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Abstract

Firstly, we demonstrate a pathological hash function choice that makes RSA-OAEP insecure.
This shows that at least some security property is necessary for the hash functions used in RSA-
OAEP. Nevertheless, we conjecture that only some very minimal security properties of the hash
functions are actually necessary for the security of RSA-OAEP. Secondly, we consider certain
types of reductions that could be used to prove the OW-CPA (i.e., the bare minimum) security
of RSA-OAEP. We apply metareductions that show if such reductions existed, then RSA-OAEP
would be OW-CCA2 insecure, or even worse, that the RSA problem would solvable. Therefore,
it seems unlikely that such reductions could exist. Indeed, no such reductions proving the
OW-CCA2 security of RSA-OAEP exist.

Key Words: RSA, OAEP, Provable Security, Public-key Encryption, IND-CCA2, OW-CPA,
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1 Introduction

The public-key encryption scheme called RSA-OAEP is proven [BR94, Sho01, FOPS01] to be IND-
CCA2 secure under the assumptions that the RSA problem is hard and that the adversary treats
the hash functions instantiating OAEP as random oracles. This paper examines the security of
RSA-OAEP when the adversary is not restricted to treat the hash functions as random oracles,
which is often known as the standard model. Informally, this means that we consider the possibility
that adversaries might be able to exploit weaknesses in hash functions to attack RSA-OAEP.
Surprisingly little seems to be known on this matter.

1.1 Necessary Hash Security Properties

Intuitively, one might expect that at least some kind of security properties of the hash function
are necessary for the security of RSA-OAEP. We demonstrate this in §2 by giving some patholog-
ical hash function instantiations under which RSA-OAEP is not secure. (Similarly, pathological
trapdoor one-ways functions, instead of RSA, have also been considered [Sho01] to test the assump-
tions necessary on the trapdoor function.) Despite these pathological examples, we conjecture that
the security properties necessary for the hash function are very minimal. Notably, our conjecture
implies that collision resistance and preimage resistance are not actually necessary properties for
the hash function in RSA-OAEP. If true, this would be fortunate because, although the collision
resistance of SHA-1 has succumbed to a series recent attacks, such as [WYY05], the security of
RSA-OAEP instantiated with SHA-1 may not be correspondingly affected as a consequence.
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1.2 Sufficient Hash Security Properties

We seek properties (conjectured or proven) about the hash function that—in conjunction with
properties of the RSA problem—are sufficient to ensure the security of RSA-OAEP. Ideally, the
necessary and sufficient properties would be identical. To date, the only known property is that the
adversary treats the hash function like a random oracle. (As usual, this is not strictly a property of
the hash function, but rather of the adversary.) In this matter, we do not provide any new security
proofs. Rather, we have eliminated certain kinds of proofs.

More precisely, we hypothesize three particular types of security proofs. These types of proofs
use reductions, with certain important restrictions. A restriction applying to all of our three types
of reductions is that they are key preserving, as in [PV06]. This means that the reductions reduce
an instance of the RSA problem to the problem of breaking the security RSA-OAEP with the same
RSA public key. The three types of reduction differ on the second restriction. These are hash-
generic, hash-agnostic, and hash-specific, which we are defined formally in §3.1, and summarized
below:

• A hash-agnostic reduction takes an RSA-OAEP adversary and solves the corresponding RSA
problem. Note that this reduction does not attempt to break any problem related to the
hash. Nevertheless, a hash-agnostic could potentially only work for a specific hash function.

• A hash-generic reduction takes an RSA-OAEP adversary and solves the corresponding RSA
problem, but also must treat the hash function as a random oracle. We emphasize that it is
the reduction that treats the hash functions as random oracle here, not the adversary.

• A hash-specific reduction takes an RSA-OAEP adversary and solves the corresponding RSA
problem or some problem related to the hash function, such as finding a preimage of a random
value in the range of the hash. This is a less restrictive type of reduction than the previous
two types, and it would also seem to the most natural type reduction that one would want.

Informally, a hash-agnostic or hash-generic reduction suggests that RSA-OAEP is secure for any
hash function, while a hash-specific reduction only suggests that RSA-OAEP is secure if instantiated
with hash functions with a given security property.

Generally, the adversaries in the reductions above will be taken to be a OW-CPA adversary.
This is the most basic adversary, and resistance to a OW-CPA adversary is the lowest grade of
security. Indeed, a public key encryption scheme without OW-CPA security might as well be the
identity cleartext encryption scheme. It seems quite reasonable to hope that, if RSA-OAEP is
secure at all and it is possible to find for it a security proof in the standard model, then it has a
proof of OW-CPA security that uses one of the reductions above.

In §3.2, we find metareductions, which if given an oracle for one of the reductions above, can
break the OW-CCA2 security of RSA-OAEP. Furthermore, in the case of hash-generic reductions,
the metareductions can solve the RSA problem.

1.3 Related Work

Paillier and Villar [PV06] proved a result similar to one here, independently of this paper. Their
key-preserving black-box reductions correspond to the hash-agnostic reductions given here. Hash
agnostic reductions do not tie the security of breaking RSA-OAEP to any assumptions whatsoever
about the hash functions with which it is instantiated.
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Boldyreva and Fischlin [BF05, BF06] proved the security of OAEP in the (partial and full)
standard model, but they do not instantiate the trapdoor one-way function with RSA. Instead
they use a construction that maps some bits in the clear, and the rest of the bits with a subsidiary
trapdoor one-way function, which could be RSA. Therefore, their result does not contradict the
results here and in [PV06], despite being in an opposite direction. Furthermore, they instantiate
OAEP with a hash function with security properties that on the chosen trapdoor functions. This
is a second reason that their result does not contradict ours about hash-specific reductions.

Paillier and Vergnaud [PV05] gave some impossibility results in the discrete log setting. They
gave strong evidence that most digital signatures schemes could not be proven, in the standard
model, to be as difficult as the discrete logarithm problem. They imposed, however, a significant
restriction on the security proofs: they had to use algebraic reductions.1 Loosely speaking, an
algebraic reductions treats the cryptographic group as a generic group, only accessible by means of
random oracles. Metaphorically, they put the gloves on the security proof rather than the adversary.
This is similar to our hash-generic reductions, where we only give the security proof random oracle
access to the hash function.

Dodis, Oliviera and Pietrzak [DOP05] examine RSA-FDH signatures. They show that, in
the standard model, it cannot be proved secure unless the trapdoor one-way function used (such
as RSA) has a property untrue of random functions. Their approach is slightly different from
a metareduction, but they obtain a very general result. Their result, however, does not apply
directly to the specific RSA trapdoor function because its homomorphic and random self-reducibility
properties make it distinct enough from a random function to exclude their separation results from
applying to it. In this work, we focus on the specific RSA trapdoor functions rather than some
general class of security properties of trapdoor functions. Indeed, the homomorphic and self-
reducible properties of RSA are pivotal to our result.

Shoup gives [Sho01] an argument that the design of OAEP cannot be proven secure when RSA is
replaced by an arbitrary trapdoor one-way function. He hypothesizes a pathological trapdoor one-
way function for which OAEP becomes insecure. This is more akin to the insecure instantiations
of RSA-OAEP discussed in §2.

The phenomenon of security proofs leading to attacks is not new. Rabin’s digital signatures and
public key encryption [Rab79] had reductions showing that their the basic security against passive
adversaries was equivalent to the integer factorization problem. It was soon discovered, though,
that these reduction algorithms also led to an active attacks [Wil80, GMR88].2 Countermeasures,
such as OAEP, have since been discovered to thwart the active attacks. The results in this paper,
however, show that, despite OAEP appearing to thwart attacks and enabling security proofs in the
random oracle model, it does not completely overcome the apparent paradox that certain kinds of
security proofs can lead to attacks.

2 Weak Hashes for RSA-OAEP

In this section, we examine security properties are needed for the hash functions used to instantiate
RSA-OAEP by considering a pathological choice: G ≡ H ≡ 0, that is, the constant zero-value
functions. Note that RSA-OAEP allows correct deciphering for any deterministic choice of G and

1Their algebraic reductions are similar to those that Boneh and Venkatesan [BV98] used in comparing the RSA
problem to factoring.

2Metareductions have also appeared in other contexts, such as Boneh and Venkatesan’s [BV98] metareduction
that takes a reduction of factoring to the RSA problem and uses it to factor.
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H, so our pathological choice does not interfere with the private key holder’s ability to decrypt
legitimate RSA-OAEP ciphertexts. Note, obviously, that our choice of G and H are not collision
resistant, not preimage resistant, and not pseudorandom.

Then, with our choice of G and H are RSA-OAEP ciphertext has the form

c = (m‖0k‖t)e mod n (1)

where m is the plaintext message, 0k is a fixed bit string (of all zero bits), r is a random bit string
(chosen by the encryptor), and (n, e) is the RSA public key (of the decryptor). More generally,
if we can allow an arbitrary choice of hash function H, then we replace that the t above by
t = r ⊕H(m‖z).
Theorem 1. Suppose now that we use RSA public exponent e = 3. Suppose further that the
length of t is at most one third or less3 than that of the ciphertext c. With this choice of G ≡ 0
and the sufficiently small length of t, RSA-OAEP succumbs to the following IND-CPA attack.

Proof. The adversary chooses a message m0 = 0l, that is, a message of all zero bits of the correct
length, and another message m1, which is arbitrary. Now b ∈ {0, 1} and the adversary is given the
challenge of finding b from cb where cb is an encryption of mb. The adversary can test if b = 0 as
follows. If b = 0, then cb will be a perfect cube, because t3 < n, so no modular reduction will take
place.

Furthermore, we conjecture the following worse attack.
Conjecture 2. The RSA-OAEP instantiation may even succumb to a more severe OW-CPA attack.

Sketch. Algorithms similar to Coppersmith’s [Cop96] may exist that can solve for m given c. Cop-
persmith’s algorithm inverts the RSA function given certain sufficient information about the input
to the RSA function. In this case the information available is the fixed value 0l in the middle of
the padded plaintext.

Importantly, it not should be ignored that in three standards [Ame07, Ins00, RSA02], the
definition of RSA-OAEP is slightly different from the original definition. Arguably, the standardized
version is more important for study because it is more likely to be deployed than the academic
version. In the version of RSA-OAEP, the message is placed on the very right, while the padding
string remains in the middle. There is also a requirement that G ≡ H. In this case (1), with the
pathological choice of G ≡ H ≡ 0, becomes

c = (r‖f‖0k‖1‖m)e mod n, (2)

where f is another distinct feature of [RSA02] consisting of the hash of some label attached to the
ciphertext. The label will generally not be a secret, so we will regard f as known to the adversary,
and perhaps even fixed in practice. Since it is the output of a hash function, we could even consider
the pathological possibility that f = 0, consistent with our choices of G ≡ H ≡ 0. Regardless,
our IND-CPA attack against the original RSA-OAEP can be made to work, by observing that if
m = 0l, then

c2−3(k+l) = (r‖f)3 mod n. (3)
3In fact, a typical choice of t is equal to the length of the hash function whose collision resistance matches the

strength of the RSA modulus, which results in a length for t or one sixth or less of the length of c.
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Provided that r‖f < 3
√

n, so that the combined length of r and f is at most third of that of c, then
the left hand side will be a perfect cube. The conjectural OW-CPA attack based on a hypothesized
variant of Coppersmith’s algorithm may be also effective.

Note that these attacks do not appear to exploit the failure in G of standard security properties
of hash functions, such as collision resistance and preimage resistance. Indeed, the attacks described
do not seem to work for larger values of e, such as e = 216 + 1, so the insecurity is not entirely
confined to the pathological hash function. Furthermore, concatenating a nonzero leading or trailing
one-valued bit before exponentiation also renders some of the attacks useless. Nevertheless, it does
demonstrate that if we want security for RSA with e = 3 and the existing specifications of OAEP,
then some minimal security property of the hash function, especially the masking function G, is
necessary. Minimally, we need that the property that the probability of giving a result of all zero
bits is negligible.

Some may still inclined to object to this analysis as obvious. After all, it is no surprise that
a weak hash implies a weak version of OAEP. If nobody has observed this before in print, an
objector may say that this is because it is a trivial, inconsequential fact. This view, however, is a
rather myopic one, induced by over reliance on the random oracle model. Excessive exposure to the
ideal hash model causes many to turn a blind eye to the security of hash functions. Cryptanalytic
muscles have atrophied.4 Doubtlessly, a proof in the random oracle model is a superb starting
point, but it should not be the stopping point. The most logical next step in cryptanalysis after
a proof in the ideal hash model is to consider a real world hash. This could entail a re-design of
the cryptosystem tailoring it to a proof without idealizing the hash as a random oracle. Or, just as
easily, one may seek to work with the existing design, in this case RSA-OAEP, striving to conduct
a security analysis with real world hash functions. Arguably, the latter approach is better, since it
will leverage the security already established, and perhaps the efficiency gained by working random
oracle paradigm. In the case of RSA-OAEP, standardization and deployment should encourage
further cryptanalysis of the existing design, rather than starting from scratch with a new design.

Our analysis is a first step, albeit an admittedly obvious step, in the cryptanalysis of RSA-OAEP
without hash functions. To provoke deeper cryptanalysis, we assert the following conjecture, which
appears non-obvious.
Conjecture 3. If the RSA problem is hard, and a fixed arbitrary function G has negligible prob-
ability of being all zeros on the portion masking the message, then RSA-OAEP is IND-CCA2
secure.

Note that the purpose of this conjecture is not to challenge cryptologists not to prove it, but
rather challenge them to disprove it. A disproof could consist of some pathological hash function.5

If this is an obvious issue, then it should be straightforward for a skilled cryptanalyst to find
such a pathological hash. Such a cryptanalysis would be a welcome step for the understanding
of the security of RSA-OAEP, with respect to reliance of hash function security, as so far we
only understand the impossible hypothesis that the hash functions are random oracles. There is
a tremendous gap between the understood security and apparent security, and hopefully this gap
can be narrowed.

4More generally, in the discipline of provable security, it appears that blind eye is turned to necessary security
conditions, whether obvious or not.

5Strictly speaking, a hash whose pathology varies with the public key does not disprove the conjecture, but it
could be a good first step.
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3 Impossible Security Reductions for RSA-OAEP

In this section, we will examine what types of reductions can be used prove that RSA-OAEP is
OW-CPA secure against adversary that do not treat the hash function as a random oracle. We
only focus on certain types of reductions. All the reductions are to the RSA problem.

We first recall the basic RSA problem. An instance of the RSA problem is a triple of integers
(n, e, y). A solution to this instance is an integer x such that xe ≡ y mod n. The RSA assumption
says that solving the RSA problem is infeasible for the following distribution of instances. The
public exponent e is fixed. The public modulus is n = pq, where p and q are randomly chosen
primes of a given bit length with the extra condition that gcd(e, (p−1)(q−1)) = 1. The bit lengths
are chosen such that finding p from n using the best factoring algorithms known6 is infeasible.
Note that (n, e) is the data typically used as the public key in RSA based signature and encryption
schemes, such as RSA-OAEP. The challenge value y is a random integer, or equivalently a random
integer in the range [0, n− 1]. Throughout this paper, we assume that (n, e, y) has the distribution
described above.

3.1 Three Types of Reductions

Definition 1 (Hash-Agnostic Reduction). An algorithm R that takes input of an RSA public key
(n, e) and random integer y ∈ [0, n−1]. The algorithm R is given access to an oracle A. The oracle
A is a OW-CPA adversary to RSA-OAEP, when instantiated with public key (n, e) and some fixed
pair of hash functions. That is, on input of a valid RSA-OAEP ciphertext c, the oracle A will
output the decrypted plaintext m. The algorithm R then outputs an integer x ∈ [0, n − 1]. If
xe ≡ y mod n, then R is successful.

One may also quantify a hash-agnostic reduction by its success rate and computational cost,
and by the success rate and computational cost of its oracle A.
Definition 2 (Hash-Generic Reduction). An algorithm R that takes input of an RSA public key
(n, e) and random integer y ∈ [0, n − 1]. The algorithm is given access to three oracles A, G, and
H. The oracles G and H are random oracle hash functions. The oracle A is an OW-CPA adversary
to the RSA-OAEP, when instantiated with public key (n, e) and hash functions G and H. That
is, on input of a valid RSA-OAEP ciphertext C, the oracle A will output the decrypted plaintext.
The algorithm R then output an integer x ∈ [0, n− 1]. If xe ≡ y mod n, then R is successful.

One may also quantify a hash-generic reduction by its success rate and computational cost, and
by the success rate and computational cost of its oracle. The oracle A models an adversary that
is specific to G and H. In theory, if specific choices of G and H make RSA-OAEP secure, such an
adversary may not exist. Nevertheless the reduction may exist. Indeed, given an explicit algorithm
R, it is relatively easy to test if it is truly hash-generic reduction—independently of whether any
actual adversaries A exist—because one can simulate A using the factorization of n, and simulate
G and H using random values.

We now argue that a hash-generic reduction is a reasonable thing not only to desire but to
also consider as something feasible. If RSA-OAEP has very good OW-CPA security in the sense
that instantiating it with any random functions G and H makes it secure—which we already have
very strong evidence [BR94] for in the ideal hash model—then surely there are ought to be a
reduction that is universal with respect to hash functions. That is, the security proof ought to
work independently of the choice of hash function. Although, a hash-agnostic may seem to achieve

6Such as the generalized number field sieve.
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this, because it does not try to break the security of the hash function, a hash-agnostic reduction
may be an algorithm that only succeeds for a particular hash function. To completely remove
dependence of the reduction on any particular hash function, we can restrict the reduction to only
have random oracle access to the hash functions.
Definition 3 (Hash-Specific Reduction). An algorithm R that takes input of an RSA public key
(n, e) and random integer y ∈ [0, n−1] and (random) hash challenge values g and h. The algorithm
is given access to oracles A. The oracle A is an OW-CPA adversary to the RSA-OAEP, when
instantiated with public key (n, e) and some fixed hash functions G and H. That is, on input of a
valid RSA-OAEP ciphertext C, the oracle A will output the decrypted plaintext. The algorithm
R then output an integer x ∈ [0, n− 1], and values γ and η. If xe ≡ y mod n, then R is successful.
If Π(G, g, γ) = 1, then R is successful. If Π(H, g, η) = 1, then R is successful.

The function Π represents a difficult-to-solve problem characterizing the property of the hash
functions G and H that must we prove or assume to be true in order for R to be used in a “security
proof”. For example, if we want to assume collision resistance in our security proof, then we
could take g = 1, and the γ = (M,M ′), with Π defined as Π(G, 1, (M,M ′)) = 1 if and only if
G(M) = G(M ′). If we want to assume preimage resistance, we can assume define g to a random
element of the range of G and define Π(G, g, γ) = 1 if and only if G(γ) = g. A security proof for
RSA-OAEP that uses a hash-specific reduction would need to assume or prove that Π is indeed a
hard problem.

Note that, just to be clear, here we are assuming that G and H are fixed, public, unkeyed
functions, which is essentially what they need to be implement RSA-OAEP. For properties such
as collision resistance, we can adopt the view Rogaway [Rog06] espouses. Because G and H are
assumed to be known, the problem defining their security is non-interactive. An oracle for the
functions G and H is unnecessary. Note also, the challenge problem Π to solve for the hash
functions does not depend on the RSA public key (n, e) corresponding to the RSA problem instance
and OW-CPA adversary.

Note that a hash-specific reduction may also be described as three reductions: one for each of
the three goals of the hash-specific reductions. More precisely, one would then state a result in
which the sum of success probabilities of the three reductions exceeds some minimum. Conversely,
it seems likely that any security proof stated in terms of such three reductions could be restated in
terms of a single coalesced reduction, such as the hash-specific reduction above.

Note that our formal definitions are reductions against OW-CPA adversaries, which will be the
type that we consider primarily. We may also consider secondarily, the generalization to similar
reductions against IND-CPA, OW-CCA2 and IND-CCA2 adversaries.

3.2 Metareductions

Theorem 4. Suppose that R is a hash-agnostic reduction for the OW-CPA security of RSA-OAEP.
Then we can find an algorithm M that uses R as an oracle. Algorithm M breaks the OW-CCA2
(and thus IND-CCA2) security of RSA-OAEP.

Proof. Algorithm M makes no “lunchtime” chosen ciphertext queries between receiving the chal-
lenge RSA public key (n, e) and the challenge ciphertext cb. The challenge ciphertext is an RSA-
OAEP encryption under public key (n, e) of a random message mb in the OW-CCA2 variant. In
the IND-CCA2 variant of M , we have the further restriction mb ∈ {m0,m1}, where m0 and m1 are
arbitrary distinct messages chosen by M . Figure 1 illustrates the IND-CCA2 variant of M .
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M R
K n,e−−−−→

b m0,m1←−−−− m0,m1

E cb−−−−→
r

y ≡ cbr
e mod n

n,e,y−−−−→

D c′i←−−−−
c′i←−−−−

m′
i−−−−→

m′
i−−−−→

x←−−−− x ≡ y1/e mod n
w ≡ x/r mod n

m′ = OAEP−1(w)

b′←−−−− b′ =

{
0 if m′ = m0

1 if m′ = m1

Figure 1: Converting a hash-agnostic OW-CPA reduction into an IND-CCA2 adversary

Algorithm M randomizes the challenge ciphertext to generate a random RSA problem instance
(n, e, y), where y = cbr

3 mod n, where r is random value chosen by M . This problem instance
is given to hash-agnostic reduction algorithm R. By definition, to solve this instance of the RSA
problem, a hash-agnostic reduction R expects to use an oracle A, which is a OW-CPA adversary
to the given RSA public key (n, e). Therefore, reduction may expect to query its oracle A with
some possible RSA-OAEP ciphertext c′i. Reduction R also expects the oracle A to decrypt these,
or reject them as invalid.

Although M does not have the private decryption key, it can decrypt the ciphertext queries c′i
as follows. Because M is playing the role of an OW-CCA2 or IND-CCA2 adversary, M is given an
oracle that decrypts any ciphertext except the challenge ciphertext cb.7 Accordingly, metareduction
M forwards the ciphertext query c′i from R over to its chosen-ciphertext oracle. (Note that the
nature of the ciphertext query has changed: first it was from a good guy R to a bad guy A, but
now it is from a bad guy, M , to a good guy, the decryption oracle D.)

The chosen ciphertext oracle will decrypt ciphertext query c′i to give either a plaintext message
m′

i or a rejection (indicating that c′i was invalid), provided that c′i 6= cb. Metareduction M may fail
if R somehow chooses c′i = cb. But it easy to see that M reveals no information about cb to R, so
the probability that R determines cb (not that it is even trying to), is negligible. This is because
y is blinded version of cb, and y has a uniform distribution over RSA challenge instances for the
given public key (n, e).

Therefore, except with negligible probability, the chosen ciphertext oracle of M provides a
decryption m′

i, which M forwards back to R. From the perspective of R, the metareduction now
appears to be a valid A oracle, that is, an OW-CPA adversary. If it is the case that reduction R

7Or, to allow for benign malleability of ciphertexts, any ciphertext that does not decrypt to the critical ciphertexts
m0 or m1.
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works by making many queries to its A oracle, then M iterate the procedure above (with variable
i being a counter).

Once R has gotten enough access to its alleged OW-CPA oracle A, which is being provided by
M by way its chosen ciphertext oracle, the reduction will solve its given RSA problem instance
(n, e, y), yielding a value x, such that xe ≡ y mod n. When metareduction receives x, it computes
w = x/r mod n. From

we = xer−e = yr−e = cbr
er−e = cb mod n, (4)

we see that w has the proper OAEP formatting, and when a plaintext message m′ is extracted
from w, we shall have w′ = mb. In the OW-CCA2 variant of M , we are done: M has successfully
completed an OW-CCA2 attack. In the IND-CCA2 variant of M , metareduction M chooses the
index b such that mb = m′ and successfully completes the IND-CCA2 attack.

Metareduction M does not rule out, per se, a hash-agnostic reduction for the OW-CPA security
of RSA-OAEP. It does, however, rule out a hash-agnostic reductions for the OW-CCA2 security
of RSA-OAEP. A OW-CCA2 reduction is also a OW-CPA reduction, since an OW-CPA adversary
is just a special case of an OW-CCA2 reduction. A proof of OW-CCA2 or IND-CCA2 security
for RSA-OAEP would apparently need to fall outside the scope of the reductions that we have
formulated.8

Note that Paillier and Villar [PV06] prove an equivalent result to ours about hash agnostic
reductions. Furthermore, they extend the result to cover reductions that are not key-preserving.
Their extension requires, however, a novel, but reasonable, assumption that the ability to solve the
RSA problem for one public key does not help to solve the RSA problem for another public key.
Theorem 5. Suppose that R is a hash-specific reduction for property Π. Then there is an algorithm
M2 that uses R as an oracle to solve the Π problem for G or H or can break the IND-CCA2 security
of RSA-OAEP, provided that the hash challenges g and h are independent of the public key.

Proof. Algorithm M2 is modification of the algorithm M from the proof of the previous theorem.
First of all, note that algorithm M2 has some challenges to solve that M does not: the g and h
challenges for the hash functions G and H. What M2 does with these hash challenges is to forward
them to algorithm R. As before, M2 randomizes the challenge ciphertext and forwards this to the
reduction algorithm R. Figure 2 illustrates M2.

Note that the public key (n, e) and hash challenges (g, h) given to M are independent. When
these challenges are forwarded to R they will remain independent, as required by the definition of
R. Now R has its independent challenges. By definition, R uses an OW-CPA oracle A, to solve
either its given RSA problem instance or its hash challenge instances. To answer these queries,
metareduction M2 forwards this to its chosen-ciphertext oracle, just as M did.

The responses of the chosen ciphertext oracle are taken by M2 and forwarded back to R, as was
done by M . As before, the decryptions will be valid, and the requirements for R will be complete.
Therefore R will succeed in either solving the RSA problem instance or in solving the one of the
hash challenges. That is, R will output: x with xe ≡ y mod n, or γ with Π(G, g, γ) = 1, or η with
Π(H,h, η) = 1.

Given x from R, then M2, as M did, takes x uses it win the OW-CCA2 or IND-CCA2 game.
Given γ from R, then M2 outputs γ as the solution to the challenge for G. Given η from R, then
M2 outputs η as the solution to the challenge for the hash function H.

8It could for example, rely on a stronger assumption than the hardness of the RSA problem, it could not be
key-preserving, or it could escape our result by some other means not contemplated by the author.
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M2 R
g,h−−−−→

K n,e−−−−→

E
m c−−−−→

r
y ≡ cre mod n

n,e,y,g,h−−−−−→

D c′i←−−−−
c′i←−−−−

m′
i−−−−→

m′
i−−−−→

x,γ,η←−−−− x ≡ y1/e mod n
w ≡ x/r mod n

m′,γ,η←−−−− m′ = OAEP−1(w)

Figure 2: Converting a hash-specific OW-CPA reduction into a OW-CCA2 adversary or hash
problem solver

Note that the metareduction M2 either breaks the OW-CCA2 security of RSA-OAEP or falsifies
the security assumptions made about the hash functions G and H in a security proof relying on
reduction R. Intuitively, this is slightly less bad than the effect of M , which was to imply a weakness
in RSA-OAEP if a OW-CPA security proof is found. Nevertheless, logically, it is equivalent, because
M2 finds a OW-CCA2 attack if the security proof has both a valid reduction and valid assumptions.

Note that the theorem above may be extended to cover reductions that are not key-preserving,
using the same technique as Paillier and Villar use in [PV06]. That is, if we assume that an oracle
for solving the RSA problem for one choice of RSA public modulus n′ does not help to solve the
RSA problem for a distinct RSA public modulus n. Here, we will assume that e is fixed throughout.
We will allow n′ to depend on n by any feasibly computible function. This extra assumption is
called non-malleability of the RSA problem.

We now summarize the essential idea from [PV06] about making such an extension. Suppose
reduction R, when given an RSA challenge (n, e, y), determines a different RSA public key (n′, e)
for which it can use a OW-CPA adversary with respect to that key (n′, e) to solve the RSA challenge
(n, e, y). We can use this algorithm R to solve to break the non-malleability of the RSA problem.
To answer the ciphertext queries for R, we invoke the available RSA problem solving oracle for
RSA public key (n′, e).
Theorem 6. Suppose that R is a hash-generic reduction for RSA-OAEP. There exists an algorithm
M3 that uses R as an oracle to solve the RSA problem.

Proof. The challenge input for M3 is an instance (n, e, y) of the RSA problem. Algorithm M3

forwards this R. By definition, reduction algorithm R expects access to oracles G, H, and A which
are, respectively, two random oracle hash functions and an OW-CPA adversary to RSA-OAEP
under public key (n, e) when instantiate G and H as the hash functions.
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Metareduction M3, illustrated in Figure 3, answers the oracles queries from R as follows. For a
new G query, M3 responds with a random output value of the correct length. For an old G query,
M3 responds with the previous output. In other words, the G oracle is an unmodified random
oracle. Similarly, for a new H query, M3 responds with a random output value of the correct
length. For an old H query, M3 responds with the previous output. In other words, the H oracle
is an unmodified random oracle, just as is G, but with a different length.

For a new A query c, M3 examines all past G and H queries. For each pair of queries, say r to
G and s to H, algorithm M3 computes

cr,s = (s‖(r ⊕H(s)))e mod n (5)

If cr,s = c, then M3 computes t = s ⊕ G(r), parses this as t = m‖z, where y has bit length k. If
z = 0k, then M3 answers the A query for R with the plaintext message m. If z 6= 0k, or if no
value of c matches the A-query input, then M3 responds to the A query of R with the answer that
the ciphertext query c is an invalid ciphertext. For an old A query, M3 responds with its previous
output.

M3 R
n,e,y−−−−→ n,e,y−−−−→

G,r←−−−−
g g−−−−→

H,s←−−−−
h h−−−−→

c
?= (s‖r ⊕ h)e mod n A,c←−−−−

s⊕ g
?= m‖0k m−−−−→

x←−−−− x←−−−− x ≡ y1/e mod n

Figure 3: Converting a hash-generic OW-CPA reduction into an RSA problem solver

We next prove that the oracle responses M3 provides are indistinguishable from true random
oracles for G and H and a true adversary A. As already noted, M3 actually implements G and H
as true random oracles, so they are indistinguishable from random oracles.

In the A oracle queries for which M3 finds match cr,s = c, the metareduction M3 responds with
a decryption m which is verifiably valid with respect to everything that R knows about G and H
up to the point of making the A query.

Consider an A query for which no match is found. Recall that M3 responds that this is an
invalid ciphertext. There is a possibility, however, that afterwards, R will have at some point made
queries r, s to G and H such that c = cr,s, in the notation above. In this case, c will have become
a valid ciphertext, and the earlier response that M3 provided will be false. In this event, reduction
R is no longer guaranteed to succeed in its goal because its oracles did not operate correctly.

We therefore examine the probability of a later match occurring with c. Note that the value of
s in the match is determined by uniquely by c, as follows. Let d = c1/e mod n, which of course M3
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cannot compute, although it does exist uniquely. Parsing this as d = s‖u, where s of the correct
bit length, we see s is determined by c. Of course, u is also determined by c, and r = u ⊕H(s).
Therefore, H(s) is also determined uniquely by c. Furthermore t = s ⊕ G(r) parses as t = m‖0k

for some message k.
Suppose that the first H query with input s was made after the A query of ciphertext c. Now

c determines both s and H(s), but since the query s appears for the first time, metareduction M3

will choose H(s) purely at random, and there is negligible probability that it will be the value
determined by c. This event therefore has negligible probability. Essentially, reduction R had to
have queried s to G before querying c to A.

Consider now the first G query with input r, supposing that this has occurred after the A query
with input c. Note that r is determined uniquely by c and H(s). But when M3 outputs the value of
G(r), it will do so purely at random, because it chooses the G outputs of new queries completely at
random. In this case, we will have that t = s⊕G(r) is a uniformly random bit string. In particular,
it will have negligible probability (precisely 2−k) of parsing correctly as m‖0k.

Therefore, except with negligible probability, M3 will answer the queries made by R in a con-
sistent manner indistinguishable from the oracles required by the definition of R. Therefore R will
succeed in solving the RSA problem instance (n, e, y) given to it by M3. When R reports the answer
x to the RSA problem, then M3 reports x as the answer to the RSA problem it was given.

3.3 Interpretation

It does seem rather ironic, if not paradoxical, that a certain type of formal proof of a lower grade of
security, such as OW-CPA security, implies failure of a higher grade of security, namely OW-CCA2
security. This suggests that, for RSA-OAEP, it is too ambitious either to prove even the most
basic security (with a certain class of proof) or to satisfy the higher grade of security. Proofs in the
random oracle of the IND-CCA2 security of RSA-OAEP are highly suggestive that RSA-OAEP
does indeed have IND-CCA2 security. This in turn, is highly suggestive that RSA-OAEP does
not have a security proof, in the standard model, of the most basic kind of security: OW-CPA.
Therefore, proofs of advanced security in the random oracle are providing evidence of no proofs of
any security at all, in the standard model.

On the other hand, the following less ironic alternative viewpoint can be formulated. The
random oracle model is too idealized, and as such, proofs therein should be given little to no
weight as evidence of anything. Secondly, the formal definition of IND-CCA2 is quite contrived,
and overly strong for any realistic application. What real world decryptors would want to check
every ciphertext before before decrypting it, to see if it matches a ciphertext that some other entity
encrypted?

A better reason for providing an adversary a chosen ciphertext oracle is actually to model
the event that an adversary obtains temporary unauthorized access to the decryptor’s decryption
device. For example, the device could a tamper resistant module inside of a personal computer.
The adversary has injected malware into the personal computer, with the malware being able to
access the decryption device module, but not being able to actually extract the private key. The
adversary can choose arbitrary ciphertexts, send them to the malware, and then the malware can
send back the adversary the decrypted plaintexts. Later, however, the legitimate user, after running
a sweep of the laptop, discovers and removes the malware. Of course, any damage already done,
such as the adversary learning the content of messages encrypted while the malware was installed,
cannot be undone, upon removal of the malware, it should be the case that new ciphertexts are
safe from the adversary. The formal definition of IND-CCA1 models this realistic situation well.
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In summary, the alternative viewpoint is that IND-CCA1 security should be the true benchmark
of public key encryption.

Perhaps not coincidentally, the difficulties in proving the security of RSA-OAEP over the years
have only been in the IND-CCA2 setting. The original proof of IND-CCA1 security in the random
oracle is recognized as rigorous. Again, perhaps not coincidentally, the impossibility results given
here and elsewhere [PV06], apply only to the CCA2 attacks, so say nothing about CCA1. Taking
this viewpoint on the greater relevance of CCA1 over CCA2, combined with the lesser relevance of
idealized random oracle hash model, then one is led to take the natural objective that RSA-OAEP
should be proven IND-CCA1 secure in the standard model, and that one should ignore the question
of whether it is actually IND-CCA2 secure.

Recall from §2 pathological hashes for which RSA-OAEP is insecure. Given this result, and
the informal interpretation of hash-agnostic or hash-generic reduction as security proofs requiring
no security properties form the hash function, one could easily view the metareductions M and
M3 as redundant, and perhaps relatively obvious and unimportant. Nevertheless, there are some
technical distinctions, however. For example, both M and M3 have a wider scope than the result
about pathological hash functions, since they apply to presumably strong hash functions, such as
SHA-256, not just pathological ones.

3.4 A New Terminology: “Unprovable” Security

The discipline provable security entails proving, under certain assumed conjectures, that a crypto-
graphic system is secure against precisely defined classes of adversaries. A specific cryptographic
system is often said to have provable security or to have a security proof if a result in provable
security applies to it. Arguably, security proof sounds too conclusive, whereas provable security
more easily admits a softer, and more accurate interpretation, namely that some aspect of security
of security has been proven. A deficiency with the term provable security is the suffix -able in com-
bination with the negative: if some scheme does not yet have any provable security results, then
the statement that it does not have provable security sounds too strongly as though one will never
able be to prove anything about its security. Except for this small deficiency, the term provable
security is fairly useful and understandable.

Just as the reductions used in provable security rule out certain classes of adversaries, metare-
ductions rule out certain classes of reductions. Perhaps, the aptest term for both the discipline of
such metareductions, and the ensuing property of cryptographic systems affected by such metare-
ductions, is unprovable security.9 As with the term provable security, overly strong interpretations
of unprovable security are certainly possible, so the term is definitely not perfect by any means.
Nevertheless, softer, more accurate interpretations, are also easily admitted: namely, that certain
types of security proofs are impossible. This interpretation is analogous the interpretation of prov-
able security, that certain types of adversaries are impossible. One can then make statements that
RSA-OAEP enjoys aspects of both provable security and unprovable security. The latter may be
a cause for concern, so it would not be unreasonable to seek an alternative that avoids or lessens
unprovable security, assuming that one were willing to sacrifice the commitment and effort already
put into RSA-OAEP.

9The term undecidable has been used in formal logic, but as the author is no logician, this term has been forgone
here.
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4 Analysis of RSA-KEM

An alternative to RSA-OAEP is RSA-KEM [KR07, Sho04, Ame07, BR93]. In essence, RSA-KEM
applies the raw RSA public key operation to a random integer. The random integer is hashed with
the hash used as a symmetric key to encrypt the message. The primary advantage of RSA-KEM
over RSA-OAEP is tighter and simpler proof of IND-CCA2 security. A disadvantage is greater
message expansion. Metareductions M , M2 and M3 are easily adapted to RSA-KEM. We note
also that the RSA-KEM becomes succumbs to an unfixable OW-CPA attack if the hash function
with which it is instantiated is a constant function. Indeed, from this, it appears that RSA-KEM
requires a greater amount of security from its hash function than RSA-OAEP does. From these
two viewpoints, RSA-KEM does not offer a decisive advantage over RSA-OAEP.

5 Further Work

Further work should be done to understand what security properties of the hash functions instanti-
ating RSA-OAEP. Under our analysis, a tremendous gulf exists between the known necessary and
sufficient conditions. Narrowing this gap would be desirable. Unfortunately, the metareductions
suggest that finding a security proof based on the RSA problem would be difficult. One could try
to devise a security proof that does not use a reduction belonging to the three types analyzed here.
This would thus entail a creative exercise. A possibly easier strategy would be to abandon the RSA
assumption, and instead use a stronger assumption. Taking a cue from the original design rationale
of OAEP, we can idealize the trapdoor function, that is, model it by a random oracle, instead of
the hash function. Or, if ones wishes to focus on RSA-OAEP, instead of OAEP in general, one can
model the RSA component by a generic ring [LR06].

6 Conclusion

More work could be done to determine the security properties of hash function necessary and suffi-
cient to securely instantiate RSA-OAEP. We have shown here that at least very minimal property
is necessary: that the masking hash function is fully zero with only negligible probability. That
said, we have conjectured that the design of RSA-OAEP is fairly robust, in the sense that no other
security properties of the hash function are needed in order for RSA-OAEP to be secure. On the
downside, we have provided evidence here that no reasonable property is sufficient, in conjunction
with the standard hardness of RSA problem assumption, in the sense that of certain natural types
of reductions cannot exist, or would imply that RSA-OAEP is OW-CCA2 insecure.
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