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ABSTRACT

A model is presented for the fluctuating flow through a strait of nonuniform depth connecting two semi-
infinite oceans.

An analytical solution is found. The solution is applied to several depth profiles to study the effect of the
topography on the volume flux through the strait. A nondimensional number ¢ = (8h/3x)fW/2wh is found
to determine the importance of the topography of the strait, where f, w, W, L and 4 are the Coriolis parameter,
fluctuating frequency, and the width, length and depth of the strait, respectively. If ¢ < 0.6, the effect of the
variation of strait depth is negligible; if o increases, the effect of the depth variation is to shorten the length of
the strait, thus allowing more flux through the strait; at the value of about ¢ = = /2, the strait is almost invisible
to the open oceans as far as the flux is concerned.

The mechanism of the geostrophic control of the flux through the strait is studied. A model of energy balance
clearly shows that the flux is limited by the amount of the energy which the two outgoing Kelvin waves can
carry: the flux through the strait can not be greater than the flux at the geostrophic-control limit, otherwise it
will generate in the open oceans such big Kelvin waves that they would carry away more energy than the strait
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system can receive from the incoming Kelvin waves.

1. Introduction

The fluctuating flow through straits significantly af-
fects the properties of the oceans connected by the
straits, as well as the oceanographic conditions in the
straits themselves. The main driving force for these
fluctuations is the sea-level difference between the op-
posite ends of the strait, which may be largely associated
with meteorological forcing or tidal motion in the two
oceans separated by the strait.

Toulany and Garrett (1984, henceforth referred to
as TG; also see Garrett and Toulany 1982) considered
a simple algebraic model and offered a formula for the
volume flux through a strait, which reveals some im-
portant properties of the problem. According to this
formula, the flux through a strait can be much less
than that in a nonrotating system, and at the low-fre-
quency limit, the flux is inversely proportional to the
Coriolis parameter; the term “‘geostrophic control” of
the flux was thus coined. Toulany and Garrett suggested
that this control is due to the physical effect that the
sea level difference across the strait due to geostrophic
setup cannot be greater than the sea level difference
between the two connected oceans.

Very recently, Rocha and Clarke (1987, henceforth
referred to as RC) gave a more complete solution of
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the problem. Their solution reveals that the formula
for the flux at the geostrophic-contro! limit w — 0 de-
pend not on the depth of the strait, but only on the
depth of the two oceans. Although they did not analyze
this property further, their solution suggests that the
flux at the limit w = 0 is controlled by the processes
in the oceans, rather than the processes in the strait as
TG argued. What in the open oceans cause the geo-
strophic control remains to be found.

Rocha and Clarke’s model applies only to straits of
uniform depth. A steplike topography appears at both
ends of the strait if the uniform depth of the strait is
different from those of the oceans. Question arises as
to how the flux through the strait depends on depth if
a depth profile is continuous between the strait and
oceans.

In addition, as the depths of straits in real oceans
are rarely uniform, the following questions are often
asked: when can the variation of the strait depth be
ignored? what are the determining parameters? how
does the flux through the strait change if the depth
variation in the strait has to be taken into account?

The present study attempts to answer the questions
raised above. The paper is organized as follows. Section
2 presents a model and its solution. Section 3 analyzes
the solution for several depth profiles and discusses the
effect of the variation of the strait depth on the flux.
In section 4, the solution is discussed and compared
with that of TG and RC. In section 5 a model of energy
balance is constructed to analyze the mechanism of
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the geostrophic control of the volume flux. In section
6 the energy transport in the strait system is calculated
to further understand the strait system. Section 7 is a
summary.

2. Model and solution

The configuration of the model is shown in Fig. 1.
The coordinates x and y are directed along and across
the strait, respectively, and the origin of the coordinates
is at the center of the strait. In the following, the vari-
ables in the left ocean are denoted by a subscript /,
those in the right ocean by a subscript 7, and those in
the strait by a subscript s or without subscript. The
depth in the strait, #(x), is independent of y; the depths
at the two ends of the strait, &, = h(—L/2) and A,
= h(L/2), are the uniform depths of the left and right
oceans, respectively, so that the depth is continuous
between the strait and the oceans. As TG and RC have
justified that the nonlinear effects are negligible, small-
amplitude flows are assumed so that the equations are
linearized, and the velocity components and sea-level
fluctuation are taken to be proportional to exp(iwt)
everywhere. The fluctuating frequency w can be that
of a tide, in which case w is on the order of f for straits
away from the equatorial region, or that of low-fre-
quency meteorologically forced waves, in which case
e <kf.

a. The solution in the strait

As in TG and RC, a narrow strait is considered, in
the sense that

W/Lg <1, (2.1)
y &
y” .
i 1
G, by : V_;’ ¢.h : & by
i \ i -
I ]
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v — | 2 u — Iy, ——
2
L L
2 2
Z

FIG. 1. Schematic diagram of the model. The sea levels {, currents
u, and the mass flux through the strait Q are periodic with frequency
w.
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where W is the strait width and Lg = (gh)'?/f is the
Rossby radius of deformation based on strait depth.
The length of the strait is also assumed to be at most
on the order of the wavelength of the Kelvin waves in
the strait, i.e.,

L < (gh)"?/w. (2.2)

These assumptions are realistic for most straits. For
instance, for a strait of depth 250 m and a tidal fre-
quency w ~ f = 107 57", the scale of the Kelvin
waves in the strait is (gh)"2/w ~ (gh)'*/f =~ 500
km, which is much greater than the scales of a typical
strait.

The linearized governing equations are

d
iwv + fu= —g—f

3y (2.3)

fwu — fo = —g%}% (2.4)
a(hu) d(hv) _

-—-—'-ax + ——ay 0. (2.5)

A key assumption to be made here is the cross-strait
geostrophic balance; Eq. (2.3) is to be replaced by the
following equation,

(2.6)

which is valid if wv/fir € 1. Two situations will lead
to this cross-strait geostrophic balance: a long strait,
where the strait length and the length scale of the depth
variation are much greater than the width of the strait
(thus u > v, by assuming that v/u is on the order of
the aspect ratio of the strait); a low-frequency, mete-
orologically forced flow, where w < f.

By studying the current meter and hydrographic
data, Garrett and Petrie (1981) concluded that the
cross-strait balance is geostrophic in both tidal motion
and low-frequency flows in the Strait of Belle Isle, where
the ratio of the width and the length of the strait is
about 10 km/100 km = 0.1 and w/f = 1.8 X 1073/
1.14 X 10~ ~ 0.16 for the typical period of four days
of low-frequency flows. In addition, their paper referred
to several studies in which the cross-strait geostrophic
balance is the case.

The ratio of the first term to the second term of the
continuity equation (2.5) is

iwf . w
a(hu)/dx  (gh/fWL) max(1, | Lh./hl)

<__f.£V______‘f’£’_
T (gh)'? (gh)'*

2.7

Therefore, for a narrow strait where (2.1) and (2.2)
apply, the temporal change in the continuity equation
can be ignored, and (2.5) becomes
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a(hu) o(hv wave, i.e.,
—(a—)-i-—(a—)=0. (2.8) ‘ '
X y §i=Arexp{lio — f(x— L/2)1/(gh)'"*},
A streamfunction y is introduced such that x<-LJ2.

N_ —hu, o hv,

3y I Wx, W/2) =0,

w2
and Y(x,-W/2)=0= J\—W/Z hudy. (2.9)

Then, ¢ and ¢ are solved from (2.3) and (2.4) with
the boundary condition (2.9):

.Q exp(io2y/W) — exp(io)

wx,y)=1i > sin(o) (2.10)
_Qf. f exp(is2y/W) ~ exp(ic)
S, ) = £ [zgh e

S(L_1\_ 20 _¢
+g(h1 h) ngF(x)] S, (21D

where
d= fWhy/2wh,

F(x) = f_x zfctg(a)dx', (2.12)

L2 h
and the flux Q through the strait and another constant
C are to be determined by matching (2.11) at the two
ends of the strait with the solutions of the two oceans.

The along-strait velocity is

__Q__ exp(io2y/W)
hw sin(o) )

If 6 = 7, then the flux Q = 0, in order for the solution
to be finite. The reason for this apparently strong con-
straint on the flux through the strait is that u changes
sign across the strait, and the net flux is zero. Evaluation
of the ratio wv/ fu at y = 0, the center line of the strait,
gives

u(x, y)=—%%=o (2.13)

wu iwo, W
Ju 2fosin(o)

If o is far from 7 and wo, W/ f o < 1, the cross-strait
balance is valid. (Note that ¢/ 0, can be considered to
be the length scale of the depth variation, since ¢ varies
in x only due to the depth variation.) As o approaches
w, however, the cross-strait geostrophic balance breaks
down, as shown in (2.14). Therefore, an assumption
that ¢ is less than and distant from =, to say, ¢ < 7/
2, is added to the model to assure the cross-strait geo-
strophic balance.

[1 —cos(_ar)]. (2.14)

b. The Green-function solution in the two oceans

The sea level elevation for the left semi-infinite
ocean, in the absence of the strait, is that of a Kelvin

In the vicinity of the strait mouth, namely x =~ —L/
2 and y = W, the following approximation is used

G=A, x<-—-LJ2.
Similarly,
g’r = Ar, X = L/2

In the presence of the strait, the sea-level elevations
for the two oceans are

w2 L
Slx, y) = —f G:(—x—i,n—y)
w2

L
X u;(— 3 n)dn + A4, x<—L/2, (2.15)

w2 L L
$H(x, ¥) =f Gr(x——,y- n)ur('“, n)dn
-w/2 2 2

+A,x=L[2. (2.16)

The Green’s functions G, and G, are the near-field ap-
proximation, which is good near the strait mouth
(Buchwald 1971):

2i, (4
G0, y) =~ i [MI - 'j; sgn(y) — . ln(“lw%l)}
(2.17)
W 2i 4
GA(0,y) ~ Zg[Mr - % sgn(y) — - ln( Lfl )] ,
- (2.18)
where
1 L,
M, = :o-max(f, w) + in’
1 . wLer
M,—zo-max(f,w)+z W
and

Ly=— 2 W[ln(0.6061)
T

s

n=0

(%)Zn(Zn)“(Zn + 1)*‘]

&
it

_2 W[ln(0.606,)
w

- zw (9)2"(2n)—1(2n + 1)—']
7 .

n=0

Toulany and Garrett termed L., and L., as effective
lengths, which were supposed to be added to the actual
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strait length in their forrhu_la of the flux through the

strait, due to the wave diffraction at both ends of the

strait.
o - L _ Q if exp(io)2y/W) — exp(io)) C
2°Y) T 2 eh sin(a7) .

_ _£ a Q w2
_§l( 2,Y)"

h,W sm( a;)
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¢. Solving the matching equations

Matching { at the two ends of the strait then gives

Gl(oa n— y)eiaﬂn/de + Al’

—W2<y<W/2, (2.19)
§(£ )=Q if explio,2y/W) — explie,) _C Qf( 1)_1@F '
2’ 2 gh, sin(o,) g h h Wg
L Q w2 2o
= g—r(i s y) h W Sln(a,) G0,y — n)e' " "dny + A4,, —W/2 <ys W/2, (2.20)
e above twa euations are megted in the ydi- @ = Hrgy = £ =4) | maxs; )

rection from —W/2 to W/2, yielding the following
equations for @ and C

(%+Z;)Q C+gti  (221)
S _z_ Z)Q=C+gA (2.22)
2k " '
where _
z< L + i L 2.23
= {max(f, w) tw[ W ” (2.23)
z = P L 2.24
"= o {max(f, ®) lw[ W (Ur)” (2.24)
Z; = iwF'|W, (2.25)
and

(o) = —1[2(1n4— 1)—-1-

120} — 126
[ctg(a)f cost ld f smt ]}

(2.26)

The plot of I( o) (Fig. 2) shows that I(¢) < 0.13 for
o < 1.5, while TG calculated L./ W and found that it
is between 1 and 3.5. Therefore, /(o) and I(o,) are
negligible in the expressions of Z; and Z,.

Solving (2.21) and (2.22) gives the solution of C
and Q

g S/
Zi+ Z, + Z, [A (2k, Z)

(L
+ A’(zh, + R,)] (2.27)

1 1 L, , L.
X|—+— Fr+=2 4220, (2.28
() w (g i) em
The solution for sea-level elevation and along-strait ve-
locity in the strait are then:

§(x,y) =

Zi+Z,+Z,
if exp(ic2y/W) — exp(io) . w _f
% [[2}: sin(o) b £ =35,
X (A — A, + AZs + Z,) + A,Z,} (2.29)
)= g(4;,— A4,) o exp(ia2y/W)
v S YW (Zi+ Z+ Z) sin(e)
(2.30)
0.13
012+
011+
0.1}
I(c)
0.09+
0.08
o.o70 (fz of4 0:6 ofs 1 12 114 16

o
FiG. 2. Function I( ), as defined by (2.26).
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3. Effect of variation of strait depth and solutions for
several depth profiles

The variation of the strait depth affects the formula
of flux Q, (2.28), through the term Z; of the denom-
inator. The term Z; (or F’, which is proportional to
Z,) depends on the strait depth as an integral of a func-
tion of 4 and ¢:

L2
Zs —1——F’=i——f ctg(a)dx’ (3.1)

For a strait of uniform depth H, F' = L/H. Let H
denote the average depth of the strait, then the ratio
F'/(L/H) indicates how much depth variation affects
the volume flux. If F'/(L/H) > 1, the strait is more
restrictive to the water exchange between the two open
oceans than a strait of uniform depth H and length L.

In the following three examples, the depth profiles
are expressed so that H is the average depth and A, is
the relative depth variation Lh,/2h at the center of the
strait x = 0. The value of ¢ at x = 0 is denoted as o,.

a. Uniform slope

The depth profile of a uniformly-sloped strait is ex-
pressed as

h=H[l + Ax/(L/2)]. (3.2)
Substitution of the above A(x) into (2.12) yields .
o H_ 1 Jsin(e/(1 = A))
sin(o./(1 + A))]°

L 2A,
Figure 3 shows F'H/L vs. A, for different values of o,.
It is noticed that F'(A,, o.) = F'(—A,, —a,), i.e.,
the flux Q does not depend on the direction of the
slope. This is expected from linear theory, for the flux

changes direction with time sinusoidally, and the av--

erage flux in one period is zero. If the flow is strong so
that the nonlinear effect has to be considered, the con-

1.2% o= 0.05
_,’/L,oc =02
1 —__—-—-———’_"/ o. =04
o= 0.6
08¢

o, =038
0.6

04} <X
PO o= 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FIG. 3. F'(H/L) for a strait of uniformly
sloped depth profile (3.2).
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FiG. 4. F'(H/L) for a strait shoaling or deepening in the middle.
The depth profile is piecewise linear as expressed in (3.3).

servation of potential vorticity favors the flow from the
deeper ocean to the shallower ocean, and the symmetry
of the flow in two directions is expected to be broken.

b. Piecewise linear profiles

Shoaling or deepening in the middle of the strait can
be modeled with

A x|
1
L+3A

—L/4

h=H L/2 ’

1+

(3.3)

where A, > 0 is for shallowing, and A, < 0 for deep-
ening. Then,
1

pH_TTa% | singa)
L A, sin(a./(1 + A))|

Figure 4 shows F'H/ L vs. A, for different values of ¢,.

c. Piecewise, symmetric exponential profile

Shallowing or deepening in the middle of the strait
can also be modeled with the exponential function

A | x|
h=H——FF—— A ——
vy exp[ L/Z]
(A;>00r A, <0). (34)
The solution is

H _2[ch(A) — 1]
L A2

Figure 5 shows F'H/L vs. A, for different values of o..

Figures 3, 4 and 5 show that ¢, is a key parameter
to determine the importance of the variation of the
strait depth. The physical meaning of ¢ is examined
here. A nondimensional width of the strait, W, is in-

F' a.ctg(a,).
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FIG. 5. F'(H/L) for a strait shoaling or deepening in the middle.
The depth profile is piecewise exponential as expressed in (3.4).

troduced as the ratio of the width W to the width of
Kelvin waves (the Rossby radius of deformation)

W' = Wfl(gh)". (3.5)

The variable L, = 2h/h, is the length scale for the
depth variation; its nondimensional form, L}, is the
ratio of L, to the wavelength of Kelvin waves, i.e.,

Ly = Lyw/(gh)'. (3.6)
Then the parameter
o= W'/L), (3.7)

is the aspect ratio of the strait based on the nondimen-
sional width and length scale.

From the three examples of this section, we conclude
that for a narrow strait in the sense of ¢, < 0.6, the
effect of the depth variation of the strait is negligible
[F'/(H/L) ~ 1]; for ¢. > 0.6, the effect of the depth
variation is to shorten the length of the strait {F'/(H/
L) < 1], thus to increase the volume transport through
the strait; for the value of ¢, around 1, the oceans only
feel a strait with 65% of its actual length [F'/(H/L)
=~ 0.65]. The value of F'/(L/HY) becomes zero if o,
increases to o, = (1 — A2)w/2 for uniform slopes, o,
= (1 + A)w/(2 + A,) for piecewise linear profiles,
and ¢, = = /2 for piecewise exponential profiles. Thus,
the strait becomes almost invisible to the system, as
far as the flux is concerned, and the flux is nearly the
same as when the two oceans are separated by a wall
and connected by a gap of the wall, such as the case
studied in Buchwald and Miles (1974). The physics
of this situation needs further study and will not be
treated in the present paper.

4. Comparison with previous works and discussions of
the solution
a. A limiting case and comparison with RC’s model

If the strait is narrow in the sense that o = W'/ L),
< 1, then the solution becomes
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Q= gl4 - Ar)/l:% max(f, @) (hlz + i)

h,
iw L/2 dx Ld
* w (J‘—L/Z h * 2h
1 1 1
{(x, )= [5 max(f, w)(— + -—)

h o h

+_l:_ui lezix.*__L_e’_‘_& B
W\J-L;2 b 2h 2h,

Ler
2h,

)] +0(e?) (4.1)

Ly et o], _
XH MWz W h](A’ 4)
AI . Ler
+ 2% [max(f, w) + iw W]

A ' L
+ -2—’-1'; [max(f, w) + iw -I/_V‘i]
L/2 dx\
+ A4 — —1+ O(0). (4.2

"W —L/zh} (o). (42)
This limiting solution is identical to that of the limiting
case for a narrow strait in RC, except that, in the present
solution, the variables

J‘ x dx’ L12 dx

— and f —
-L2 h -L2 h
appear as the natural extensions of (x + L/2)/A and
L/h, respectively, due to the variation of the strait
depth.

If o is not small, then L/4 in RC’s solution of Q
will be replaced by

L2
F'= f —ctg(o)dx’
L2 h
in the present solution. As discussed in section 3, the
value of F’ can be close to L/h, or less than L/h, or
zero, depending on the key parameter ¢. By evaluating
F’, one can calculate by how much the flux through
the strait changes due to the depth variation in the
strait. While RC’s model is for a strait of uniform depth,
and thus this effect can not be considered. .

In addition, compared with RC’s solution, which is
in the form of a series expansion, the present solution,
(2.28) and (2.29), or (4.1) and (4.2) for the limiting
case o < 1, is easier to understand and apply.

b. Comparison with TG s algebraic model

Toulany and Garrett presented a simple algebraic
model for a strait system, where the depth 4 is constant
over the strait and the two open oceans (Fig. 6). They
denoted &3, &4, ¢, and { as the elevations at the four
corners of the strait.
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Z z,

FIG. 6. Schematic diagram of TG’s simple algebraic model of a
strait of length L, width W connecting two open oceans. The depth
h is constant over the strait and open oceans. 4; and A4, are the far-
field elevations of the two oceans; {3, {4, {5, and { are the elevations
on the opposite sides of each end of the strait.

The assumptions of cross-strait geostrophic balance
and the along-strait balance between acceleration and
the sea surface slope lead to

Sa— =8~ §G=(g)Wu (4.3)
G5—6H=8— = —i(w/g)Lu. (44)

(For simplicity, friction is omitted here, whereas it was
retained in TG.) Noting that the Kelvin waves prop-
agating in the two basins impose upstream values on
{4 and {s, they assumed that {4 = 4;and {5 = A,, where
A; and A, are the elevations at the two open oceans
when the strait is absent. Then the flux through the
strait can be solved as

gh(AI - Ar)
(f+ iwLj W)~ "

Toulany and Garrett speculated that some “end cor-
rection” should be added to the actual length L of the
strait in (4.5), even though their model is too crude
to resolve this.

The present model refines TG’s model by solving
the differential equations instead of the algebraic equa-
tions and by allowing depth change along the strait. If
the depth £ is constant over the strait and the two open
oceans, and w < f, then the solution for the flux, (2.28),
reduces to TG’s solution (4.5), except that the strait
length L is replaced by

Q= Whu = (4.5)

L+ (La+ Ly)

in the present solution. This verifies TG’s conjecture
of the end correction. This end correction is about 1
to 3.5 times the width of the strait, depending on the
values of w/f and W f/(gh)'?.

Examination of solution (2.29) at two points near
the corners of the strait reveals that

L L, W
4————£——)=m

> (4.6)
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5 2 4.7)
Although ¢{; is not valid outside the strait, a little risk
is taken to extend the solution beyond the strait by L./
2, which is about 0.5 to 1.7 times the width of the
strait. The sea levels at the two corners, (4.6) and (4.7),
confirm the assumption of TG that {4 and ;s are equal
to the far-field elevations A4, and A, respectively. How-
ever, the points 4 and 5 should not be exactly at the
corners of the strait because of the existence of the end
correction. They are away from the mouths of the strait
and toward the open oceans by the amount of L./2
and thus are the corners of the virtual strait with the
length L + $(L, + L.,). This property also suggests
locations to sample the ocean waves that are free of
the influence of the strait.

If h; = h,, another property of the solution (2.29) is
that

L L, W L L, w

| Vorlhr e~ ) -aea
which appears to say that {3 + {5 = A4, + 4,, as one
can get readily from TG’s equation (4.3) and (4.4).

L, W
g‘s('g + '_) = A4,.

5. Energy balance and the mechanism of geostrophic
control

For the low-frequency limit (the geostrophic-control
limit), w = 0, TG’s formula (4.5) reduces to

Q = gh(4, — 4,)/ /. (5.1)

They termed the flux at this limit as the flux of geo-
strophic control, because the flux is inversely propor-
tional to the Coriolis parameter f. They argued that
the geostrophic control arises from a simple physics
that the sea level difference across the strait can not be
greater than the sea level difference between the two
open oceans.

For the same low-frequency limit, however, the
present solution (2.28) (as well as RC’s solution) re-

duces to
ity JIL(L
0 =g(A4 A,)/[2<hl+h’)].

This solution depends on the depths of the two open
oceans instead of on the depth of the strait. This sug-
gests that geostrophic control be due to the process in
the open oceans rather than the process in the strait as
TG argued. Then what in the open ocean causes this
geostrophic control? The present section addresses this
question.

The energy balance of the strait system at the geo-
strophic-control limit w ~> 0 is considered here. For
simplicity, 4, = O is assumed; then the only energy
source for the strait system is the energy of the incoming
Kelvin wave in the left ocean. The energy fluxes of the

(5.2)
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system are shown in Fig. 7, where E; is the rate of
energy input from the incoming Kelvin wave, Ex and
E,x are the rates of energy carried away by the Kelvin
waves in the left and right oceans. The amplitudes of
the two outgoing Kelvin waves are denoted by A4, and
Ak, and the amplitudes of the incoming Kelvin wave
in the left ocean by 4;. Since w — 0, Poincare waves
are not propagating waves and do not carry energy
away from the system (Buchwald 1971). Thus, the en-
ergy balance requires

E,- = E[K + E,K. (53)
Now, suppose the flux Q is not known; it will be de-
termined only by the energy balance (5.3).

The far-field solution of the Green’s function
(Buchwald, 1971) indicates that a unit outflow from
a point source generates a Kelvin wave of magnitude
f/g. Therefore, the outflow Q in the right ocean gen-
erates a Kelvin wave of magnitude

(54)

According to the formula of Gill (1982, p. 380), the
energy carried by this radiated Kelvin wave is

p’h | Ax|* _ of

Ex="7 f = an,

1012 (5.5)

The outgoing Kelvin wave in the left ocean is the
sum of the incoming Kelvin wave passing over the left
mouth of the strait and the wave generated by the in-
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FI1G. 7. Diagram of energy flux in a strait system.
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flow Q, i.e.,
f{_ Q@
Ag=4+=(—=1. .
w=Art2 7, (5.6)
The energy carried by this Kelvin wave is then
2 2 2
pg°h| A Pf g
Exy=————=—" A - . .
IK af 1 Q. (57)

When w - 0, the wavelength becomes very long, and
the phase difference of different variables of the strait
system vanishes, as one can see that the coefficients in
(2.3)-(2.5) become real numbers. Thus,

1ol
Q=— 4| A,
and
,K=j—i(ff” 4] - IQI)

The only energy source from the incoming Kelvin
wave of amplitude A4, is

szhllAllz
4f )

The total energy loss of the system can then be written
as

E; = (5.8)

of
E; +—'(h—1+h—r)

ciafa-fraift(E+ )

Applying the energy balance requirement (5.3), one
recover the solution at the geostrophic-control limit,
(5.2) (for the case of 4, = 0),

o=sf|(i3)5]

Generally, with propagating Poincare waves and
friction, the energy requirement is

Ex+ Ex=

(5.9)

E;> Ex + Ex,

and the “equal sign” in (5.9) becomes “less than or
equal to”. Thus, the flux at the geostrophic-control
limit, (5.9), is the maximum flux that the energy bal-
ance allows.

Therefore, the geostrophic control appears to be the
result of the energy drain of the two Kelvin waves. In
other words, the flux through the strait can not be very
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big, otherwise it will geostrophically set up such big
alternating cross-strait slopes beyond the ends of the
strait, which in turn will generate in the open oceans
such large Kelvin waves, that they would carry away
more energy than the system can receive from the in-
coming Kelvin waves.

Integration of the cross-strait geostrophic equation
yields another expression for Q,

_gh L2 af __ &h(D)
Q= f‘:/z 6y B o

where 8¢ is the cross-strait difference of sea level. Elim-
inating Q from (5.2) and (5.10) gives

o  _ 2hih,
A~A4, h(h+h)

(5.10)

If at a certain section of the strait, 7 < A;and h < h,,
then at that section the cross-strait sea-level difference
will be greater than the sea-level difference between the
two oceans. Thus, TG’s explanation for the geostrophic
control does not stand. For stronger flows where non-
linearity cannot be neglected, however, vortex stretch-
ing or compression may not allow the cross-strait sea-
level difference to be greater than the sea-level differ-
ence between the two oceans, as suggested by C. Garrett
(personal communication).

6. Energy balance when o # 0

In this section, the energy analysis of section 5 is
extended to the case of finite w, in order to understand
the strait system better and to verify the solution. As
in section 5, 4, = 0 is assumed. The energy fluxes of
the system are shown in Fig. 7, where E;, Ejx and E,x
are the same as previously explained, while Ejpand E,p
are the rates of energy loss through Poincare waves,
and E; is the energy flux through the strait.

By using the solution for { and u in the strait, (2.29)
and (2.30), the energy E; passing through the strait is
calculated:

w/2 w 27w
E;= f dz f dy — f dtpg
' w2~ 2w Jo
X Re[u(— —; , y)e”‘”] Re[{(
. £ eiwl
3’ y

_ 08| 4|? max(/f, w)
4|z|? h °

This E; is the only energy source for the right-hand
open ocean, as A, = 0 is assumed. Thus, in the right-
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hand ocean, the difference between the energy coming
from the strait, £, and the energy loss due to the out-
going Kelvin wave, E,, is the amount of energy ra-
diated away by the Poincare wave, i.c.,

pg’ | Ail* 1

S BT BTz

[maX(f, w)~—f1.
(6.1)

If f < w, then E,p = 0; this is consistent with the fact
that if f < w, Poincare waves are not propagating waves
and thus can not carry energy away, as noted by Buch-
wald (1971).

The formula for the energy of the Poincare wave in
the left ocean is similar to the formula for the right
ocean,

pg 141" 2412 1

Ep=
R

[maX(f w)—f].

The sum of all the energy carried away from the
strait system by the radiated Kelvin waves and Poincare
waves is then calculated:

082 Ail*hy
af

where Ejx and E,x are expressed by (5.5) and (5.7).
The right-hand side of the above expression turns out
to be the energy input E; of the incoming Kelvin wave;
the solution in section 2 produces consistent energy
transport.

The phases of A;x and A4,k, as expressed by (5.4) and
(5.6), are the ones at the mouths of the strait. Knowing
the Kelvin-wave speed, one can calculate the phases
of the outgoing Kelvin waves at any distance from the
mouth. This opens the way for possible applications
to multistrait systems. If there is another strait located
next to the first strait, then the magnitude and phase
of the outgoing Kelvin wave from the first strait toward
the second one can be used to calculate the magnitude
and phase of an incoming Kelvin wave for the second
strait. The solutions of the single strait model for each
strait can then combine and form a linear system from
which the sea level of, and volume flux through, each
strait can be determined. One should nonetheless keep
in mind that the far-field asymptotic behavior of the
Green’s function solution in the semi-infinite oceans,
namely the representation of a Kelvin wave, is valid
only at distances two or more times the Kelvin-wave
scale [max((gh)'?/f, (gh)'*/w)] away from the
mouth of the strait. Another extreme case is studied
in detail in RC, namely that of straits packed in a dis-
tance much less than the scale of a Kelvin wave so that
the phases of the incoming Kelvin wave in one ocean
can be considered as uniform.

E1K+ E,K+ E[p + E, =
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7. Summary

A linear, frictionless model of the fluctuating flow
through straits of nonuniform depth has been consid-
ered here. The depth of the strait changes in the along-
strait direction; the continuity of the depth between
the strait and open oceans avoids the step-like topog-
raphy used in other studies. A key assumption of the
model is the cross-strait geostrophic balance, which re-
quires w?v/ fu < 1. Thus the present theory applies to
long straits, where the strait length and the length scale
of the depth variation are much greater than the width
of the strait, or to low-frequency, meteorologically-
forced flows, where w < f. The model is mathematically
tractable and dynamically sound, applicable to many
of the strait flow problems of the real oceans.

The nondimensional parameter ¢ = fW h,/2hw is
found to be a key parameter in determining the im-
portance of the depth variation of the strait. The pa-
rameter o can be considered to be the aspect ratio based
on the nondimensional width and length of the strait,
1.e., o = W'/ L), where W' is the ratio of the width of
the strait # to the width of Kelvin waves (Rossby ra-
dius of deformation) (gh)'/?/f, and L}, is the ratio of
the length scale of the depth variation 24/hA, to the
wavelength of Kelvin waves in the strait (gh)?/w. If
o < 0.6, the variation of the strait depth has almost no
effect on the flux, and the strait can be considered to
be a strait of uniform depth. If ¢ increases, the effect
of the depth variation is to shorten the length of the
strait, thus allowing more flux through the strait. At
the value of about o = 7 /2, the strait is almost invisible
to the open oceans as far as the flux is concerned, and
the solution is nearly the same as when the two oceans
are separated by a wall and connected by a gap of the
wall.

For the Strait of Gibraltar, the width and length of
the strait are about 12 and 100 km, respectively. The
change of strait depth over the length of the strait is
about 500 m, of the same order as the depth itself, so
L, ~ L. For the tidal motion, ¢ == 0.1; thus the effect
of the depth variation is negligible. While for meteo-
rologically forced motions, o can be around 1, and the
variation of the strait depth should be taken into ac-
count.

The mechanism of the geostrophic control on the
flux through the strait, that is, the control of the flux
at the limit of w —> 0, is studied by considering the
energy balance. The analysis clearly shows that the limit
of the flux is determined by the limit of the energy that
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the two outgoing Kelvin waves can carry: the flux
through the strait can not be greater than the geo-
strophic limit, otherwise it will geostrophically set up
such big alternating cross-strait slopes beyond the ends
of the strait, which will in turn generate in the open
oceans such big Kelvin waves, that they would carry
away more energy than the strait system can get from
the incoming Kelvin waves.

The present model verifies the conjecture of TG that
an effective length L, should be added to the actual
length of the strait in the flux formula. This effective
length is due to the diffraction near the mouths of the
strait and is about 1 to 3 times the width of the strait.
It is also confirmed that the amplitude of the incoming
Kelvin wave can be assigned to the two corners of the
strait which are on the side of the upstream Kelvin
waves, as suggested by TG; the corners of the strait,
however, should be considered to be the corners of the
virtual strait—the strait with the length L + L..
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