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On Uniquely 7-bipancyclic Graphs

Shy Yongbing Sun Jwshu

Abstract Let 7 == 4 be an even integer. A bipartite graph G if order 2z is said to be u-
niquely r-bipancyclic if G contains exactly one cycle of every even length ¢ , r <t < 2n,
and G contains no cycle of length less than 7. If ¢ is a uniquely r-bipancyclic graph, then
G is called an 7graph. In this paper, we prove that there 2xist exactly si» outerplanar r-
UB-graphs and exactly twelve »-UB-grapas of order 2n and size 22 + m for m <C 3.

Key words cycle ;. biraitite graph ; uniquely 7-bipancyclic graph
1 Introduction and Notation

In 1973, Entringer R C raised the problen of determining which graph G is uniquely pan-
cyclict, that is, which G contains exactly one cycle of each length ¢ , 3<¢t<C |V (G)]. In 1983,
Yap H P and Teo S K generalized the notion of a uniquely pancyclic graph and defined a notion of
a uniquely rpancyclic graphm. A graph G of order » is said to be uniquely rpancyclic if G contains
exactly one cycle of length ¢ , for each 7 <{¢ < v, and G contains no cycle of length less than » .
In [3] and [4], several important results of uniquely rpancyclic graphs have been obtained. The
main objective of this paper is to study analogous questions relating to bipartite graphs.

Let 7 = 4 be an even integer. A bipartite graph G of order 2r is said to be uniquely r-bipan-
cyclic if G contains exactly one cycle of every even length ¢, » < ¢ < 2n, and G contains no cycle

of length less than r. If G is a uniquely r-bipancyclic graph, then @ is called an f—UB—graph. We
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usually abbreviate ‘4-UBsgraph’ to ‘UB-graph’.

The main results of this paper are stated in the abstract above.

We shall require the following definitions and notation.

Suppose that G is a graph drawn on a plane P. If C is a cycle of @, then C divides P into two
regions. The bounded (unbounded) region is called the interior (exterior) of C and is denoted by
int C (ext C ).

Let G be an 7-UB-graph and let € be the Hamilton cycle of G. Then G is obtained from C by
adding some edges joining some pairs of vertices of C. We assume that the edges of G other than
those edges of C are drawn in the interior of C', and we call these edges the bridges of G. Two
bridges b and b’ are said to be skew if they have no common end-vertex and they cross each other.

Let G be an 7-UB-graph and let b be a bridge of @. Then G has precisely two cycles containing
b and containing no other bridges. Of these two cycles, the one that is ¢f smallcr length is called
the side cycle of b and is denoted by C'(b) . If the length of C(b) is k, ther b is called a k-bridge
and k is called the order of b. If there are nc bridges in in: £(b) and there is no other bridge b’
such that b and 2’ arz skew, then d {5 called a strict bridge and C (b) is called a strict side cycle. If
C' is not a side crcie, then €/ is called an inner cycle. IfC’ is a cycle containing only one bridge b,

then the other cycle containing only b is denoted by C’. A cycle of length k is called a k-cycle.

2  Outerplanar -UB-graphs

In this section, the bridge having order 2' + 2 is denoted by b;. We shall determine all outer-
planar 7-UB-graphs. We first prove the following :

Lemma 2.1 If G is an outerplanar 7-UB-graph and G is not a cycle, thenr = 4.

Proof Let C’ be the (2n — 2)-cycle of ¢. Since G is outerplanar, C’ contains only one
bridge. Thus €’ is a 4-cycle. Hence 7 = 4. 0

From this lemma, it follows that the only outerplanar 7-UB-graphs, which are not cycles,
are the UB-graphs. The following lemma enables us to find all outerplanar UB-graphs (See The-
orem 2.3 ).

Lemma 2.2 If G is an outerplanar UB-graph having m = 3 bridges, then G contains exactly
one (2' 4+ 2)-strict bridge b; for each 1 <{i < m.

Proof We prove this lemma by induction on i. Since G has exactly one (2rn — 2)-cycle and

one (2n — 4)-cycle and G is outerplanar , G has exactly one (2' + 2)strict bridge b, and one (22 +
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2)-strict bridge b,.

Assume that G has exactly one (2' 4 2)-strict bridge ; for each i< k<{m . Since any positive
even integer s <_ 2 — 2 has a unique expression

2 4 22 4 eee 4 21, 18 <dgp <o <y, <k —1,

G has a unique (2rn — s)-cycle containing exclusively the strict bridges b, 1bi,5"+4b; . Hence G does
not contain any other strict bridge whose order is smaller than 2* + 2.

Let €' be the (2n-2")<cycle of G. Then C' contains one bridge b & B; = {by,by,*+*,bs_1}. If
C' contains another bridge b’ 5 b, then replacing the bridge &’ by the path C(b') [} C, we obtain
a cycle C”of length 2n — (2* — p) forp = |[V(C (') (N C)| — 2 2= 2. Thus G has two cycles of
length 2n — (28 — p), which is false. Hence C' contains only one bridge b, and bis a (2* + 2)-
bridge b;.

We shall now prove by contradiction that b, is strict.

2)-cycle and G contains no bridge » & b such that the crder of & is smaller than 2* + 2, the only
bridges in ext C’ cre the bridges b,/ <Lk — 1.

Clearly by, is contained in int C’. Otherwise, since 28 + 2 — 2t~! = 2*~1 4 2, it follows that
G has an inner cycle of length 2*~! 4- 2 containing exclusively the bridges b, and b;—;, which con-
tradicts the fact that the side cycle C (b,—;) is also of length 2*~! 4- 2. We can thus assume that
there is a smallest index j <C & — 2 such that b;,*,b;,,, are contained in ext ¢’ and b4, is con-
tained in int C', whetre j + ¢ <Ck — 1. In the following we assume that 7 = 1. However, when
j =1, the proof is similar.

Next , since any even integer s satisfying 2* <{s<{ 2* + 2/ — 2 can be written uniquely in the
form v

20 4 22 4 e 420 4 2F, 1oy <dp<loo <, K j— 1,
@ has a (2n — s)-cycle containing exclusively the bridges b, ,b,-z »*=*»b, and b;. Hence G has no
bridge b’ & B, = B; |J {b.} whose order is smaller than 2* 4+ 2/ 4 2.

Let C” be the (2n—2*—2!)-cycle of G. Clearly C” contains at least one bridge b* & B,. A
similar discussion‘to that of the (2r — 2*)—cycle C' yields that b* is a (2 + 2/ 4+ 2)-bridge. (See
Fig. 1. ) There are two cases, depending on whether b; is contained in int C” or not.

Case 1  b;is contained in int C”. In this case, b, is contained in int C”. It follows that @ has
two (2rn — 28 — 27+7) _cycles, one of which is the cycle containing exclusevely the two bridges b,

and b;4,, the other is the cycle containing exclusively the bridges b;,b;41,***50;4,—1and b , which
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is false.

Case 2 b;is contained in ext C”. In this case, ¢
has two (2 + 2)-cycles, one of which is the side cycle
containing exclusively the bridge b, and the other is the

cycle containing exclusively the two bridges b; and b*,

which is false.

Thus b, is a strict bridge, and hence the proof of

the lemma is completed.
Figure 2 shows six outerplanar UB-graphs.
Theorem 2.3 Let G be an outerplanar »UB-graph Figure 1

and @ is not a cycle, then G € {II4,HY, HP , HP , H®P}.

Cy Hy

Hu“)

H 1@ . ‘ Hu®

Hu@® ’

Figure 2

Proof By Lemma 2.1, » = 4. Let G have m bridges.

Ifm = 3, then by Lemma 2. 2, these m bridges are (2' + 2)-strict bridges b;, 1 <{: < m.
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Thus G has m strict side cycles € (5,) ,C(by) ,+++,C(b,). Let P, =C ;) [N Cfor:=1,2,+,m and
let C! be any inner cycle of @. Then €’ contains either b;or P;for ¢ == 1,2,+++,m. It follows that G
has 2 inner cycles, and hence G has 2™ 4+ m cycles. Since the inner cycle of minimum length is the
cycle containing all the m bridges, the length of this cycle is

2020 +m) +2— 22 =2m +42>10.
Hence G does not contain an 8-cycle and G is not an outerplanar UB-graph.

Ifm =1,thenG = Hy Ifm = 2, thenG € {HY, HP,HP , H{P}. g
3 r-UB-graphs with m < 3 bridges

Let by ,by' ,++*,b,' be the bridges of G and let v, ,
Va,y0* 30, (a4 is an integer, oy < ap <+ < g ) be the
vertices of attachment of these bridges and thase ver-
tices appear in the clockwise crder Vi 2Uays "t 50, O C,

whereb;’ =i, ©;5if; € {7)n1>7«’n2,""9vn‘}’ 1=1,2,,

m. Then the graph which satisfies the above conditions

is represented by G(Z,¥1sZ2¥2s°"*»T u¥n). It is stressed

that the bridges between parentheses appear in the or-

Vs

der by ,by ,-+-,b,’. We frequently regard the G(z,y,,
syt L a¥m) as a diagram of G which manifests the Figure 3

relation of relative positions holding between some of the bridges in ¢. For example, a diagram
G (vyv4,V5010,0701 ,0509) of a given graph @ is shown in Figure 3. It shows that G contains four
bridges b,/ = v,v,, by = v5vyg, by’ = vyvy, by = v5vg, where by’ and b,’ are skew, b3’ and b, are
also skew, but b, does not skew to the other.

Let C[v;,v;] denote the (v;,v;)-path which follows the clock wise orientation of C. Similarly ,
the symbol C (»;,v;) denotes the path C{v;,v,] — {v;,7;}. And the symbol C[v;,v; |is used to de-
note the reverse path of C[vi,v,-].

An rUB-graph G is said to be a skew graph if G is not an outerplanar graph. An7r-UB-graph
G is said to be an m-skew .graph if G is a skew graph with m bridges.

Lemma 3.1 IfGis a UB-graph and b is a 4-bridge in G, then b does not skew to the other
bridges in G.

Proof Letbd,’ = vw;and by U C[vs,v,] be a 4-cycle. Suppose that there is a bridge by
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which skews to b’ (See G (v,v3,v,04.) , where by’ == v,v, ). Cleatly, there is exactly one vertex

on C(vg,vy) U C(v4,v;). We may assume that C(»,,v;) contains exactly one vertex. Then ¢

contains two cycles by’ U C[vy,v,] U by U vwsand by U C[#4,2,] which have the same length,

a contradiction. |
Lemma 3.2 None of the 2-skew graphs is an »-UB-graph.

Proof Let G be any 2-skew graph. Clearly G has exactly 7 cycles denoted by C,,C3,+*+,C;.
7
It is easy to verify that = [EC)| =4|E(@)|.

Suppose that ¢ is an 7-UB-graph. Then
V@ =2n=r+ T -1 X2=r4+12, |[E@)|=2n+2=17r+ 14,

7
.and EIE(C,-H =r+ @+ 2)+ -+ (+12) =7r 4+ 42,
Thus 4(r 4+ 14) = 7r + 42, and hence 3» = 14, which is false. 0
The proof of the following lemma is not difficult ancd therzfore is left to the rcader.
Lemma 3.3 Let |E(G)| = Zail;anda; =2a, =+ 22a, >0 I t e, +li i a permutation
i=1 "
of {yly*++ly with 0 <1, K4+ Uy, tnen |E(G)| = Zad.

i=

Lemma 3.4 (G is a 3-skew UB-graph, then G contains one 4-bridge.

Proof We shall prove this lemma by contradiction. Suppose that ¢ contains no 4-bridge.
Then G must contain one 4-inner cycle, say C4. We shall now consider the number of the bridges
contained in C,. There are two possible cases only. : 0

Case 1 C, contains exactly two bridges, say b, and b,’ . In this case, C is not a skew cy-
cle, otherwise G has two Hamilton cycles, a contradiction.

Now both &;' and b, must skew to the third bridge b3’ . Otherwise we may assume that b’
skews to by’ and b, does not skew to by . Let b,/ = v,v,. We may also assume that there are no
bridges in int C[v,,v,] U b, . Further, let G* = G — C(v,,v,). Then b, is a 4-bridge of G* .
By the proof of Lemma 3. 1, it is easily seen that G* contains two cycles which have the same
length, a contradiction.

We shall now consider two subcases, depending on whether by and b,’ are adjacent or not.

Case 1.1 by and b, are adjacent (See G (v,24,v,04,0305)). In this case, G contains two cy-
cles by’ U C[vs,v3]and C[vs,v,] U vo4w, U C[v,,v5] U v3v5 which have the same length, a con-
tradiction.

Case 1.2 b, and b,’ are not adjacent (See G (v,v5,v,0,,v305)). In this case, G contains two

cycles C[vg,v, ] U 2vs U Clvs,v5 ] U vavgand C[vg,2,] U ve0, U Clv3,2,] U v3ws which have the
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same length, again a contradiction.
Case 2 C,contains exactly three bridges. Since G is a skew graph, there are two bridges in
G which are skew (See G (9,03,0,04,2,0,)). Let G* =G — C(vy,v,) andv* = |V(G*)|. Then

G * contains two v " cycles, once more a contradiction.

Hax®

Hax®

Figurc 4

The graphs H§Y, H®, HP, H$P, H Y and H P are depicted in Figure 4.

Lemma 3.5 A 3-skew graph G is an »UB-graph if and only if ¢ € {H{ ,H P , 0P ,H P,
HP P},

Proof The sufficiency is easily seen by immediately checking I § (i=1,2,++-,6). We shall
prove the necessity. Let b)/, b,’ and b3’ be the bridges of ¢ and let b,' skew to b,'.

Consider the relation of the relative positions holding between b3’ and the other two bridges.
We have three cases.

Case 1 b4 does not skew to the other two bridges (See G (v,03,v0504,0505) ). We allow vg =

v, or v, = vs. In this case G contains exactly 12 cycles. Let C; = by’ U Clvs,v5], €, = b/ U
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C[vul’z]s C3 =0, U C[vz ,1)4], Ci=b, U Cloy,v, U by U 0[7)3,1’4] and let C5,Cg,++,C 1, be

the other cycles. In the coming discussion, |£(C;) | is denoted by {,. It is easy to verify that

12
’ux+2(l2+la+l4)+_§51i=8|E(G)|- ¢D)]
Since G is a 7-UB-graph, ¢ contains exactly one kcycle for each even &, 7 <k < r + 22. By
Lemma 3. 3,
11
4T+2(7'+2+7”+4+7'+6)+i§4(7'+21) _ o472

8 1

9r + 72
4

IBE@)| =

Clearly |E(G)| = r + 25. Therefore r -+ 25 > ,ie , 5r < 28.
Since 7 == 4is even, 7 = 4. Thus 2n = 26.

By Lemmas 3. 1 and 3. 4, by’ is a 4-bridge and by’ | C[v5,v5]is a 4-cycle. From (1), we

have
12
3+ U+l + 1) + Tl = 8(%a -+ 3).
11
Hence Lyl 4 L= 8 X 25 — 3¢ 4 — (44 &) = 40.

Let ;= C[»;,0,, ], for1=1,2,3,4,5, and let @5 = Cv5,2,], ¢; = |BE(Q,) | fori=1,2,
3,4,5,6.

It is easily seen that

W=L+bL+l=2(q—1+¢—1+¢—D+4,ie, q+q¢+q=21
Thus (g — D+ (@ —1)=26—(@+q¢+eg+r—4)=5,ic,q+qg="7"

Since each cycle other than Cy,C,,C;,C, contains the paths ¢, and Qs, the 6-cycle of G must
be one of the three cycles C,,C;and C,.

Suppose that C,is the 6-cycle of G, then ¢, -+ ¢; = 6. In this case, G has two 24-cycles by’ U
C[ws,vs]and b, U C[w,,v3] U by U Clv4,v1], a contradiction. Therefore the 6-cycle of G must
be C, dr C3; . We may assume that C,is the 6-cycle of @. Then ¢; + ¢, = 7. Since C,is even cycle
and ¢; = 21 — 7 = 14, ¢, is even. Alsoq, == 2, g, == 2. It follows that ¢; = 2 or q; = 4.

Suppose that ¢, = 4. Then ¢, = 3. In this case @ has two 12-cycles by’ U C[»,,7, and by’ U
Clvy,03] U by U C[wy,01] , a contradiction. Therefore ¢; = 2. Consequently G € (/I ,HP,
HP HP HP ,HP ).

Case 2 by’ skews to exactly one of the two bridges b’ and b,/. We may assume that by’
skews to b,’ . Then G = G (v,123,0,0,0305) of G = G (vy03,0,05,040¢).

Case 2.1 G = G(v,v3,0,0,,0305). Clearly G has exactly 13 cycles. Let C; = by’ |J C[v,,

13
v,]and let C;,C5,+++,C13 be the other cycles. It is easy to verify that E?Zl,- =6|E(@)].
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Since G is an -UB-graph, 2rn = r + (13-1) X 2 = 24 4+ r. Using Lemma 3. 3, we get
624 +7+3) > T +20) = 120 + 132,

ie, < 5. Thusr = 4. By Lemmas 3. 4 and 3. 1, G has a strict 4-bridge, which is false.

Case 2.2 G = G (v,v3,0,05,0405). Clearly G has exactly 14 cycles. Let C; = by’ |J C[»,,
v3], C; = by U C[v4,v6]and let C3,C,+++,Cy4 be the other cycles. It is easy to verify that

[+ L +,-§f" —8|E(®)].
Since G is an 7-UB-graph, 2z = r + 26. Using Lemma 3. 3, we have
826 4+r+3)=2r+20+2) + ;E:(r + 21) = 16r 4 184,

ie ,r< 6. Thusr =4orr =6.

A discussion similar to that of the case 2. 1 yields that » 3= 4. Therefore r = 6, and 2n = 26
+ 6= 32. From (2), we have 8(2n +3) =0, +l,+ £ 2i. i » 35 X 8=/, 4, + 266, Hence
L4+, =14

Clearly {{;,{,} = {6,8}and b, U C[vs,v,] J by’ U Cles.v,}is a 22-cycle.

Let C’ be the 30-cycie of (!. Clearly C' coniziiis at least two bridges and € is a skew cycle. If
C' contains exactly two bridges, we may assume that C’ contains bridges b, and b, . Then the
other skew cycle containing exactly the two bridges b,’ and by is a 6-cycle. Thus & has two 6-cy-
cles, which is false. Therefore ¢’ contains exactly three bridges. Thus the othe? skew cycle con-
taining exactly the three bridges is an 8-cycle, and hence G has two 8-cycles, which is false.

Case 3 by skews to both by’ and b,' . In this case G = G (v,v4,v,05,v305). Cleary G has ex-
15
actly 15 cycles, say Cy,C,,>+,C5. It is easy to verify that, T{, = 8|E(G)].
i=1

Since G is an -UB-graph, 2n = 28 + rand 8(28 +r + 3) = l_g)o(r +2i),ie , 7r = 38,
which is false.

Theorem 3.6 Let G be an -UB-graph with m < 3 bridges. Then G € {0, 4, H{Y ,H P,
HPHP, W TP HP HEP TP TP

Proof This theorem follows immediately from Theorem 2. 3, Lemmas 3.2 and 3. 5.

0
We end this paper with the following conjecture.
Conjecture A graph G is an 7-UB-graph if and only if ¢ € {C,H 4, [ ,H3, TP, 1P,

D (2) (3) (¢} (5) 6
1%6 ’ 26 9 26 9}125 7 26 71156) .
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