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The Number of Cycles in a Connected Graph

Shi Yongbing

Abstract The numbers of vertices, edges and cycles of a graph G are denoted by
IV(G)|, |E(G)]| and f(G), respectively. Let F(k; = {f(G); & 1s a connected
graph without loops such that |E(G) | = 1V {5 | == k), #(k) = minF (k) and N (k)
= maxF (k). In this paper. the {ol.owing results zr¢ proved:

(D) nk) = r4-1;

(2) Ny 2" — 1,

(3) For every integer 221, N(%) = 2" 4+ k(k — 1) -+ 1 and the equality holds
when 1 < 2 4

(4) For every integer £ > 1,

N >2 427 + a-neT+E - 1) g

if Bis odd and N(&) = 2 + k(2% + % ~ Ty + Vit kis even.

Key words connected graph; cycle; number of cycles
1 Introduction

The numbers of vertices, edges and cycles of a graph G are denoted by |V(G) |, [E(G) |
and f(G) , respectively. Let F' (¢) = {f(G); Gis a Hamilton graph without loops such that

[EG)| — |V(G)| = &}y m(k) = minF’ (k) and M (k) = maxF' (k).

In 1983, Yap and Teo raised the following questions'®;

k+D*k+2),
5 ?

(2) Is it true that M (k) = 2 + k2

We have answered the first question in the affirmative and the second question in the

(1) Is it true that m(k) =

negative. Some results on upper and lower bounds of M (%) have been obtained in [3].

In this paper we extend the questions of Yap and Teo to connected graphs without loops.
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Let F (k) = {f(G); Gis a connected graph without loops such that |E(G)| — |[V(G)| = &},
n(k) = minF(k) and N (k) = maxF (k). The main results are stated in the abstract above.
In this paper, we consider finite undirected connected graphs without loops. All notations

and definitions not given here can be found in [1].

2 Determining n(%)

Let G be any connected graph without loops such that |E(G)| — [V(G)| = kand T be a
spanning tree of G. Let A= E(G) — E(T"). Then |A| =k--1. For S 4. S5 &, let
be the set of cycles containing all edges in S and containing rio edges in A — 8. The number of
cycles in Cy' is denoted by g’ (S). Cleary g’ (%3 = (i{S<. Aand |$|=1. Thus

fG) = D" $H= g =k+1,

S SCA, |Si=1

.y

and hence
n(k) =k + 1. M
LetAG" be a connected graph without loops such that it has £ + 1 blocks each of which is
a 2-cycles. Clearly G* is such that |E(G*)| — |[V(G")| = kand G" has exactly 2 + 1 cycles.
By definition of n(%k), we obtain that
n(k) <k + 1. 2)
Combining (1) and (2), we obtain immediately the following
Theorem 2.1 n(k) =k -+ 1.

3 On upper bounds of N (%)

We first prove the following important lemma.

Lemma 3.1 Forany ST A, g'(S) < 1.

Proof Consider the edge-induced subgraph G[S] of G induced by S. If there exists a
vertex v in G[S] such that d¢rs)(v) = 3, then clearly g’ (S) = 0; If G[.S] contains one cycle of
length less than |S]| , then g’ (S) = 0; H G[S]is a cycle, then g’ (§) = 1. Therefore we may
assume that G[S] contains no cycle and dgs57(v) << 2 for all v € V(G[S]). Thus each
component of G[S]is a path of length at least 1. Let w be the number of components of G[s]
and v, ,U;  *** , U, be the end-vertices of these components (i. e. paths). Suppose that |Cs' | =
2. Let C, and C, be two cycles in Cs'. Fori = 1,2, let G; = C; — S and G;" denote the graph
obtained from G, by deleting all isolated vertices. Clearly for i = 1,2, G has exactly w
components each of which is a path of length at least 1. It is easily seen that the set of end -
vertices of these paths is Q@ = {v,,v;,"**,7,.},» and we have the following fact: If P’ is a
component (i. e. path) of Gi and the end-vertices of P are v; and v,, , then clearly there is
exactly one component(i. e. path) in G; such that its end-vertices are also v, and v;,.

Let G* denote the set of common components of Gy and G; , and let H, =G —G", i =
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1,2. Clearly each component of H;(i = 1,2) is a path and the number of components of H, is
equal to that of H,. Also the set of end-vertices of components of H, is equal to that of H, and
is denoted by Q. It is easily seen that @ S Q. Let Q@ = {v'|,v';,-,v',}, H' = H, J H,.
Clearly for eachi € {1,2,+-,7}, H' has exactly two paths P;; and P, such that P, € H,, P,
€ H,and P, | Py = {v/.}. Let ¢/, be the origin of P,; and P,;, and let «, be the last vertex
common to P,; and P,. (we do not exclude the possibility that &, = v; ). Since H' T, the
(v';,u;)-section of Py; and the (v';,u;)-section of P, must be the same path. Let P, denote the
(v';,u;)-path. Since any two paths in G are vertex-disjoint, P, and any path in X' — {P,,,

P,.} are also vertex-disjoint.

Let H* = H' —_LrJE(P,-) and H denote the graph cbraired from /H* by deleting all

i=1
isolated vertices. Thus dy(v) = 2for allv € ¥V (#1), and hence ¥ contain a cycle. Since H &
T, T contains a cycle, a contradicticn. Theretore C" | << 1,46, g'(S) < 1.
We now prove the following
Theorem 3.2 N(k) < 2! — 1,
Proof Let G be any connected graph without loops such that |E(G) | — |V () | = kand
T be a spanning tree of G, then |A| = 2 4 1. Using Lemma 3.1, we have

k+1
(&) = Zg'(S) = Es;,«. m:,g’(s) <
=y i=1
k41 E+1 k41
e e 1
1 2 k41

and hence N (k) < 24+ — 1.

4 On lower bounds of N (k)

To obtain lower bounds of N (%) ; we first form three Hamilton graphs without loops such
that |E(G)| — |V(G)| = kand then count the number of cycles in each of them.

Each of the three graphs is formed from a Hamilton cycle C by adding % edges joining £
pairs of distinet vertices of C. We assume that the % edges of G are drawn in the interior of C
and we call these edges the bridges of G.

Let B= E(G) — E(C). Then Bis the set of bridges of G. For S © B, let C; be the set of
cycles containing all bridges in S and containing no bridges in B — S. The number of cycles in
Cs is denoted by g(S). We define Ci = {C}, and hence g(&) = 1.

Two bridges b, and b, are said to be skew if there are four distinct vertices «,v,«' and ©'
such that « and v are end-vertives of b,, ' and v' are end-vertices of &', and the four vertices

appear in the cyclic order u,4' ,v,v' on C.

Two bridges are said to be parallel if they are not skew.

Two skew bredges &; and b, of S are said to be a pair of companionate skew bridges

(CSBs) of Sif there are four distinct vertices u,v,u’ and v’ such that b, = uv, 6, = u’'v' and the
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four vertices appear in the cyclic order %,«’ ,v,7' on C, and there is no bridgebin S — {b,,5,}
such that one of its end— vertices lies on C[u,«' ] U Clv,v' Jor Clu' o] U C[v' ,u].

Two parallel bridges &, and b, of S are said to be a pair of companionate parallel bridges
(CPBs) of S if there are four distinct vertices u,u’ ,v' ,v such that b, = wv, b, = «'v' and the
four vertices appear in the cyclic order #,%’ ,v' ,v on C, and there is no bridge 4in S — {,,5,}
such that one of its end-vertices lies on CLu,%’] J C[v',v].

We now form three Hamilton graphs denoted by H,, H, and H; (See Fig 1),
respectively. The Hamilton cycle of H; is denoted by C(H,) and the set of bridges of H, is
dencted by B(H,) tori = 1,2,3. The three graphs are such that

C(H) = aja,*+aya, ,
B(H)) = {aa,. i = 1.2, .~};
C(H,) = abat, a,.0.a, .
B(H,) = {Ghmiisbia,cili = 1.2, .m}, where kb = 2m;
CH ;) = abiab,00,,0,ua,,4 10,2 Arbyavay

B(H,) = {a;b".+i’bia.,.+.'|f = 1’29"',7”} U {uv}, where & = 2m + 1.

an b v
bom . bom I
az
azm Q2m
b az
/ / \ b,
| | )
\ \ ! bm+2
\ an
bmt2 dmt2
arts Am+12 b
ar+2 bnt+1 Ami1 Qw41 I

Qi1

Fig 1 Three Hamilton graphs H,, H; and H;

To count the number f(H,) of cycles in H, for7 = 1,2,3, we first prove the following
four lemmas. In the coming discussion, let B € {B(H,),B(H,),.B(H;)} and let C[v;,v;]
denote the (v;,v;) -path which follows the clockwise orientation of C.

Lemma 4.1 If S < Band [S]|is odd, then g(S) = 2.

Proof Let [S| = tand |S| contains exactly r pairs of CPBs. By induction on r and ¢, for
r = 0and¢ =1, the Lemma clearly holds. Letr = 0and > 3, then the ¢ bridges in S have 2¢
end vertices which appear in the clockwise order v,,7,,+** .0, = v, on C (See Fig 2).

Let P; = Clv,,v,0, )]s i = 0,1,++,2t — 1. HCs 7% & and C' € Cs, then C' must contain
exactly one of two consecutive paths I, and P, fori = 0,1,+-+,2t — 1. (For otherwise either

C' does not contain bridges which are incident with v.;; or €' contains the vertes v;.; which is

s
incident with at least three edges of C', a contradiction). It follows that either UP,, , C ' or
g =1

t—1 t =1
.UOPZ" CC. LetG, =5 U (_Ule,-_,) and G, = S |J (U P;) be two subgraphs of G, then clearly
- i= i=0
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(' can only be either G, (if G, is a cycle) or G, (if G, is 2 cycle), and hence g(8) = |Cy| < 2

If 1 = 3, then clearly both G and (5, are cycles, and hence Cs = {G,,G,}, i.e., g(S) = 2.
Assume that the lemima holds for» = 0andt = j, i.e., g(S) = 2. Consider » = Qandt = j
+ 2. Letb, =v,v,4,, by = vu,5,and S* =S—{b,,b,}. By the induction hypothesis, g(S*) =
2,1.e., Csr = {G;,G, }, where

=1

z
Gl' =38 U (UPZi—l) U C['U,,”U,+3:| U ( U PZihl)

r~l

and : =87 U C['Uznva:l U (UPZA) U ( U Pz:

Clearly Clv,,v.] C Cloysv, ] C Gy ClV,y, ,v,H] C Clv,sv4:] C Gy

Replacing by the path Clvy,v,] U viviey U Clvis 2] U vis v, U Clvg v, ] the path Clvs,
v;] on G; results in a cycle G, containing all bridges in S and containing no bridges in B — S.
Similary, replacing by the path Clv,,v.y, ] U vgyv, U Cloysv,] U vyvig, U Clu,sviey ) the
path C[v,,v,43] on G} results in a cycle G, containing all bridges in S and containing no bridges
in B — S. Hence g(S) = 2. Therefore the lemma holds for » = 0 and ¢t => 1.

Assume that the lemma holds for 7 = j. Considerr = j + 1. Let b, = v,v,;,and b, = v,v,,,
be a pair of CPBs (See Fig 3). Let S* =S—{b,,b,}. By the induction hypothesis, g(S*) =
2,i.e.,Cso = {G;,G; }; where G’ (i = 1,2) is similarly formed as above and

Clwv, ,vzj C Clvy,vs 1 CGF s ClvimrsUias ] S Clvsvies ] T Gr.
Replacing by the path C[vy,v,] U 1,04, U Cloig vz U vieiw; U Clv,,v; ] the path Clo,,
v;] on G; results in a cycle G, containing all bridges in S and containing no bridges in B — S.
Similarly, replacing by the path C[v,,7v,,,] U vy v. U Clvy,v,] U vivyy U Clvgssvias] the
path C[v,,v,43] on G results in a cycle G, containing all bridges in S and containing no bridges
in B — S, Therefore g(S) = 2. The lemma follows by the principle of induction. O
Lemma 4.2 LetSE Band |S| =¢2>4. If tis even and S contains exactly é- — 1 pairs

of CPBs, then g(S) = 1if S contains a pair of CSBs and g(S) = 0 otherwise.
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Proof We first suppose that S contains a pair of CSBs and prove g(S) = 1 by induction
ont. Ift =4, then let 4, and w,w, be the pair of CSBs of S and let v,v, and v,v; be the pair of
CPBs (See Fig 4). Clearly

G, = Clw,»v, U vyv, U Clvg,u, ] U wu, U Clv,su, ] U vyvs U Clw, v, ] U w,w,
is a cycle and

G, =S U Clu»w ] U Clv,v,] U Cluy,w,] U Clvs»v, ]
is not a cycle. Thus g(S) = 1and Cs = {G,}. Assume that the lemma holds for? = j (j > 4
is even). Considert = j + 2. Let b = v,v;and ¥’ = v,,_,v;_, be the pair of CSBs of S and let
b, = uyw, and b; = u,w,, b; = v,v;,, and b, = v,v,,, be two pairs of CPBs. The end-vertices
of these bridges appear in the clockwise order vy~ 1, v, 5 0 U1y Tpyoe a0,y vy Wy, Wy,

'UI+1 s Ujrns™® on C (See Flg 5).

uz
w1

V2, = v
V2~ \
\
l/ \
1
\ |
\ !
\ Ui~y
41 v;
vj+2 w W
Fig 4 S contains a pair of CSBs and t = 4 Fig 5 S contains a pair of CSBs and ¢t > 4

Let P, = C[v;»vi41])s ¢ = Cy1,++,25 — 1. Clearly Clu, ,u,] C Py, Clw,,w, ] C P;. Let

S* =S— {bi.by}. By the induction hypothesis, g(S*)=1. Let G; =S* U (:Q:P,.-). Then
clearly G is a cycle and hence Cs+ = {G; }. Replacing by

Cluzsv, ] U wyw, U C['Ujv'wz] U v, U Clwost,J U wywy U C['wn"/jﬂj
the path Clv,,v,] U vev; U Clv;,v,4,0n Gy results in a cycle. G, containing all bridges in S and
containing no bridge in B — S. Clearly Cs = {G,} and hence g(S) = 1.

We now suppose that S does not contain a pair of CSBs. Form G, and G; by the similar
method of Lemma 4. 1 and by induction on £. It is easily seen that neither G, nor G, is a cycle,
and hence g(S) = 0. 0

Lemma 4.3 LetS < B, |S| = tand let S contain exactly r pairs of CPBs, then

2,ifr=0andt=2;
gS) =<l ifr=1,t=20rr=2,t=4;
0,iff r=0and ¢t = 4.

Proof This follows from a simple observation. O

Lemma 4.4 LetSC B, |[S| =t>6. Iftis even and S contains exactly » 7 % — 1 pairs
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of CPBs, then g(S) = 0.
Proof Form G, and G, by the similar method of Lemma 4. 1 and by induction on ¢. It is

easily proved that neither G, nor G, is a cycle, and hence g(S) = 0. O
We now count the number f(H,) of cycles in H, fori = 1,2,3.
Proposition 4.5 f(H,) = 2* + k(k — 1) + 1.
Proof By Lemmas 4.1~4.2, foranySC B, g(8) =0if |S| = 4is even and g(S) =

2 otherwise. Tt follows that

fHY =g = > g&+ 2 g +g(@)=

S8 SSB, |S| is odd S B, |S|=2
k k k |k
2y eyt ey ‘+4)f1:
1 3 : 1J 2
2+ k(k—1) - 1. 0
Proposition 4.€  f(H,) = # + k(zf + & = D+

k) k) k
Proof By Lerama 4.1, 2 g@8) = 2( 1) + 2( 2) + -+ 2( ) = 2% To

SCB. [S] is odd k—1

count 2 2(S), we consider two cases.
SCE. 151=2

Case 1 S consists of a pair of CSBs. In this case the two bridges in such S may be
obtained as follows: we first take any two pairs from m pairs of CPBs and then take any one

bridge from each of the two chosen pairs of CPBs. Clearly there are exactly 4( ’Z) such S's.

Case 2 S consists of a pair of CPBs. Clearly there are exactly m such S’s. By Lemma

4.3, we obtain

(m m — 1]
g(S)=2X4(2)+m:4m( ) )+m.

SCB. |St=2

To count 2 g(S), by Lemmas 4. 2 and 4. 3, we consider only the following two
SCE, 1Si=4

cases.

Case 1 S consists of one pair of CPBs and one pair of CSBs. In this case, such S may be
obtained as follows: We first take any three pairs from m pairs of CPBs and take any two pairs
from the three chosen pairs of CPBs, from each of which we take any one bridge. Thus S

consists of the two chosen bridges and the remaining pair of CPBs that we have chosen. Since
m 3 m—1
( ) X ( ) X 4=4m
3 2

m
Case 2 S consists of two pairs of CPBs. Clearly there are exactly ( )

such S's.

, there are exactly 4m

such §'s

Using Lemmas 4, 2 and 4. 3, we have
m— 1 mj

gw)=@4 )+().
SCB, ISl=4 2 2

To count 2 g(S)fori=3,4,*y,m — 1, by Lemmas 4. 3 and 4. 4, we only need to

SCB. |S|=2:
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count the number of subsets of Beach of which consists of exactly one pair of CSBs and ( — 1)
pairs of CPBs. Such subset S is obtained as follows: we first take any 7 4 1 pairs from m pairs
of CPBs and then take any two consecutive pairs from the 7 4 1 chosen pairs of CPBs, from

each of which we take any one bridge. Thus S consists of two chosen bridges and the (+ — 1)

) . . [ m i+ 1) m— 1
remaining pairs of CPBs that we have chosen. Since L 1 X ( . ) X 4 = 4m( ) ) ,
? i
there are exactly 4m( _ such S's. Thus
1
m—1 [m — 1 m—1 (m‘
> g(S):4m( )+( |+ + )+m+. I+ 1=
SCB, [S| is even 1 2 m-—1 L2
dm (2" — 1) +m + %m(?n — 1,4+ 1=
e R e - R D
Therefore J(H,) = 28 + k(27 + 5 — l) + 1.
Proposmon47 f(H)—2k+2 Lok — DT +——1~—)~%

Proof Letd = yv. A simlilar discussion to that for proposition 4. 6 ylelds that
D g(S) = 2,

SCB, |5]isodd

g<S>=m(zm+*+%~%)+1=(k—l)(ﬁ“‘+’%—%)+1.

SC B, |S]| is even

By Lemma 4. 3, it is easily seen that
m
g(8) =4 X ( J
SCB, 4€5,1S|=2i 1

To count E g(8S) fori = 2,3, ,mby Lemmas 4.2, 4.3 and 4. 4, we only need to
SCB, bES, |S|=2i
count the number of subsets of B each of which consists of one pair of CSBs containing the

bridge & and ( — 1) pairs of CPBs. Such subset is denoted by S. We now take any ¢ pairs from
m pairs of CPBs. We may assume that the end-vertices of the chosen 2i bridges and b = uv
appear in the clockwise order v,a; +b; 118,16, s%1@ns; sBmsj, +°** 3@t j sbms;, o0 C. Let S
denote the set consisting of the 2/ + 1 bridges. f S & §', then clearly S must be one of the

following four sets:

S — <aj]b)u+}l}7 S — { m+] } S — {a bm+1} S — {b am+} }-

m) .
) ) such S's, and hence
1

SCB, & S v ( ) ( ( ) ( ) ( )
CB, b€ S, |S|=22 is even 1 2
2

42" — 1) = 2"t —

Thus there are exactly 4(

k43
T — 4.

Therefore

f<H3>=2k+2‘—?+(k-1)(2£%‘+’“;81~%>—3. 0



54 Bk £ 250 8 P 9

Theorem 4.8 For each integer 2> 1, N(k) = 2* + B(k — 1) + 1.
Proof This follows directly from Proposition 4. 5 and the definition of N (&).
Theorem 4.9 For each integer 2 > 1,

Nw =z 427 + e—net + 1 - 1)

if kis odd and N(®) > 2* + k(2% + % — L) + 1if kis even,

Proof This follows directly from Propositions 4. 6 and 4. 7. O

It is easy to verify that 2**' — 1 =2* 4+ £(k — 1) + 1 fork = 1,2,3. Furthermore we have
proved that N(k) = 2¢ 4 k(£ — 1) + 1 for £ = 4 (This proof is not difficult ana therefore is
left for the reader). Thus the equality in Theorem 4. 8 holds for £ = 1,2,5.4.

It is also easy to verify that the lower bound in Theorem 4. 9 is beiter than that in

Theorem 4. 8 for each integer & = 5.
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