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ABSTRACT

A new model is derived for thc propagation of surface waves across a shearing current, which is applicable
when the wavelength is comparable to the lateral length scale over which the current changes. When applied to
wave propagation across a jet-type current, this model predicts a pronounced minimum in the reflection coeffi-
cient when the water depth is comparable with the wavelength.

1. Introduction

For some time, the present author has been interested
in the problem of the propagation of water waves across
a horizontally sheared current. Even the full linear
problem is intractable, so various simplifications have
been introduced over the years. At one extreme, current
changes have been modeled as one or more vortex
sheets (see Evans 1975; McKee and Tesoriero 1987;
Smith 1983). At the other extreme, the currents have
been assumed to be slowly varying on the scale of a
wavelength, which leads to WKB-type solutions or ex-
tensions thereof (see McKee 1987; Mei 1983). A good
early review of the whole subject is given in Peregrine
(1976). The present work introduces a third approach
to the problem that can be thought of as extending the
second approach to cases in which the current is not
necessarily slowly varying.

2. The basic equations

As in McKee (1987), we consider wave motion in
an inviscid fluid of constant density p. The x and z axes
arc taken horizontal with the y axis vertically down.
The undisturbed free surface is at y = 0, and the bottom
at y = H. In order to concentrate on the effects of the
current, it will be assumed that H is constant. The basic
current is a shear flow (0, 0, W(x)). Wavy perturba-
tions to this basic state are now considered in which all
perturbation quantities are proportional to expi(nz
- wt) where w > 0. If W varies with x on a length
scale L, we scale x and z with L, y, and H with g/w?,
W with g/w, n with w?/g and the perturbation pressure
due to the waves with pga where a is a typical free-
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surface amplitude due to the waves. This scaling uses
velocity, wavenumber, and depth scales appropriate to
waves in deeper water. As shown in McKee (1987),
the dimensionless pressure perturbation p, for linear
theory, satisfies the equation

(p/Q?), + 2(p,/N?), — n%*p/Q* =0, (1)
subject to the boundary conditions
p,+0%p=0 at y=0 2)
and
py=0 at y=H, 3)

where all variables are now dimensionless; subscripts
indicate partial differentiation,

Ux)=1-nW(x), and €= w?L/g.

The parameter € essentially measures how rapidly
the current changes on the scale of the waves—smaller
values of ¢ signify a more rapidly changing current. As
discussed in McKee (1987), values of ¢ of order 100
or more are to be expected in most oceanographical
situations because of the large lateral length scales over
which most ocean currents vary. Nearer shore, smaller
values of ¢ might occur since river outflows or tidal
currents between islands, for example, can vary over
much smaller lateral length scales.

Let k(x) be the unique positive root of

Q%(x) = k(x) tanh(k(x)H) 4)
and define ®(y; x) by
B(y: x) = cosh(k(x)(y — H)) (5)

cosh(k(x)H)

These definitions imply that ®(y; x) is a local eigen-
function for surface wave propagation, which satisfies

B, = kD (6)
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FiG. 1. The magnitude of the reflection coefficient as a function of
the dimensionless current strength for a jet current for three different
depths. The results for the mild-shear equation are shown by a dashed
line, and for the extended method by a solid line. The angle of in-
cidence is 9 = 30°.

subject to
®,+QP=0 at y=0 (7
and

=0 a y=H. (8)

3. The approximate equation

To derive the approximate equation, we multiply (1)
by ®Q? and integrate from y = 0 to y = H. After in-
tegration by parts and use of the boundary conditions
and the definition of ®, we find

H H
sz (p./Q*),Pdy + €*(k* — nz)f pody = 0.
0 0

€))

Thus far, no extra approximations have been made. If
we now assume that the evanescent modes make no
contribution and, hence, that

p = n(x)®(y; x), (10)

we find that 7, which can be interpreted as the dimen-
sionless free-surface elevation, satisfies

d (dn J'"
Q2_ — 0 2 q)z
dx (dx 0 dy)
H
+ e2(k* - nz)nf ®2dy = Q*R(x)n, (11)
(1]
where

H
R(x) = —J; O(P,/0%(x)),dy. (12)
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It was further argued in McKee (1987) that ¢ varies
on the scale of the current but 5 varies on the scale of
the waves. Hence, for large € the x derivatives of n are
formally O(e), whereas R(x) is formally O(1). Ne-
glecting R(x) entirely thus gives the following analog
of the mild-slope equation, called the mild-shear equa-
tion, which was derived in McKee (1987):

d

o (lI'(x) %) + €2(k*(x) — n)T(x)n =0. (13)

In this equation,
H
¥(x) = Q‘Z(x)f P2(y; x)dy.
o

However, for any value of ¢, we may evaluate R(x)
explicitly since €2 is independent of y. Our proposal is
therefore to modify the mild-shear equation (13) to in-
clude the R(x)n term on the right and thus remove the
restriction that € is large. This is analogous to the strat-
egy adopted by Massel (1993) for the somewhat sim-
ilar problem of propagation over varying bottom to-
pography. For arbitrary depth, the expression for R(x)
is quite lengthy and is relegated to the appendix. When
H = | things are much simpler, and we find that k
=02, ® = exp(—ky), and

R(x) = — %(3n2(W’)2 + nOWNHN(x), (14)

where the prime denotes differentiation with re-

spect to x.
In the situation where W varies from one constant
value at x = —o to another constant value at x = +o,

it was shown in McKee (1987) for (13) that wave ac-
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FiG. 2. The magnitude of the reflection coefficient as a function of
the dimensionless depth for a jet current. The results for the mild-
shear equation are shown by a dashed line, and for the extended
method by a solid line for two different values of e. The angle of
incidence is ¥ = 45°.
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tion flux is conserved, provided there are no critical
layers. This conservation law depends only on the
Wronskian of two solutions of (13) —that is, upon ¥
and so is independent of the right-hand side of (13).
Thus, it will hold also when the right-hand side is re-
placed by R(x)n.

4. Some numerical results

This section will present some results of numerical
solutions of both the mild-shear equation (13) and
the extension proposed above, in which ®R(x)n is
added to the right-hand side. Figure 1 shows the mag-
nitude of the reflection coefficient as a function of
the dimensionless current strength 8 for a dimen-
sionless jet current W(x) = B exp(—x?) for three
different depths when the angle of incidence is 30°
and € = 5. Only positive values of § need be consid-
ered. These correspond to waves entering a following
current. For waves entering an adverse current (neg-
ative 3) the reflection is very weak. The cesults for
the mild-shear equation are shown by a dashed line
and those for its modification by a solid line. For H
= (-1, the two are virtually indistinguishable. In fact,
both forms reduce to standard linear shallow water
theory as H — 0. For larger values of ¢, the two meth-
ods agree more closely. The most noteworthy feature
of these results is that the reflection coefficient is not
a monotone function of the depth H. This point is
further brought out in Fig. 2, which shows the re-
flection coefficient as a function of the dimensionless
depth for a jet current of the same form when the
angle of incidence is 45° and the dimensionless cur-
rent strength is § = 0-2. As expected, the smaller ¢
is, the greater the difference between the two solu-
tions, but both predict a minimum in the reflection
coefficient around H = 1. That R>1as H—>0is a
consequence of the scaling used. As the depth tends
to zero, the phase speed of the waves also tends to
zero, so any finite following current will be effec-
tively infinitely fast as far as the waves are con-
cerned, leading to total reflection.

5. Discussion

The mild-shear equation of McKee (1987) has
been extended to apply to situations in which the
waves are not necessarily short compared with the
length scale over which the current changes. As
shown by (14), this new method incorporates ex-
plicit information about the first and second deriva-
tives of the current, in contrast to the mild-shear
equation. Probably the most noteworthy feature of
the results is the pronounced minimum in the reflec-
tion coefficient as a function of the depth.
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APPENDIX
Finite Depth Case

In this appendix, we present the form of R(x) in
water of finite depth:

GR(X) = "‘Cl(I] - IzH tanth) - Czk’(lg - Hzlz),

where the prime denotes differentiation with respect to
x. In these expressions,

_ 2kH cosh2kH — sinh2kH
8k?
_ 2kH + sinh2kH
4k
I = {3[1 + 2(kH)?] sinh2kH
+ 2kH([2(kH)*— 3 cosh2kH]}/24k*

1

I

and

C, =2B %02 (—nBQW" — n’B(W')2 + nQW'B")
C,=—-2nQ"'WB™!,

where
B=kH + % sinh2kH

and so
B' = 2Hk' cosh?H,

where

_ —-2nQW’
" tanhkH + kH sech?kH '

k'
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