[7xx + myy — Fn), = 0. (4.11)

A wave solution (4.9) satifies (4.11) and (4.4) with
r=r;=(k*+ F)'?, (4.12a)

W = €Wy = k/r;. (412b)

For (ewsw)? < 1, (4.12b) gives
€Wy = WS 1 - % (Ewsw)2 + O( e4a>§w)] . (413)

Thus, the dispersion relation (4.12b) is a good
approximation to (4.10b) for (ewsw)? < 1. The
phase velocities ¢; = w;/k = (er;) ™! and csp = wsw/k
= (eF'"?)7!, so that csw = ¢; = 0 and (csw — ¢;) in-
creases as k increases. In the QG approximation with
hp = 0, (4.6) reduces also to (4.11). The boundary
condition (2.26), however, implies C = 0 for an as-
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sumed solution (4.9) and thus filters out coastal Kelvin
waves.

In the linear limit for Salmon’s equations HP, (3.25)
becomes

[(an)x + (Hny)y - Fn]t = e_1-](}11'3, ’HP), (4.143)
where
up =1+ (e/FYH{, — (e/F)(~uyhp, + v4h5).
(4.14b)

The diagnostic equations (A13) reduce to (A20) and
the momentum equation (3.23a) is
€U — V= —ﬂlypx. (415)

For the flat bottom case (45 = 0), (4.14a) reduces
to (4.11) and (A20a, b) become

Viu,— Fu, =0, Vv,— Fv,=0. (4.16ab)

The boundary condition (A17a), uy(y = 0) = 0, and
(4.16a) imply

us=0. (4.17)
The boundary condition v (y = 0) = 0 gives
€y =—VUg=—1, at y=20, (4.18)
and implies from (4.15),
—eny = —Ne+ F g, at y=0, (4.19)

where (4.17) and (4.18) have been used to substitute
eCax(y = 0) = — e In (4.15). A coastally trapped
Kelvin wave solution may be found from (4.11) with
boundary condition (4.19) and is given by (4.9) with
(4.12a) and

ew = ewyp = kr;/ F.

For (ewsw)? < 1, (4.20) gives

(4.20)

cwnp = ewsw| 1 + % (ewsw)? + O(*odn) |, (4.21)

so that the dispersion relation (4.20) is also a good
approximation to (4.10b) for (ewsw)?> < 1 and k
= O(1). In this case, however, the phase velocity cyp
= csw = 0 and (cyp — csw) increases as k increases so
that the large k waves propagate with phase velocity
that is greater than the exact phase velocity for the
SWE. This is the opposite to the behavior for ¢; as k
increases and may be expected to cause restrictions on
the time-step in the application of explicit finite dif-
ference numerical methods.

For a second example, we consider free waves in an
infinite constant-width channel 0 < y < | with across-
channel topographic variations

H = exp(—sy), (4.22)
in the limiting case F — 0. Assuming

n = g(y) exp(—iwt + ikXx), (4.23)
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we find for both the SWE (4.3) and the intermediate
models (4.5) (except HP) that g satisfies

gy —Sg +(-k*—sb™g=0, (424)
with boundary conditions from (4.4) of
g+bg,=0, at y=0,]1, (4.25)
where
b=evw/k. (4.26)

The solutions are
g=C exp(% ys)[sinmry — nwb

X (l + % bs)‘l cosnwy], (4.27a)
wheren=1,2, - - -, and
—1
b= —s[k2 + (nw)® + 41 sz] , (4.27b)

and they represent subinertial frequency topographic
Rossby waves. For s = O(1), nw = O(1), £ < O(1),
these waves are ageostrophic, i.e., b = O(1) so that bg,
is the same magnitude as g in (4.2b). For s = O(e)
and H = 1 — sy + O(e€?), (4.27a, b) reduce with relative
error O(¢) to the quasi-geostrophic solutions,

g = Csinnay, (4.28a)
b= —s[k®+ (nm)*]7", (4.28b)

for constant bottom slope. Consequently, in this ex-
ample with F — 0, the intermediate model solutions
(except HP) represent the exact SWE ageostrophic
waves when s = O(1) and they reduce to the QG results
when s = O(e).

5. Exact solutions of the shallow-water equations

Exact nonlinear analytical solutions of the SWE for
steady flow in an elliptic paraboloid have been found
by Ball (1965) and for unsteady elliptical vortices by
Cushman-Roisin et al. (1985) (see also, Cushman-
Roisin 1987; Young 1987). These flows are charac-
terized by spatially constant vorticity and zero di-
vergence. The analysis procedure for both proceeds
similarly. The time-dependent solutions of Cushman-
Roisin et al. (1985) correspond to steadily rotating el-
liptic eddies and have been named Rodons. Unsteady
motion with dynamics similar to the Rodon is found
here to exist in a circular paraboloid and to reduce to
the Rodon solution as the bottom topographic varia-
tions vanish. Corresponding exact analytical solutions
to the intermediate models may also be found for the
same situations. A comparison of these with the exact
results from the SWE thus allows a direct assessment
of the relative accuracy of the intermediate models in
these particular cases. The relevant exact solutions for
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the SWE are obtained here and those for the inter-
mediate models in section 6. The results are discussed
and compared in section 7.

Following Ball (1965), we consider motion in an
elliptic paraboloid with bottom topography

hy = % ax? + % By:, a, 8=0. (5.1ab)

Solutions are sought in the form

u=Ux+ Uy, v=Vx+V,y, (52ab)

7 =10+ %sz + Bxy + % vl (5.2¢)
where the coefficients U,, etc. are functions of time.
Substitution of (5.1) and (5.2) in (2.1) results in eight
nonlinear ordinary differential equations for the eight
coefficients. It is more convenient to work with the
folowing variables (Ball 1965):

C=Ue—u, =V, — Uy, (5.3a)
D=u+v,=U + ¥, (5.3b)
M=v,+u =V, +U, (5.3¢)
L=u—v,=U~ W, (5.3d)
R=nutm,=Ad+C, (5.3¢)
S = 2n,, = 2B, (5.3f)
O=nx—my=4—-C. (5.3g)

The resulting equations for the variables defined in
(5.3) are

e, +(ef+1)D =0, (5.4a)
D, + % D2+ L?+ M*— () — ¢ = —R, (5.4b)
eM,+ eMD + L =—S, (5.4¢c)
el,+elD— M=—0Q, (5.4d)
R, +SM+2D(R—-6)+ L(Q - ¢)=0, (5.4e)
Q+S8¢+2D(Q—¢)+ L(R~-6)=0, (5.4f)
S, + 28D+ M(R—8)— {(Q— ¢) =0, (5.4g)
eFng, + (eFng + 1)D =0, (5.4h)
where

0=0/eF, ¢=¢]cF, (5.5a,b)
b=a+B8 o¢=a—8 (5.5¢,d)

Also, for use below we define,
6=0/F, ¢=¢/F. (5.6a,b)

Steady solutions of (5.4) for ¢ # 0 are given by
D=0, L=-5S=0, M=Q, (57abc)

R={+3d8% =0, (5.7d)
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%
- «R=-01

The above solutions are valid also in the limit é—0,
but for ¢ = 0 additional steady solutions with L # 0
and S # 0 are possible. These turn up as zero frequency
solutions in the unsteady case considered below. This
same situation also occurs with the intermediate mod-
els in section 7. The substitution of (5.7¢) in (5.7d)
gives the following cubic equation for

T=¢R~0),

Q (5.7¢)

(5.8a)
T - (29 +3 ezfz)Tz + (82 + 83> T
— 2237 = 47 = 0. (5.8b)

With given topography and parameter F, which ap-
pears as the combinations # and ¢, and a specified value
of the vorticity €{, the possible steady values of R are
given by the solutions to (5.8). Q may then be found
from (5.7d). The results are discussed in section 7. To
insure physically realizable solutions, we require eF4
< aand eFC < B or

SR+Q) <& 3(R-Q)<f (59b)
For the unsteady case, we consider the class of mo-

tions (Cushman-Roisin et al. 1985; Cushman-Roisin
1987) governed by (5.4) for which

D=0. (5.10)
With (5.10), (5.4) reduce to
=0, (5.11a)
SeL?+ M>—{?)—{=~R, (511b)
eM,+ L=-S, (5llc)
eL,— M=-0, (5.11d)
R+ SM+ L(Q— ¢)=0, (5.11¢)
Qi +St+ L(R—8)=0, (5.11f)
S, + MR - 0)— ¢(Q— ¢)=0, (5.11g)
Fro = 0. (5.11h)

Substituting (5.11a, ¢, d, e) in the time derivative of
(5.11b), we obtain
LQ+MS—%L<?>=O. (5.12)
Note that (5.11b) is analogous to an equation of bal-
ance (3.30) while (5.12) is the corresponding omega

equation analogous to (3.31). The substitution of
(5.12)in (5.11e) gives
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1 -
Rt_'z‘Ld)

0, (5.13)
which may be used in place of (5.11¢).

Analytical solutions in terms of simple functions
may be found when the topography is a circular parab-
oloid,

p=a-F=0. (5.14)
In this case, (5.12), (5.13) and (5.11g) reduce to
LO+ MS =0, (5.15a)
R, =0, (5.15b)
S;+ M(R—8)—¢0=0. (5.15¢)

Solutions to (5.11a, b, ¢, d) and (5.15a, b, ¢) may
be found (Cushman-Roisin et al. 1985) in the form,

§= %, R =Ry, (5.16a,b)
(L, S) = (Lo, Qo) sin(wt + &), (5.16¢,d)
(M, Q) = (—Loy, Qo) cos(wt + 0p), (5.16¢,f)

if w satisfies

e+ (1l —ew+(R-¢-8)=0, (5.17)

and
R=Ro=§'+%(§2—L02), (5.18a)
Qo = —Lo(1 + ew). (5.18b)

For 6 = 0, the two roots to (5.17) give one subinertial
and one superinertial frequency. The subinertial fre-
quency of interest here is given by

== (1 =€)+ 2 [(1 + €0)? — 4eR + 4772,

(5.19)

where we assume § < 2 is small enough that |ew| < 1.

When the topography vanishes, 8 = 0, these solutions
reduce to the steadily rotating elliptical eddy Rodon
of Cushman-Roisin et al. (1985). For 8 # 0, the dy-
namics remain similar, but the frequency (5.19) is al-
tered by the presence of the topography. The solutions
are determined here by the assumption that ¢{; and
€Ly (and an initial value of the phase 0,) are specified.
This specification is different than that used by Cush-
man-Roisin et al. (1985) where, for convenience in
relating the results to satellite observations of eddy sizes
and ellipticities, it is assumed that Ry and Q, are known.
For our purposes, however, it seems sensible to retain
consistency with the steady solutions, where the spec-
ification of e{, was natural, and to assume properties
of the velocity field e{y and eL; are given.

The frequency (5.19) and R (5.18a) may be written
as
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€w 5

+ % [2(1 + L2 + 20) — (1 + €0)?]'2, (5.20)

2R =(1+e0)?— (1 + L), (521)
and it follows from (5.20), (5.21) and (5.18b) that
4[(R — )2 — Q0’1 = (1 + 26)?

—{(1 + D)[2(1 + 2L> + 28)
— (14 €)?1'2 + 2L2}2%  (5.22)

Real values of ew are found from (5.20) provided

201+ L2 +20)= (1 + )% (5.23)
For physical realizability it is required that
R<b, Q#<(R-0> (5.24a,b)
From (5.21), (5.24a) requires
(1+ L +20)>(1+€?),  (5.25)

which, if satisfied, implies that (5.23) is satisfied. Con-
dition (5.24b) may be found in terms of { and L, from
(5.22) and reduces to

(1 + €2Lg? + 26) — 2¢| Lo|(1 + 26)% > (1 + €})?,

(5.26a)
or
[(1420)12 — €| Lyl1>> (1 + €0)%  (5.26b)
It also follows from (5.22) that
462 [(R —0)% — Q1< (1 +28)%, (5.27)

which gives a minimum value of the eddy mean radius.
When 6 = 0, (5.24a, b) and (5.27) reduce to the
proper existence conditions for the Rodon (Cushman-
Roisin et al. 1985).

6. Exact solutions of the intermediate models

Corresponding exact analytical results for the inter-
mediate models may be found for the topography (5.1)
by seeking solutions of the form (5.2). We present the
resulting ordinary differential equations and obtain the
relevant solutions in terms of the variables (5.3 ) in this
section. For the intermediate models that utilize the
full continuity equation (2.1a), (5.4e, f, g, h) remain
unchanged and we will assume that they apply here
unless specifically noted. The intermediate models in-
volve different approximations to the momentum
equations and thus (5.4a, b, ¢, d) are replaced with the
equations given below.

a. Intermediate model—IM

eR, + D =0, (6.1a)

S0*+ 2= R) —¢=-R, (6.1b)
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eQ,+ L =-8, (6.1c)
S+ M= Q. (6.1d)
The steady solutions are (5.7a, b, ¢),
R={+ R~ 0%, (6.2)

and (5.7e). A quartic equation for T = (R — {) results
from the substitution of (5.7¢) in (6.2). _

The unsteady solutions with D = 0, ¢ = 0, and
with the variables written in the form (5.16) are

R={+2dR* = O, (6.3a)
__(1—=eR+0)

&=- " L (6.3b)
_b+di—R)

ew———————(l_eR+(~]). (6.3c)

A quadratic equation for 7 follows from (6.3a, b).

b. Geostrophic vorticity—GV

R, +(eR+1)D=0, (6.42)
% «(Q*+S*+ R*—2R¢) — ¢ = —R, (6.4b)
€0, + SR+ (R + 1)L = =S, (6.4c)
S, — QR+ (eR+ )M =Q.  (6.4d)

The steady solutions are (5.7a, b, c, €) and
R= §‘+%e(2R§'—R2—-Q2). (6.5)

A quartic equation for T follows from (5.7¢) and (6.5).
The unsteady solutions with D = Q, ¢ = 0 are

R=¢+ % 2R — R*— Q),  (6.6a)
__Q+0L,
Qo = T+ dR=01" (6.6b)
(1 +eR)[6+ (5 — R)]
w = 157 (6.6¢)

A quartic equation for 7 results from (6.6a, b).
¢. Geostrophic momentum—GM

R, + % «SM+DR+LQ)+D=0, (67a)
%e(MQ —LS—tR)—¢=—R, (6.7b)

O, + % (S¢+ DO+ LR)+L=-S, (6.7¢c)
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€S, + % (MR~ Q)+ M=0Q. (6.7d)

The steady solutions are (5.7a) and
(1 +%eR)M= (1 +%e§')Q, (6.8a)
R={+3e2R0 ~ R* = Q%) +; {(R* - 0%),
(6.8b)
g&(l +%6R)
0= .
[0(1 +§€§) — R — {)]

A quartic equation for T follows from (6.8b, c).
The unsteady solutions with D = 0, ¢ = 0 are

(6.8¢c)

(1 +h- % eR)
1
R=¢+-e¢|{R—L?>————— |, (6.9a)
2 1—Ler
2
(l +6 -~ % eR)
Qo= ———— Ly, (6.9b)
1 - I el
2
[5(1 + % egr) + - R)]
€w = , (6.9¢)
(l +6 - 1 eR)
2
where (6.9a) is a linear equation for 7.
d. Salmon’s equations—HP
R, + (eR+ 1)D =0, (6.10a)

%e[Z(QM— SL+ R¢)— Q*~S?—3R*|— ¢
=—R—2(R~- 00+ (M- Q)p, (6.10b)

€Q+3 d~S(R = §)+20D]+ L

=-S+D¢—(L+S), (6.10c)
&S, + 3 d Q(R — §) + 25D]
=Q+2(R-§)¢— (M~ Q)d. (6.10d)

The steady solutions are (5.7a) and

_ 1 (R2— 0%)(1 + 6)
R= Hi[u — eR +26)(1 +8) — 2(é — eQ)*1”

(6.11a)
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0-=j-LU +8) — 2(R— £)(§ — eR)]
[6+8%— «(R— )1 +30—2R)]’
(6.11b)

A sixth-order polynomial for T follows from (6.11a, b).
The unsteady solutions (D = 0, ¢ = 0) are

1 (0 +R*~2|0 | Lol)

R=§+§e (1 — €R + 26) ) (6.12a)
- _ (1 ~ R +20)
Q- [1 — 2R —¢) — et + 6) Lo, (6.12b)
s !
o= 1007~ R = (1 +30 — 2R)] (6.120)

(1 — eR + 20)

The combination of (6.12a, b) results in a quartic
equation for T.

e. Balance equations—BE, HBE, BEM, NBE

The intermediate models BE, HBE, BEM, and NBE
involve the use of functions ¢ and X to represent the
velocity field. A general representation of both ¢ and
X in a form similar to that for 5 in (5.2¢) would require
a total of six coefficients for the x?, y2, and xy terms.
The representation of the velocity field (5.2a, b) for
the exact solution of the SWE, however, involves only
four coefficients U,, U,, V,, V, (or alternately ¢, D,
M, L). The two extra coefficients in ¥ and X correspond
to the case eX, = ¥, eX, = —y,sou=v=0,but ¢, X
# 0. We proceed by assuming

V=3 (M+0x =2 Lay = 2 (M= )% (6.13a)

X = %D(xz + %), (6.13b)
so that

U= =y + X = 3 (D + L)x +3 (M= §)y, (6.14a)

D=Yut Xy =3 (M+Dx+2(D—L)y, (6.14b)

consistent with (5.2a, b) and (5.3a, b, ¢, d).
For HBE, the substitution of (6.13) and (6.14) in
(3.40) results in

e, +D=0, (6.15a)
%e(L2+M2— t2)—¢=—R, (6.15b)
M, +L=-S, (6.15c)
L,—M=—-0. (6.15d)

For BEM, the use of (6.13) and (6.14) in (3.44)
gives the same equations (6.15b, ¢, d) with (6.15a)
replaced by

e, +(1+e)D=0. (6.16)
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Steady solutions of (6.15) and (6.16) require D
= 0 while the unsteady solutions are obtained under
the assumption D = 0. In that case, (6.15) and (6.16)
reduce to equations that are identical to those obtained
from (5.11a, b, ¢, d) for the SWE. Consequently, for
the special problems considered here, HBE and BEM
will give results identical to those from the SWE. A
similar result holds with D = 0 for NBE also. For BE,
with (6.13) and (6.14) the vorticity equation and the
balance equation do not provide sufficient information
to determine the four coefficients D, {, L, M and mo-
mentum equations must be utilized. With D = 0, the
equivalent momentum equations of BE are the same
as (3.44) for BEM and we conclude that BE also will
give solutions that are identical to those from the SWE.

f. Linear balance equations—LBE, LOBE

With our interpretation of LBE (section 3f), the
momentum equations are the same as IM (6.1). The
velocity components for the continuity equation
(3.35), found using (5.2a) and (6.13b), are

UG + X, = ~(B - % D)x —Cy, (6.17a)

v6 + X, = Ax + (B +%D)y. (6.17b)

As a result, (5.4¢, f, g) from the continuity equation
are replaced in LBE by

R, + Sé +2D(R—-8)=0, (6.18a)
O, +S88+2D(Q—¢)=0, (6.18b)
S, +Rp— Qb+ 25D =0. (6.18¢)

Steady solutions are (5.7a, b, ¢, €), (6.2) and
Q = ¢R/0. (6.19)

A quadratic equation for 7" follows from substituting
(6.19)in (6.2). A
The unsteady solutions (D = 0, ¢ = 0) are (6.3a),
which is a quadratic for T, and
Qo = —Lo/(1 - 6),

ew = 0.

(6.20a)

(6.20b)

For LQBE, with D = 0, and hence X = 0 (6.13b),
the momentum equations (3.38) reduce to those of
IM (3.4). The continuity equation is the same as LBE
(3.35). Consequently, the equations and results here
for LQBE are the same as for LBE.

g. Quasi-geostrophic—QG

Corresponding solutions may be obtained for QG
from (2.14), (2.16), and (2.19) if we assume that u,
v, and 7 in (5.2) represent

u=1uy+ e, v=1v9+evy, (6.21ab)
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1 =10+ eny, (6.21c)

add (2.14a)to (2.16b)and (2.14b) to (2.16a) and then
replace no in (2.14) with 7. This is equivalent to the
assumptions utilized in deriving QG from (3.4) and
(3.8). The resulting momentum equations are the same
as IM (3.4) and (6.1). The continuity equations, re-
placing (5.4e, f, g), are

R + 8¢ =0, (6.22a)
Q0+ S =0, (6.22b)
'S, +Rd— Qb =0. (6.22¢)

The steady and unsteady solutions are the same as
for LBE [(5.7a, b, ¢, e), (6.2), (6.19)] and [(6.3a),
(6.20a, b)].

h. Modified slow equations—MSE

With D = D' = 0, the MSE momentum (3.69a, b)
and continuity (3.65) equations reduce to those of
BEM. Thus for these problems, MSE will give the same
solutions as the SWE, similar to BEM, BE, HBE,
and NBE.

7. Comparison of exact solutions

We consider first the steady flow in an elliptic parab-
oloid for 0 < ¢ < 1 with either positive or negative
vorticity (¢ = 1) and with variable values of the
bottom topographic_parameters and F, such that 0
<f#< owand0 < ¢/ < 1. For the SWE, T is obtained
from the numerical solution of the cubic equation
(5.8b) to give (R — ¢) and Q is then found from (5.7¢).
Over much of the above defined parameter space, there
is only one real root of (5.8b) that corresponds to a

1 ‘rl; ——
QG /6™
/
" [ SWE
— 0.4+ | / / ’_‘,"-—
Y A
v 1 )
5 B l/ /// 2 k
14
7
0.0
< B 4
[ 4__,.@—’:.;,,” Circular Vortex
T 1857
“ow” SWE
-0.4 4= . T
-1.0 - 0.0 e 1.0
(¢ =-1) (¢=1

F1G. 1. Exact solutions for the steady circular vortex as a function
of 0 < e < 1 for { = £1. For convenience, we plot (R — ¢) vs ¢ for
¢ =+land —(R — {) vs —efor { = —1, as indicated. These solutions
are obtained from those in a circular paraboloid ¢ = 0 with § = 0
and the physical realizability constraint (5.9) ignored.
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physically realizable solution such that (5.9) is satisfied.
(The stability of the solutions is not considered here).
An analysis of the coefficients in (5.8 ) shows that three
real roots exist for values of § and ¢ that satisfy

0> ¢2 3)2——8—— 162—?93 (7.1)
27¢2\2 ’ )
Asymptotic results verified by numerical calculations
show that these correspond to three physically realiz-
able solutions satisfying (5.9) when { < 0. For the in-
termediate models, 7 is found from the numerical so-
lution of the relevant polynominal equation.

It is useful to start with ¢ = O where the geometry
is that of a circular paraboloid and the flow corresponds
to a circular vortex (Hoskins 1975; McWilliams and
Gent 1980). For the SWE and all of the approximate
models except HP the effects of geometry drop out
when ¢ = 0 and, as expected, the solutions become
independent of the value of f. Curiously, that does not
happen for HP where, for ¢ = 0, (6.11a) reduces to

Rert4l R?
N Ty
and an erroneous dependence on  is retained.

The solutions for (R — {) from the SWE, from QG,
and from the intermediate models IM, GV, GM, and
HP for the circular vortex ¢ = 0 are shown in Fig. 1.
For these solutions we set § = 0 and ignore the physical
realizability constraint (5.9). Note that the method of
presenting the results here, with ¢{ assumed known,
differs from those used in the previous papers. Also,
recall that for all of the comparisons in this section,
BE, HBE, BEM, NBE, and MSE give the same solu-
tions as the SWE and that LBE and LQBE give the
same results as QG.

We see from Fig. 1 that for the circular vortex GV
generally produces the most accurate approximate so-
lution over a large range of . The accuracy is best in
all models when ¢ is small. HP does relatively poorly,
producing a less accurate solution than QG and IM
which give the same result in this case. The error of
GM lies between that of GV and QG.

Values of (R — {) and_Q for the steady flow in an
elliptic paraboloid ‘with ¢/ = 0.5 and 8 = 1.0 are
shown in Fig. 2. The curves are terminated at values
of ¢ for which (5.9a, b) cease to be satisfied when {
= 4+1. GV gives the most accurate approximation for
both R and Q. IM and QG are the most inaccurate for
¢ = +1 while HP is poor for { = —1. QG produces the
largest errors in Q for { positive or negative.

The effect of an increased value of # in the steady
flow in an elliptic paraboloid is shown in Fig. 3 where
the parameters are (6 = 2,000, ¢/8 = 0.5). This cor-
responds, for example, to increasing the magnitude of
the Rossby radius with fixed topography. Again, GV
gives the most accurate approximation. In HP, the
suppression of variability of (R — {) with e for large
6, similar to that indicated by (7.2) for the flow in a

(7.2)
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FIG. 2. Exact solutions for the steady flow in an elliptic paraboloid
with & = 1 and /8 = 0.5 as a function of 0 < e < 1 for { = +1; (a)
(R={)vsefor{=+1and —(R—¢)vs—efor &= —1;(b) 0 — Q(e
= 0)swg vs e for { = +1 and vs —¢ for { = —1, where Q(e = O)swe
= {¢ /0. The solutions for { = +1 are not plotted at values of ¢ for
which the physical realizability constraint (5.9) is not satisfied.

circular paraboloid, is evident here. IM gives an in-
accurate approximation to R, with errors greater than
QG, while QG again has the largest errors in Q. GM
also gives an inaccurate result for Q. GM produces
errors in R that are qualitatively similar to those it has
in the circular vortex (Fig. 1) and thus again lies overall
in accuracy between GV and QG.

The results for a set of parameter values when three
steady solutions of the SWE are possible (7.1) are il-
lustrated in Fig. 4 (¢ = —1, 8 = 0.02, /0 =0. 5). This
behavior forms an mterestmg comparison since SWE
solutions for T are found from a cubic, whereas those
for IM, GV, GM, and HP are found from higher order
polynomials. QG is governed by a quadratic and only
has one relevant solution. For ¢ = 0.4, the largest root
for R (R =~ { + '2e¢?) goes with the middle solution
for Q (Q =~ 0) and corresponds to the circular vortex
that exists in the limit § — 0 and that arises for small
values of 8 that satisfy (7.1). The smallest solution for
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R (R = —1) goes with the most negative Q0 (Q ~

for € 2 0.3) and corresponds to a long elliptical eddy
with major axis in the y direction such that in the limit
§ —> 0,4 ~ —1and C ~ 0. This root corresponds to
the small § limit of the single physically relevant so-
lution over most of the (6, e, /6 = 0. 5) parame-
ter space. The remaining solution for R when ¢ = 0.4
goes with the solution @ ~ 1 and corresponds to a
long elliptical eddy with major axis in the x direction
such that for § - 0, 4 ~ 0, C ~ —1. As seen from
Fig. 4, the general order of accuracy in the different
models in representing all three solutions in the region
where they exist is GV, GM, IM, and HP with GV
most accurate. QG only gives one solution and there-
fore misses this multiple steady solution aspect of be-
havior of the SWE altogether. We note that the steady
solutions for the intermediate models, obtained from
the respective higher order polynomials for 7', can in-
clude additional roots that satisfy (5.9), but that do
not correspond to any solutions of the SWE. These
typically involve extreme values of R or Q and are not
discussed further here.

L I
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FIG. 3. Exact solutions for the steady flow in an elllpuc paraboloid
with & = 2000 and ¢/6 = 0.5. Plots are the same as in Fig. 2.
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FIG. 4. Exact solutions for the steady flow in an elliptic paraboloid
with { = —1, 8 = 0.02, and ¢/0 = 05 (a)Rvs —efor0<e< 1;
(b) Q vs —e. For these values of {, § and ¢/, three steady solutions
satisfying (5.9) exist for the SWE when ¢ > 0.327.

Next we consider the unsteady flow problem for 0
< e < 1 with { = —1 and with Ly? specified so that
(5.25) and (5.26) are satishied. We assume { = —1
since the physically realizable solutions primarily occur
for negative vorticity. Results for the rotating elliptical
eddy (Rodon) solution with no topography (8 = 0)
and with Ly> = 0.1 are shown in Fig. 5. Recall the
Rodon solution corresponds to an elliptic vortex of
fixed shape that rotates steadily clockwise with angular
frequency ¥2]ew|. The frequency ew is plotted in Fig.
5 along with (R — {) and Q, which determine the shape
of the eddy. Note that ew is negative and that ew ~ 0
for ¢ = 0. The most accurate approximations for ew
over the range of 0 < ¢ < 1 ({ = —1) are given by HP
and GM, with larger errors for GV and IM. The QG
model gives ew = 0 and does not properly represent
this time-dependent solution. The structure of the eddy
as determined by R and Qy, on the other hand, is given
most accurately by GV and least accurately by HP,
with GM and IM in between, similar to the results
from the steady solutions.
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The effect of the bottom topography of the circular
paraboloid on these unsteady motions is shown in Fig.
6 where § = 0.2 and again Ly = 0.1. In this case, the
frequency ew at ¢ = 0 is nonzero and positive and there

0.0
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o4 - SWE ¢ |
L2 = 0.1
8 =0
T T T
-1.0 -0.5 0.0
—&
0.4 1 1 —L

FIG. 5. Exact solutions for the unsteady rotating elliptical eddy
(Rodon) with { = —1, L2 = 0.1, and no topography o = 0; (a) the
frequency ew vs —efor0 < e < 1;(b) —(R — {) vs —¢ (¢) [ Qol Vs

€



JuLy 1990

0.0 1 1 1
‘/
(b) o
TP
— %
. P o -
------- ",’f{'_ 7P
22T TS
,.:,’,«’ . e
T -0.2 A _ % T - L
‘\|/' et o™
o CM_—=""
T4 s i
J o SWE = -1
-0.4 L
Lo? = 0.1
8 = 0.2
T T T
~1.0 -0.5 0.0
—&
0.45 1 L L
(c)

FIG. 6. Exact solutions for the unsteady rotating elliptical eddy in
a circular paraboloid with ¢ = —1, Ls® = 0.1 and § = 0.2; (a) the
frequency ew vs —efor0 < e < 1;(b) —(R — §) vs —¢; (c) | Qo] vs
—€

is a small error in ew at ¢ = O for most of the inter-
mediate models. When ew is positive, the elliptic vortex
rotates counterclockwise. The zero frequency solutions
that occur for the SWE and the intermediate models
at the intersections of the ew curves with the ew = 0
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axis correspond to the additional steady solutions in
the circular paraboloid with L? # 0 that were men-
tioned in section 5. In general, HP and GM give the
best approximation for ew over the range 0 < e < |
with GV retaining accuracy of similar magnitude for
0 < e < 0.6. IM is noticeably less accurate than the
others for ¢ > 0.5. With bottom topography, QG has
an oscillatory solution with a nonzero frequency, but
unlike the SWE, the resulting ew is a constant and does
not vary with e. The accuracy of the representation of
the structure of the rotating eddy with topography (Fig.
6b,c) is similar to that found for the Rodon (Fig. 5b).
For R, GV is the most accurate, while for @, IM and
GYV give the best results overall.

8. Summary of results

Although any conclusions to be drawn from the ex-
amination of limiting cases and the comparison of exact
solutions have to be qualified by the limited nature of
the tests, some general patterns have emerged that are
worthy of note.

The intermediate models are capable of representing
linear ageostrophic coastally-trapped waves with ac-
curacy that is consistent with the standard linear low-
frequency approximations. This is a substantial im-
provement over the QG approximation where the
properties of ageostrophic topographic waves are mis-
represented and coastal Kelvin waves are entirely fil-
tered out. On the other hand, the intermediate models
reduce to the QG balances in the limit of ¢ = 0 with
small topographic variations 2z = O(e).

For the particular problems in sections 5 and 6 where
exact analytical solutions to both the SWE and the
intermediate models can be found and compared, BE,
BEM, HBE, NBE, and MSE give the exact solutions
of the SWE. This situation unfortunately does not test
those particular models as much as we would like and
as much as is possible using numerical solutions (see
Parts II and III), but the exact solutions available for
IM, GV, GM, HP, LBE, LQBE, and QG provide useful
comparisons.

The performance of Salmon’s (1983) HP model is
not as good as some of the other models. The steady
circular vortex (Fig. 1) and the time-dependent Rodon
(Fig. 5) provide comparisons against SWE solutions
in situations that do not involve any bottom topo-
graphic variations. Thus, the HP model in those cases
is based directly on the equations presented in Salmon
(1983). The accuracy of HP for the circular vortex is
the poorest of all models and even has larger errors
than QG. This is true also for the structure of the el-
liptical eddy in the Rodon solution, although in that
case, HP produces an accurate approximation for the
frequency. An additional disconcerting feature of HP
that occurs with Az = 0 is the distortion of the dispersion
relation for linear coastal Kelvin waves, such that the
magnitude of the phase velocity increases as the mag-
nitude of the wavenumber increases (4.20).
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When bottom topography (hp # 0) is added to HP
(appendix A) following the procedure of Salmon
(1983), the equations retain conservation laws for
geostrophic potential vorticity and geostrophic energy,
but the solutions exhibit inaccurate behavior in the
limit F — 0. This is most easily demonstrated by the
exact solutions for the steady flow in a circular parabo-
loid. For the SWE and all other approximate models,
this solution reduces to that for a circular vortex in-
dependent of the paraboloidal shape, but the HP so-
lution (7.2) retains an erroneous dependence on the
topography and on F, through the parameter 6. The
solutions for the steady flow in an elliptic paraboloid
are also misrepresented by HP in the limit F — 0.
These results lead us to conclude that, in the presence
of bottom topography Az # 0, the method of imple-
mentation of Salmon’s (1983) procedure that is fol-
lowed in appendix A requires modification. Because
this general technique of deriving approximate equa-
tions retains conservation laws, it seems to be poten-
tially of great value. The present results indicate, how-
ever, that additional work is desirable to determine op-
timum methods for making approximations in the
Lagrangian.

The comparison of the exact solutions shows that
in general most of the intermediate models are capable
of providing much more accurate solutions than the
QG (and LBE, LQBE) approximation. This behavior
is particularly clear in the steady case at parameter val-
ues for which the SWE and most of the intermediate
models possess three possible steady solutions, but QG
has only one (Fig. 4). The same point is illustrated for
the Rodon solution (Fig. 5) which QG is incapable of
representing. For the steady flow and for the structure
of the eddy in the unsteady case, the accuracy of the
other intermediate models is almost always in the order
GV, GM and IM, with GV most accurate and IM oc-
casionally less accurate than QG. It appears from these
results that GV and GM both provide substantially
better approximations than IM.
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APPENDIX A
Salmon’s Equations—HP

The method developed by Salmon (1983) to derive
approximate equations for nearly geostrophic flow and
applied there to the shallow-water equations { without
bottom topographic variations) is followed here to ob-
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tain approximate equations for the SWE in the case
hs(x, y) # 0 (see also Miles and Salmon 1985). We
use similar notation with the exceptions that here the
derivation is with the dimensionless variables defined
in section 2 and the Coriolis parameter f is assumed
to be a constant.

The positions of marked fluid particles are defined
as functions of curvilinear labeling coordinates (a, b)
and time T,

y=y(a,b, 7). (Alab)

The labeling coordinates remain constant following
fluid particles. The time variable, 7 = ¢, but 8/dr means
(a, b) are held fixed and

x=x(a,b,r),

/0t =4/t + ud/dx + vd/dy. (A2)
The labeling coordinates are defined so that
dadb = hdxdy, (A3)
where
h=49d(a, b)/d(x,y)= J(a, b). (A4)

The continuity equation (2.3a) follows from the ap-
plication of /37 to (A4).

A fluid blob is assumed to be confined to a finite
region of space with # — 0 at the fluid boundaries.
The shallow-water momentum equations (2.1b, ¢) and
the relations

u=29ax/dr, v=34ay/dr, (AS5ab)
follow from the application of Hamilton’s principle in
modified form,

oo

0 Ldr =0,

Qo0

(A6)

to the Lagrangian.
_ 1 \ox 1 \ady
L—ff dadb{(eu 2y)aT+(ev+2x)aT

- % [e(u® + v?) + (eF) " (h + ZhB)]), (A7)

where the integrations over a and b extend over the
entire fluid blob and where § stands for arbitrary in-
dependent variations éx, 6y, éu, 6v(a, b, 7) in the fluid
particle positions and velocities. The variations vanish
as 7 —> too.

Salmon’s (1983) method for deriving approximate
equations for nearly geostrophic flow consists of re-
placing # and v in L by their geostrophic values to
form the Lagrangian

1 \a 1 \d
L, = ff dadb[(eug —-Ey)g + (evG +§x)%

- % [e(uc? + v6?) + (eF) N (h + 2h3)]}, (A8)
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where where K and B3 are defined in (3.4d, ) and
Ug = —Ny = _(hy + hBy)/GF, (A9a) G= —uAhy + UAhx. (Al4b)
VG = nx = (hx + hpy)/F, (A9b) To examine energy conservation in finite regions
. . e . bounded by solid walls, we integrate (A14) over an
The application of Hamilton’s Principle to L, area, assumed for convenience to be rectangular, x,
+oo < X < X3, Y1 <y <y, with no-normal flow conditions

s [ Luar=o, (A10) of
—Q0

where independent variations are taken in particle lo-
cations, dx, 6y, and where

8n = (8h + hgydx + hg,dp)/eF,  (All)

results in the approximate momentum equations
(3.23) where

euy = 0x/0r — ug, ey =09y/dr —vg. (Al2ab)

Since the approximation L, retains the symmetry
properties of L concerning invariance to particle re-
labeling and to translations in time, the approximate
dynamics (A10) possesses conservation laws for geo-
strophic potential vorticity (3.12) on fluid particles and
for geostrophic energy [(A18) below].

The following diagnostic equations for u, and v,
insure consistency between (2.1a) and (3.23) and are
derived by combining the x or y derivative of (2.1a)
with (3.23a) or (3.23b) to eliminate the time derivative
Mxe OF Ny

V2(huy) — F(1 + €V2%)u,
. F(quGx + U(;U(;y) + 6—‘NX, (A13a)
V2(hv,) — F(1 + V%),

= —F(uGqu + UGuGy) + G—lNy, (A13b)

where
N= (uGhBX + thBy)- (A13C)

Note that (Al3a, b) are uncoupled linear equations
for u4 and v, assuming # is known. Since /# > 0, the
condition (1 + €V?) > 0 insures that the coefficient
of uy or v, on the left hand side of (Al3a, b) is of
opposite sign to that of the highest derivative terms
hV?u, or hV?v,. Thus, with appropriate boundary
conditions for u, and v, discussed below, unique so-
lutions exist provided (1 + ¢V?3) > 0 (Garabedian
1964, Chaps. 7, 8). :

The equation expressing conservation of geostrophic
energy may be derived by multiplying (3.23a) by Aug,
(3.23b) by hvg, (2.12) by K¢, (2.1a) by &, combining
and using (A13a, b) to obtain

«(hKg + 3 Fr?), + (huBg)e + (hvBo),

+ fhugG + hPugty + hoaN + (uh*v.,
- UAhzqu)]x + e[hng + hszfA - huAN
+ e(uAhszy - vAhzuAy)]y = 0, (A14a)

(Al5a)
(A15b)

v=vs+ey=0, at y=y,»m,

Uu=us+eu, =0, at x=xy, X,

to obtain
X2 Y2 1 V2
[f dxdy(hKG + = Fnz)] + | dy
Xy YN 2 I 41

X2

X [% (hzqu)y + hvy(ugvg — hug, + thBy)]

Xy

X1

X2
+ f dX[— -;- (hZUAz)x + huA(quG

¥
= 0.

Y1

+ thy - uGth)] (A16)

We expect the contributions in (A16) from the bound-
ary terms to vanish. This will occur if

Uy :03 at Y = Y15 Va2, (A17a)
V=0, at x=x,x, (A17b)
in which case (A16) reduces to
X2 V2
U f dxdy(hKG+%Fn2)] =0, (Al8)
X1 ¥ t

expressing the conservation of geostrophic energy.

The conditions (A17a,b) are consistent with results
from the full shallow-water equations (2.1) for which
the no-normal-flow conditions (A15) imply

at y =y, ),

at x = X, X3.

(A19a)
V== (A19Db)

Note in addition that (A13a, b) require boundary con-
ditions on 1, and v4 on all boundaries, whereas (A15a,
b) only provide conditions on the normal component.
Consequently, since (A17a, b) provide needed bound-
ary conditions, since they are consistent with the shal-
low-water equations, and since they insure the conser-
vation of energy in bounded regions, we infer that they
are proper additional boundary conditions for (2.1a),
(3.23a, b), and (A13a, b).

For use in section 4b, we record the linear limit of
(Al13a, b):

U= —ny= Ug,

Vg,

V2(Hu,) — Fu, = ¢ 'Ny,
V2(Hv,) — Fvs = €”'N,.

(A20a)
(A20b)
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APPENDIX B
Solution Procedures for NBE, HBE, BE, and BEM

In Part II, numerical finite difference solutions in
doubly periodic domains are obtained for NBE by
solving the two coupled governing equations for Y, and
7 (3.49) and (3.52). The balance equation (3.49),
when regarded as a single equation for ¥, with n known,
is a nonlinear Monge-Ampére equation (Charney
1955; Bolin 1955) which may be either elliptic [when
(1 + 2¢V?y) > 0] or hyperbolic. For the coupled non-
linear system (3.49) and (3.52), the requirements for
a well-posed mathematical problem are not obvious
(see the discussion for BE in Gent and McWilliams
1983a). We outline below the method used to obtain
numerical solutions for NBE in Part II. This involves
effectively solving (3.49) for » with y, regarded as
known. A similar procedure has also been applied to
(3.42) and (3.43) for HBE.

We drop the subscript on ¥, and let

=y + ey,
so that (3.52) and (3.49) may be written

(hk‘l/xt)x + (hR‘pyt)y - F\[’t = €F77; - 6_l-l(hR, 3R),
(B2)

(B1)

and

Vi = 2J(dx, ¥). (B3)

To solve (B2) and (B3) and to step forward in time
an iteration procedure is utilized. With both ¢ and »’
assumed to be known at a given time 1 = 1, (designated
by ¢", #'") and at previous times, an estimate for n}”" is
obtained from simple extrapolation of #'” in time. This
estimate is substituted in (B2), which is then solved
as a linear equation in ¢,". The condition (1 + V%)
> 0 implies Az > 0 and insures the retention of opposite
signs for 1xV%Y, and F,. An estimate of ¢"*' at the
new time ¢ = £,4, is obtained from ¥,” and substituted
in the right hand side of (B3), which is then solved as
a linear Poisson equation for #'"*!. This gives a new
estimate for n;” in (B2) and the cycle is repeated until
convergence for ¥"*' and #”*' is obtained.

For BE, numerical solutions are obtained in Part II
using the technique of Norton et al. (1986). We present
here another method that we utilize for the solution of
BEM in Part II and for BE and BEM in the channel
flows in Part III. In addition, this procedure is based
on a formulation that may be utilized for most of the
other models (see appendix C). The solution procedure
has some points in common with that outlined above
for NBE and is essentially an extension of that utilized
for QG when X is also determined. In the latter case,
noe 1s found fyom the solution of (2.23) and X is sub-
sequently obtained from the solution of V?x = D,
where D, is given by either (2.17) or (2.19). For BE,
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we represent y as in (B1) and utilize (2.9), (3.29) and
(3.30), which may be written

(VA — FY), = Fn, — J(Y, § — H)

— X8 = H)le— dx($ — H))y,  (Bda)
Vi = 20(Yx, ¥), (B4b)
VX = =J(Y, §) = eXab)x — (,8), — G (Bdo)

Iteration is utilized to solve (B4a, b, ¢). Two different
methods may be employed. These are briefly outlined
here. More details are given in Parts II and III. In the
first method, ¥, ", x" ', ¢," !, and 5! are assumed
to be known and (B4a, b, c) are solved iteratively for
¥/, n7 (and hence y"*!, 4'"*1), and X". The procedure
starts by simple extrapolation in time to find estimates
for 7" and X". These are used in (B4a) which is solved
for y7. This gives values for y"*! and {7 for use in
(B4b) and (B4c) which are solved for new estimates
of 7'"*! (and hence #?") and X", respectively. The pro-
cess is repeated until it converges.

The second method of solution is based on the it-
eration scheme developed for application to (3.29),
(3.30)and (3.31) by Norton et al. (1986). In this case,
¥ 7't X", ¢, and 57" are assumed to be known and
iteration of (B4a, b, ¢).is used to provide new values
for all of these variables at ¢,,,,. This method is utilized
in Parts II and III to obtain solutions for BEM, since
(3.45) required that X be found simultaneously with
¥ and 7’ at the same time level. In addition, a solution
procedure based on (3.29), (3.45), and a modified
omega equation (3.31) is not as appropriate for BEM
because the form of (3.45) results in the presence of
X, in an omega equation.

APPENDIX C
Intermediate Model Summary

The differences in the approximations involved in
the various intermediate models can be most readily
appreciated if the models are formulated in a common
manner. It is possible to do this based on the represen-
tation of BE discussed in section 3e and appendix B.
The governing equations in this form for the inter-
mediate models described in section 3, for QG, and
for SWE, are summarized below (SE is omitted). As
in (3.26), the velocity components are represented by

u=—y¢,+ Xy, v=y;+ex, (Clab)
and recall from (2.10) and (3.4¢) that
H=H/e=Fn—¢'hg, {G=V?. (C2ab)

BE:
(V¥ — Fn), = —J(Y, § — H)
— e[ Xx(§ — H)]x - G[Xy(f'—‘ ﬁ)]ya (C3a)
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=V =Vn-QJ{s ), (C3b) GV:
V2 = —J(, §) — €Xds — X8y = G (C3e)  (Vm = Fn)= —J(¥, {6 — H)

QG:
(V¥ — Fn), = —J(n, {c — H),
VX = —J(n, $6) — o

(C4a)
(C4b)
LBE:
(V0 — Fn) = —J(n, {o — H)
+ (X H)x + (X, H)y,
VX = ~J(m, {6) — o

(C5a)
(C5b)
LQBE:
(V' — Fn), = —J(n, {c — H)

— dX:($6 ~ H)): — e X,(§6 — H)),, (C6a)
V2= =J(n, {6) =~ €Xx$6)x — €(Xy$6)y — $ar-

(Céb)
HBE:
(VY = Fa) = =J(, § = H) + (X H)x + (X, H),,
(C7a)
§=V=Vig—2J(n ¥y,  (CTb)
VX = ~J(¥, ) — & (C7¢)
BEM:

(V2 — Fn), = —J(4, ¢ — B

— €X:(§ = H)]x = [ x,(§ — H)],, (C8a)
¢ =V = Vi — 2J(Yx, ¥y) — €J(§,X), (C8b)
VX = —J(Y, §) — X D)x — X,y — & (CBe)

NBE:
Vv =1y + XYy, (C9a)

(V¥o — Fn), = —J(¥, $o — H)
— X ($o — H))x — X, (50 — H)],, (C9b)
o = VAo = V2 — 2J(Yoxs Yo,),  (C9c)

S = Vz‘l’l = =J($o,X) — e(Y1x$o)x — é(\l/lyg'o)ya .
(C9d)

VX = —J(¥, fo) — dXxfo)x — (X, 80), — fore (C9€)
IM:
(Vi — Fp), = —J(n, {) + J(¥, H)

+ (X H), + (X, H),, (Cl0a)
¢ =V =Vq~eJ(n,1n), (ClOb)
Vi = ~J(n, §6) — $or- (C10c)

= dX:(§6 — )] — X, ($¢ — H)},, (Clla)
§= VY = Vi + VK — e(¥xlo)x
~ ¥y $e)y — €2J($6, X), (Cl1b)
VX = —J(¥, §6) — dXxl6)x — X, 86)y — Sar-

(Cllc)
GM:
(Soar — Fn) = —J(¥, tarr — H)
= dXc($orr — A = dX,($Sear — H)),»  (Cl2a)
§ =V = Vi — J(nx, ) + T 1y)]
+ [J(nx, Xx) + J(my, X,)],  (C12D)
VX = —J(¥, {ou) — e Xxbom)x
— Xy $om)y — Som,  (Cl2¢)
Sarr = V0 + eJ(n, my). (C12d)
HP:
(V0 — Fa) = —J(¥, {6 — H)
— dXo(fo — H))x — X, ({6 — H)],, (Cl3a)
§= V% = VP + V2 Byp — (¥ lo)s
— ¥y $a)y — €2J({G, X), (C13b)

Vi = =J(¥, §6) ~ X $6)x — Xy 86)y — $o1s
(C13c)
zm’ = Bup— 1
= Yym, + ¥xne — Ko + €J(n, X)]
+ F7'h({ - $6)
= F7'[($y —ny)hpy + (¥ — nx)hpe + €J(hg, X)].
(C13d)
MSE:
(VY — Fn) = =J(¥, § — H)
— X — H)]e — dX,(§ — H))y, (Clda)
=V =V — QJ(¥x, ¥,) — 2Z, (Cl4b)
Z = 2[J(Xx, ¥x) + J(Xy, ¥y) T+ €J(Xy, X})]
— J(¢, V) — e X,V?X), — (X, V?X),, (Cl4c)
VX = =e"'D' = J(¥, §) ~ e Xa e — X8y — 15
(Cl4d)
V2D' — FD' = &2 F[2J(Yr, ¥,) + €Z),. (Clde)
SWE:
(VY — Fn) = —J(¥, ¢ — H)
— X = B ~ el X, (¢ = H)]y, (Cl5a)
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£ =V = P — QI ) — €Z + V2,
(C15b)

VX = —J(¥, §) = dXef)x — Xy §)y = §i (C15¢)

The formulation (C14) for MSE is not the most nat-
ural one because it results in the appearance of Z,, and
hence X,, in (Cl4e) which makes it awkward for use
in obtaining numerical solutions. The alternative em-
ployment of (3.56) to find D = ¢V*x (and hence X) in
place of (Cl4d, e), as is done in Part II, avoids this
difficulty. Note that this is opposite to the situation
with BEM, as mentioned in appendix B, where X, ap-
pears in an omega equation, but not in (C8a, b, c).

If we consider QG derived from (3.4a, b) and (3.8),
LBE from (3.4a,b) and (3.35), and LQBE from (3.38a,
b) and (3.35), as discussed in sections 3a, 3f, and 3g,
the approximate balance equation (C10b) from IM
also applies to QG and LBE, while

¢= VA = Vi — 2J(nx, my) — €J($6, X),
holds for LQBE.

(Cl16)

REFERENCES

Allen, J. S, and P. K. Kundu, 1978: On the momentum, vorticity,
and mass balance on the Oregon shelf. J. Phys. Oceanogr., 8,
13-27.

——, J. A, Barth and P. A. Newberger, 1990: On intermediate models
for barotropic continental shelf and slope flow fields: Part III,
comparison of numerical model solutions in periodic channels.
J. Phys. Oceanogr., submitted.

Ball, F. K., 1965: The effect of rotation on the simpler modes of
motion of a liquid in an elliptic paraboloid. J. Fluid Mech., 22,
529-545.

Barth, J. A., J. S. Allen and P. A. Newberger, 1990: On intermediate
models for barotropic continental shelf and slope flow fields:
Part 11, comparison of numerical model solutions in doubly-
periodic domains. J. Phys. Oceanogr., 20, 1044-1076.

Bolin, B., 1955: Numerical forecasting with the barotropic model.
Tellus, 7, 27-49.

——, 1956: An improved barotropic model and some aspects of
using the balance equations for three-dimensional flow. Tellus,
8, 61-75.

Charney, J. G., 1955: The use of primitive equations of motion in
numerical prediction. Tellus, 7, 22-26.

——, 1962: Integration of the primitive and the balance equations,
Proc. Int. Symp. Numerical Weather Prediction, Tokyo, Meteor.
Soc. Japan, 131-152.

Cushman-Roisin, B., 1986: Frontal geostrophic dynamics. J. Phys.
Oceanogr., 16, 132-143.

——, 1987: Exact analytical solutions for elliptical vortices of the
shallow-water equations. Teflus, 39A, 235-244.

——, W. H. Heil and D. Nof, 1985: Oscillations and rotations of
elliptic warm-core rings. J. Geophys. Res., 40, 11 756-11 764.

Denbo, D. W., and J. S. Allen, 1987: Large scale response to atmo-
spheric forcing of shelf currents and coastal sea level off the west
coast of North America: May-July, 1981 and 1982. J. Geophys.
Res., 92, 1757-1782.

Eliassen, A., 1948: The quasi-static equations of motion with pressure
as independent variable. Geofys. Publ., 17, No. 3.

Garabedian, P. R., 1964 Partial Differential Equations. John Wiley
& Sons, Inc., New York, 672 pp.

Gent, P. R, and J. C. McWilliams, 1982: Intermediate model so-
lutions to the Lorenz equations: strange attractors and other
phenomena. J. Atmos. Sci., 39, 3-13.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 20

——, and J. C. McWilliams, 1983a: Consistent balanced models in
bounded and periodic domains. Dyn. Atmos. Oceans, 7, 67-93.

——,and J. C. McWilliams, 1983b: Regimes of validity for balanced
maodels. Dyn. Atmos. Oceans, 7, 167-183.

——, and J. C. McWilliams, 1984: Balanced models in isentropic
coordinates and the shallow-water equations. Tellus, 36A, 166-
171,

Hoskins, B. J., 1975: The geostrophic momentum approximation
and the semigeostrophic equations. J. Atmos. Sci., 32, 233-242.

——, 1982: The mathematical theory of frontogenesis. Ann. Rev.
Fluid Mech., 14, 131-151.

Hukuda, H. and T. Yamagata, 1988: A unified geostrophic equation
with application to a cold core ring. Tellus, 40A, 407-418.

Huyer, A., and P. M. Kosro, 1987: Mesoscale surveys over the shelf
and slope in the upwelling region near Point Arena, California.
J. Geophys. Res., 92, 1655-1681.

Kosro, P., and A. Huyer, 1986: CTD and velocity surveys of seaward
jets off northern California, July 1981 and 1982. J. Geophys.
Res., 91, 7680-7690.

Lorenz, E. N., 1960: Energy and numerical weather prediction. Tellus,
12, 364-373.

Lynch, P., 1989: The slow equations. Q. J. R. Meteorol. Soc., 115,
201-219.

McWilliams, J. C., 1977: A note on a consistent quasi-geostrophic
model in a multiply connected domain. Dyn. Atmos. Oceans,
1, 427-441.

——, and P. R. Gent, 1980: Intermediate models of planetary cir-
culations in the atmosphere and ocean. J. Atmos. Sci.,, 37, 1657-
1678.

——, P.R. Gent and N. J. Norton, 1986: The evolution of balanced,
low-mode vortices on the 8-plane. J. Phys. Oceanogr., 16, 838~
855.

Miles, J., and R. Salmon, 1985: Weakly dispersive nonlinear gravity
waves. J. Fluid Mech., 157, 519-531.

Norton, N. J., J. C. McWilliams and P. R. Gent, 1986: A numerical
model of the balance equations in a periodic domain and an
example of balanced turbulence. J. Comput. Phys., 67, 439~
471.

Pedlosky, J., 1987: Geophysical Fluid Dynamics, Springer-Verlag,
New York, 710 pp.

Robinson, A. R., J. A. Carton, C. N. K. Mooers, L. J. Walstad,
E. F. Carter, M. M. Rienecker, J. A. Smith and W. G. Leslie,
1984: A real-time dynamical forecast of ocean synoptic/me-
soscale eddies. Nature, 309, 781-783.

———,J. A. Carton, J. Pinardi and C. N. K. Mooers, 1986: Dynamical
forecasting and dynamical interpolation: an experiment in the
California Current. J. Phys. Oceanogr., 16, 1561-1579.

Salmon, R., 1983: Practical use of Hamilton’s principle. J. Fluid
Mech., 132, 431-444. ’

———, 1985: New equations for nearly geostrophic flow. J. Fluid Mech.,
153, 461-477.

——, 1988a: Hamiltonian Fluid Mechanics. Ann. Rev. Fluid Mech.,
20, 225-256.

——, 1988b: Semigeostrophic theory as a Dirac-bracket projection.
J. Fluid Mech., 196, 345-358.

Schir, C., and H. C. Davies, 1988: Quasi-geostrophic stratified flow
over isolated finite amplitude topography. Dyn. Atmos. Oceans,
11, 287-306.

Sutyrin, G. G,, and 1. G. Yushina, 1986a: Interaction of synoptic
eddies of finite amplitude. Dokl. Akad. Nauk. SSSR, 288, 585~
589.

—, and , 1986b: On the evolution of isolated eddies in a
rotating fluid. Jzv. Acad. Nauk. SSSR, Mekh. Zhidk. Gaza, 4,
52-59.

——, and —, 1988: Formation of a vortex soliton. Dokl. Akad.
Nauk. SSSR, 299, 580-584.

Williams, G. P., 1985: Geostrophic regimes on a sphere and a beta
plane. J. Atmos. Sci., 42, 1237~1243.

Young, W. R., 1986: Elliptic vortices in shallow water. J. Fluid Mech.,
171, 101-119.




