On Uniquely r-bipancyclic Graphs

Shi Yongbing Sun Jiashu

Abstract Let $r \geqslant 4$ be an even integer. A bipartite graph G if order 2n is said to be uniquely r-bipancyclic if G contains exactly one cycle of every even length t, $r \leqslant t \leqslant 2n$, and G contains no cycle of length less than r. If G is a uniquely r-bipancyclic graph, then G is called an r-graph. In this paper, we prove that there exist exactly six outerplanar r-UB-graphs and exactly twelve r-UB-graphs of order 2n and size 2n + m for $m \leqslant 3$. Key words—cycle; bipartite graph; uniquely r-bipancyclic graph

1 Introduction and Notation

In 1973, Entringer R C raised the problem of determining which graph G is uniquely pancyclic^[1], that is, which G contains exactly one cycle of each length t, $3 \le t \le |V(G)|$. In 1983, Yap H P and Teo S K generalized the notion of a uniquely pancyclic graph and defined a notion of a uniquely r-pancyclic graph ^[2]. A graph G of order v is said to be uniquely r-pancyclic if G contains exactly one cycle of length t, for each $t \le v$, and G contains no cycle of length less than t. In [3] and [4], several important results of uniquely t-pancyclic graphs have been obtained. The main objective of this paper is to study analogous questions relating to bipartite graphs.

Let $r \geqslant 4$ be an even integer. A bipartite graph G of order 2n is said to be uniquely r-bipancyclic if G contains exactly one cycle of every even length t, $r \leqslant t \leqslant 2n$, and G contains no cycle of length less than r. If G is a uniquely r-bipancyclic graph, then G is called an r-UB-graph. We

Received: 1997-06-28

First author Shi Yongbing, male, professor, Department of Mathematics, Shanghai Teachers University, Shanghai, 200234

usually abbreviate '4-UB-graph' to 'UB-graph'.

The main results of this paper are stated in the abstract above.

We shall require the following definitions and notation.

Suppose that G is a graph drawn on a plane P. If C is a cycle of G, then C divides P into two regions. The bounded (unbounded) region is called the interior (exterior) of C and is denoted by int C (ext C).

Let G be an r-UB-graph and let C be the Hamilton cycle of G. Then G is obtained from C by adding some edges joining some pairs of vertices of C. We assume that the edges of G other than those edges of G are drawn in the interior of G, and we call these edges the bridges of G. Two bridges G and G are said to be skew if they have no common end-vertex and they cross each other.

Let G be an r-UB-graph and let b be a bridge of G. Then G has precisely two cycles containing b and containing no other bridges. Of these two cycles, the one that is of smaller length is called the side cycle of b and is denoted by C(b). If the length of C(b) is k, then b is called a k-bridge and k is called the order of b. If there are no bridges in int C(b) and there is no other bridge b' such that b and b' are skew, then b is called a strict bridge and C(b) is called a strict side cycle. If C' is not a side cycle, then C' is called an inner cycle. If C' is a cycle containing only one bridge b, then the other cycle containing only b is denoted by $\overline{C'}$. A cycle of length k is called a k-cycle.

2 Outerplanar r-UB-graphs

In this section, the bridge having order $2^i + 2$ is denoted by b_i . We shall determine all outer-planar r-UB-graphs. We first prove the following:

Lemma 2.1 If G is an outerplanar r-UB-graph and G is not a cycle, then r=4.

Proof Let C' be the (2n-2)-cycle of G. Since G is outerplanar, C' contains only one bridge. Thus \overline{C}' is a 4-cycle. Hence r=4.

From this lemma, it follows that the only outerplanar r-UB-graphs, which are not cycles, are the UB-graphs. The following lemma enables us to find all outerplanar UB-graphs (See Theorem 2.3).

Lemma 2.2 If G is an outerplanar UB-graph having $m \ge 3$ bridges, then G contains exactly one $(2^i + 2)$ -strict bridge b_i for each $1 \le i \le m$.

Proof We prove this lemma by induction on i. Since G has exactly one (2n-2)-cycle and one (2n-4)-cycle and G is outerplanar, G has exactly one (2^1+2) -strict bridge b_1 and one (2^2+1) -cycle and G is outerplanar, G has exactly one (2^1+1) -strict bridge b_1 and one (2^2+1) -cycle and G is outerplanar, G has exactly one (2^1+1) -strict bridge b_1 and one (2^2+1) -cycle and G is outerplanar.

2)-strict bridge b_2 .

Assume that G has exactly one (2^i+2) -strict bridge b_i for each $i < k \le m$. Since any positive even integer $s \le 2^k-2$ has a unique expression

$$2^{i_1} + 2^{i_2} + \cdots + 2^{i_t}, \qquad 1 \leq i_1 < i_2 < \cdots < i_t \leq k-1,$$

G has a unique (2n-s)-cycle containing exclusively the strict bridges $b_{i_1}, b_{i_2}, \dots, b_{i_t}$. Hence G does not contain any other strict bridge whose order is smaller than $2^k + 2$.

Let C' be the $(2n-2^k)$ -cycle of G. Then C' contains one bridge $b \notin B_1 = \{b_1, b_2, \cdots, b_{k-1}\}$. If C' contains another bridge $b' \neq b$, then replacing the bridge b' by the path $C(b') \cap C$, we obtain a cycle C'' of length $2n - (2^k - p)$ for $p = |V(C(b') \cap C)| - 2 \geqslant 2$. Thus G has two cycles of length $2n - (2^k - p)$, which is false. Hence C' contains only one bridge b, and b is a $(2^k + 2)$ -bridge b_k .

We shall now prove by contradiction that b_k is strict.

Suppose that b_k is not strict. Then there is at least one bridge in ext C'. Since \overline{C}' is a $(2^k + 2)$ -cycle and G contains no bridge $b' \in B_1$ such that the order of b' is smaller than $2^k + 2$, the only bridges in ext C' are the bridges b_j , $j \leq k - 1$.

Clearly b_{k-1} is contained in int C'. Otherwise, since $2^k+2-2^{k-1}=2^{k-1}+2$, it follows that G has an inner cycle of length $2^{k-1}+2$ containing exclusively the bridges b_k and b_{k-1} , which contradicts the fact that the side cycle $C(b_{k-1})$ is also of length $2^{k-1}+2$. We can thus assume that there is a smallest index $j\leqslant k-2$ such that b_j,\cdots,b_{j+q-1} are contained in ext C' and b_{j+q} is contained in int C', where $j+q\leqslant k-1$. In the following we assume that $j\neq 1$. However, when j=1, the proof is similar.

Next, since any even integer s satisfying $2^k < s \leqslant 2^k + 2^j - 2$ can be written uniquely in the form

$$2^{i_1} + 2^{i_2} + \dots + 2^{i_t} + 2^k$$
, $1 \le i_1 < i_2 < \dots < i_t \le j-1$,

G has a (2n-s)-cycle containing exclusively the bridges $b_{i_1}, b_{i_2}, \dots, b_{i_t}$ and b_k . Hence G has no bridge $b' \notin B_2 = B_1 \cup \{b_k\}$ whose order is smaller than $2^k + 2^j + 2$.

Let C'' be the $(2n-2^k-2^j)$ -cycle of G. Clearly C'' contains at least one bridge $b^* \notin B_2$. A similar discussion to that of the $(2n-2^k)$ -cycle C' yields that b^* is a (2^k+2^j+2) -bridge. (See Fig. 1.) There are two cases, depending on whether b_i is contained in int C'' or not.

Case 1 b_j is contained in int C''. In this case, b_k is contained in int C''. It follows that G has two $(2n-2^k-2^{j+q})$ -cycles, one of which is the cycle containing exclusevely the two bridges b_k and b_{j+q} , the other is the cycle containing exclusively the bridges $b_j, b_{j+1}, \cdots, b_{j+q-1}$ and b^* , which

is false.

Case 2 b_j is contained in ext C''. In this case, G has two $(2^k + 2)$ -cycles, one of which is the side cycle containing exclusively the bridge b_k , and the other is the cycle containing exclusively the two bridges b_j and b^* , which is false.

Thus b_k is a strict bridge, and hence the proof of the lemma is completed.

Figure 2 shows six outerplanar UB-graphs.

Theorem 2.3 Let G be an outerplanar r-UB-graph and G is not a cycle, then $G \in \{H_8, H_{14}^{(1)}, H_{14}^{(2)}, H_{14}^{(3)}, H_{14}^{(4)}\}$.

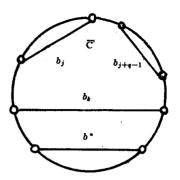


Figure 1

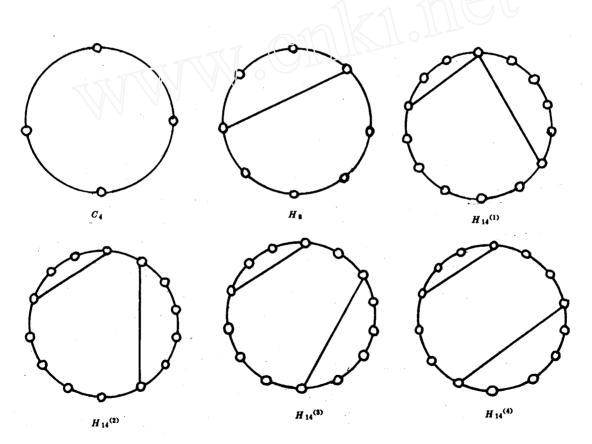


Figure 2

Proof By Lemma 2.1, r = 4. Let G have m bridges.

If $m \geqslant 3$, then by Lemma 2.2, these m bridges are $(2^i + 2)$ -strict bridges b_i , $1 \leqslant i \leqslant m$.

Thus G has m strict side cycles $C(b_1)$, $C(b_2)$, ..., $C(b_m)$. Let $P_i = C(b_i) \cap C$ for i = 1, 2, ..., m and let C' be any inner cycle of G. Then C' contains either b_i or P_i for i = 1, 2, ..., m. It follows that G has 2 inner cycles, and hence G has $2^m + m$ cycles. Since the inner cycle of minimum length is the cycle containing all the m bridges, the length of this cycle is

$$2(2^m + m) + 2 - \sum_{i=1}^m 2^i = 2m + 4 \geqslant 10.$$

Hence G does not contain an 8-cycle and G is not an outerplanar UB-graph.

If
$$m = 1$$
, then $G = H_8$. If $m = 2$, then $G \in \{H_{14}^{(1)}, H_{14}^{(2)}, H_{14}^{(3)}, H_{14}^{(4)}\}$.

3 r-UB-graphs with $m \leqslant 3$ bridges

Let b_1', b_2', \cdots, b_m' be the bridges of G and let v_{a_1} , v_{a_2}, \cdots, v_{a_l} (α_i is an integer, $\alpha_1 < \alpha_2 < \cdots < \alpha_l$) be the vertices of attachment of these bridges and these vertices appear in the clockwise order $v_{a_1}, v_{a_2}, \cdots, v_{a_l}$ on G, where $b_i' = x_i y_i, x_i, y_i \in \{v_{a_1}, v_{a_2}, \cdots, v_{a_l}\}, i = 1, 2, \cdots, m$. Then the graph which satisfies the above conditions is represented by $G(x_1 y_1, x_2 y_2, \cdots, x_m y_m)$. It is stressed that the bridges between parentheses appear in the order b_1', b_2', \cdots, b_m' . We frequently regard the $G(x_1 y_1, x_2 y_2, \cdots, x_m y_m)$ as a diagram of G which manifests the

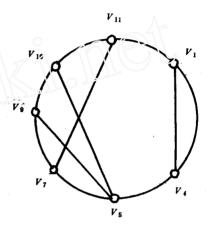


Figure 3

relation of relative positions holding between some of the bridges in G. For example, a diagram $G(v_1v_4,v_5v_{10},v_7v_{11},v_5v_9)$ of a given graph G is shown in Figure 3. It shows that G contains four bridges $b_1'=v_1v_4$, $b_2'=v_5v_{10}$, $b_3'=v_7v_{11}$, $b_4'=v_5v_9$, where b_3' and b_2' are skew, b_3' and b_4' are also skew, but b_1' does not skew to the other.

Let $C[v_i, v_j]$ denote the (v_i, v_j) -path which follows the clockwise orientation of C. Similarly, the symbol $C(v_i, v_j)$ denotes the path $C[v_i, v_j] - \{v_i, v_j\}$. And the symbol $\overline{C[v_i, v_j]}$ is used to denote the reverse path of $C[v_i, v_j]$.

An r-UB-graph G is said to be a skew graph if G is not an outerplanar graph. An r-UB-graph G is said to be an m-skew graph if G is a skew graph with m bridges.

Lemma 3.1 If G is a UB-graph and b is a 4-bridge in G, then b does not skew to the other bridges in G.

Proof Let $b_1' = v_1v_3$ and $b_1' \cup C[v_3, v_4]$ be a 4-cycle. Suppose that there is a bridge b_2'

which skews to b_1' (See $G(v_1v_3,v_2v_4)$), where $b_2'=v_2v_4$). Clearly, there is exactly one vertex on $C(v_3,v_4) \cup C(v_4,v_1)$. We may assume that $C(v_4,v_1)$ contains exactly one vertex. Then G contains two cycles $b_1' \cup C[v_1,v_2] \cup b_2' \cup v_4v_3$ and $b_2' \cup C[v_4,v_2]$ which have the same length, a contradiction.

Lemma 3.2 None of the 2-skew graphs is an r-UB-graph.

Proof Let G be any 2-skew graph. Clearly G has exactly 7 cycles denoted by C_1, C_2, \dots, C_7 .

It is easy to verify that

$$\sum_{i=1}^{7} |E(C_i)| = 4|E(G)|.$$

Suppose that G is an r-UB-graph. Then

$$|V(G)| = 2n = r + (7-1) \times 2 = r + 12, |E(G)| = 2n + 2 = r + 14,$$

$$\sum_{i=1}^{7} |E(C_i)| = r + (r+2) + \dots + (r+12) = 7r + 42.$$

Thus 4(r+14) = 7r + 42, and hence 3r = 14, which is false.

The proof of the following lemma is not difficult and therefore is left to the reader.

Lemma 3.3 Let $|E(G)| = \sum_{i=1}^{m} a_i l_i$ and $a_1 \ge a_2 \ge \cdots \ge a_m > 0$ If $l_{k_1} l_{k_2} \cdots l_{k_m}$ is a permutation of $l_1 l_2 \cdots l_m$ with $0 < l_{k_1} \le l_{k_2} \cdots \le l_{l_m}$, then $|E(G)| = \sum_{i=1}^{m} a_i l_i$.

Lemma 3.4 If G is a 3-skew UB-graph, then G contains one 4-bridge.

Proof We shall prove this lemma by contradiction. Suppose that G contains no 4-bridge. Then G must contain one 4-inner cycle, say C_4 . We shall now consider the number of the bridges contained in C_4 . There are two possible cases only.

Case 1 C_4 contains exactly two bridges, say b_1' and b_2' . In this case, C is not a skew cycle, otherwise G has two Hamilton cycles, a contradiction.

Now both b_1' and b_2' must skew to the third bridge b_3' . Otherwise we may assume that b_1' skews to b_3' and b_2' does not skew to b_3' . Let $b_2' = v_2v_4$. We may also assume that there are no bridges in int $C[v_2, v_4] \cup b_2'$. Further, let $G^* = G - C(v_2, v_4)$. Then b_1' is a 4-bridge of G^* . By the proof of Lemma 3.1, it is easily seen that G^* contains two cycles which have the same length, a contradiction.

We shall now consider two subcases, depending on whether b_1' and b_2' are adjacent or not.

Case 1.1 b_1' and b_2' are adjacent (See $G(v_1v_4,v_2v_4,v_3v_5)$). In this case, G contains two cycles $b_3' \cup C[v_5,v_3]$ and $C[v_5,v_1] \cup v_1v_4v_2 \cup C[v_2,v_3] \cup v_3v_5$ which have the same length, a contradiction.

Case 1. 2 b_1' and b_2' are not adjacent (See $G(v_1v_5, v_2v_4, v_3v_6)$). In this case, G contains two cycles $C[v_6, v_1] \cup v_1v_5 \cup \overline{C[v_3, v_5]} \cup v_3v_6$ and $C[v_6, v_2] \cup v_2v_4 \cup \overline{C[v_3, v_4]} \cup v_3v_6$ which have the

same length, again a contradiction.

Case 2 C_4 contains exactly three bridges. Since G is a skew graph, there are two bridges in G which are skew (See $G(v_1v_3,v_2v_4,v_1v_2)$). Let $G^*=G-C(v_1,v_2)$ and $v^*=|V(G^*)|$. Then G^* contains two v^* -cycles, once more a contradiction.

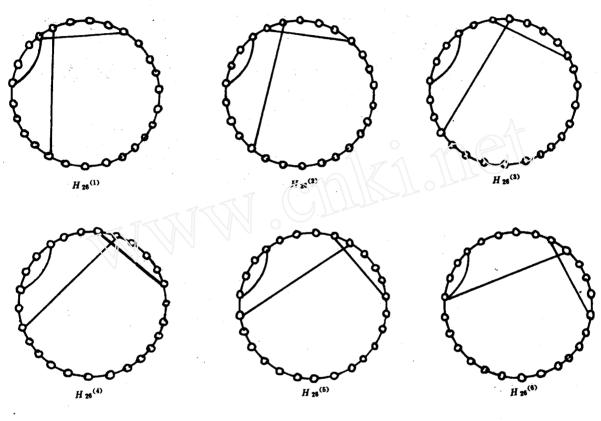


Figure 4

The graphs $H_{26}^{(1)}$, $H_{26}^{(2)}$, $H_{26}^{(3)}$, $H_{26}^{(4)}$, $H_{26}^{(5)}$ and $H_{26}^{(6)}$ are depicted in Figure 4.

Lemma 3.5 A 3-skew graph G is an r-UB-graph if and only if $G \in \{H_{26}^{(1)}, H_{26}^{(2)}, H_{26}^{(3)}, H_{26}^{(4)}, H_{26}^{(5)}, H_{26}^{(6)}\}$.

Proof The sufficiency is easily seen by immediately checking $H_{26}^{(i)}$ ($i=1,2,\cdots,6$). We shall prove the necessity. Let b_1' , b_2' and b_3' be the bridges of G and let b_1' skew to b_2' .

Consider the relation of the relative positions holding between $b_3{}'$ and the other two bridges. We have three cases.

Case 1 b_3 ' does not skew to the other two bridges (See $G(v_1v_3, v_2v_4, v_5v_6)$). We allow $v_6 = v_1$ or $v_4 = v_5$. In this case G contains exactly 12 cycles. Let $C_1 = b_3$ ' $\bigcup C[v_5, v_6]$, $C_2 = b_1$ ' \bigcup

 $C[v_1, v_3], C_3 = b_2' \cup C[v_2, v_4], C_4 = b_2' \cup \overline{C[v_1, v_2]} \cup b_1' \cup C[v_3, v_4]$ and let C_5, C_6, \dots, C_{12} be the other cycles. In the coming discussion, $|E(C_i)|$ is denoted by l_i . It is easy to verify that

$$4l_1 + 2(l_2 + l_3 + l_4) + \sum_{i=5}^{12} l_i = 8|E(G)|.$$
 (1)

Since G is a r-UB-graph, G contains exactly one k-cycle for each even k, $r \le k \le r + 22$. By Lemma 3.3,

$$|E(G)| \geqslant \frac{4r + 2(r + 2 + r + 4 + r + 6) + \sum\limits_{i=4}^{11} (r + 2i)}{8} = \frac{9r + 72}{4}.$$

Clearly |E(G)| = r + 25. Therefore $r + 25 \geqslant \frac{9r + 72}{4}$, i.e., $5r \leqslant 28$.

Since $r \ge 4$ is even, r = 4. Thus 2n = 26.

By Lemmas 3. 1 and 3. 4, b_3' is a 4-bridge and $b_3' \cup C[v_5, v_6]$ is a 4-cycle. From (1), we have

$$3l_1 + (l_2 + l_3 + l_4) + \sum_{i=1}^{12} l_i = 8(2n + 3).$$

Hence

$$l_2 + l_3 + l_4 = 8 \times 29 - 3 \times 4 - \sum_{i=0}^{11} (4 + 2i) = 40.$$

Let $Q_i = C[v_i, v_{i+1}]$, for i = 1, 2, 3, 4, 5, and let $Q_6 = C[v_6, v_1]$, $q_i = |E(Q_i)|$ for i = 1, 2, 3, 4, 5, 6.

It is easily seen that

$$40 = l_2 + l_3 + l_4 = 2(q_1 - 1 + q_2 - 1 + q_3 - 1) + 1$$
, i.e., $q_1 + q_2 + q_3 = 21$.

Thus
$$(q_4 - 1) + (q_6 - 1) = 26 - (q_1 + q_2 + q_3 + r - 4) = 5$$
, i.e., $q_4 + q_6 = 7$.

Since each cycle other than C_1 , C_2 , C_3 , C_4 contains the paths Q_4 and Q_6 , the 6-cycle of G must be one of the three cycles C_2 , C_3 and C_4 .

Suppose that C_4 is the 6-cycle of G, then $q_1+q_3=6$. In this case, G has two 24-cycles $b_3'\cup C[v_6,v_5]$ and $b_2'\cup C[v_2,v_3]\cup b_1'\cup \overline{C[v_4,v_1]}$, a contradiction. Therefore the 6-cycle of G must be C_2 or C_3 . We may assume that C_2 is the 6-cycle of G. Then $q_1+q_2=7$. Since C_4 is even cycle and $q_3=21-7=14$, q_1 is even. Also $q_1\geqslant 2$, $q_2\geqslant 2$. It follows that $q_1=2$ or $q_1=4$.

Suppose that $q_1=4$. Then $q_2=3$. In this case G has two 12-cycles $b_{2'}\cup C\big[v_4,v_2\big]$ and $b_{2'}\cup C\big[v_2,v_3\big]\cup b_{1'}\cup \overline{C\big[v_4,v_1\big]}$, a contradiction. Therefore $q_1=2$. Consequently $G\in\{H_{26}^{(1)},H_{26}^{(2)},H_{26}^{(2)},H_{26}^{(5)},H_{26}^{(6)}\}$.

Case 2 b_3' skews to exactly one of the two bridges b_1' and b_2' . We may assume that b_3' skews to b_2' . Then $G = G(v_1v_3, v_2v_4, v_3v_5)$ or $G = G(v_1v_3, v_2v_5, v_4v_6)$.

Case 2.1 $G = G(v_1v_3, v_2v_4, v_3v_5)$. Clearly G has exactly 13 cycles. Let $C_1 = b_2' \bigcup C[v_4, v_2]$ and let C_2, C_3, \dots, C_{13} be the other cycles. It is easy to verify that $\sum_{i=2}^{13} l_i = 6 |E(G)|$.

Since G is an r-UB-graph, $2n = r + (13-1) \times 2 = 24 + r$. Using Lemma 3. 3, we get $6(24 + r + 3) \geqslant \sum_{i=0}^{11} (r + 2i) = 12r + 132$,

i e , $r \leq 5$. Thus r = 4. By Lemmas 3. 4 and 3. 1, G has a strict 4-bridge, which is false.

Case 2. 2 $G = G(v_1v_3, v_2v_5, v_4v_6)$. Clearly G has exactly 14 cycles. Let $C_1 = b_1' \cup C[v_1, v_3]$, $C_2 = b_3' \cup C[v_4, v_6]$ and let C_3, C_4, \dots, C_{14} be the other cycles. It is easy to verify that $l_1 + l_2 + \sum_{i=1}^{14} l_i = 8 |E(G)|$.

Since G is an r-UB-graph, 2n = r + 26. Using Lemma 3.3, we have

$$8(26+r+3) \geqslant 2r+2(r+2)+\sum_{i=2}^{13}(r+2i)=16r+184,$$

ie, $r \leqslant 6$. Thus r = 4 or r = 6.

A discussion similar to that of the case 2. 1 yields that $r \neq 4$. Therefore r = 6, and 2n = 26 + 6 = 32. From (2), we have $8(2n + 3) = l_1 + l_2 + \sum_{i=3}^{16} 2i$. i.e., $35 \times 8 = l_1 + l_2 + 266$, Hence $l_1 + l_2 = 14$.

Clearly $\{l_1, l_2\} = \{6, 8\}$ and $b_1' \cup C[v_3, v_4] \cup b_3' \cup C[v_6, v_1]$ is a 22-cycle.

Let C' be the 30-cycle of G. Clearly C' contains at least two bridges and C' is a skew cycle. If C' contains exactly two bridges, we may assume that C' contains bridges b_1' and b_2' . Then the other skew cycle containing exactly the two bridges b_1' and b_2' is a 6-cycle. Thus G has two 6-cycles, which is false. Therefore C' contains exactly three bridges. Thus the other skew cycle containing exactly the three bridges is an 8-cycle, and hence G has two 8-cycles, which is false.

Case 3 b_3 ' skews to both b_1 ' and b_2 '. In this case $G = G(v_1v_4, v_2v_5, v_3v_6)$. Cleary G has exactly 15 cycles, say C_1, C_2, \dots, C_{15} . It is easy to verify that, $\sum_{i=1}^{15} l_i = 8 |E(G)|$.

Since G is an r-UB-graph, 2n = 28 + r and $8(28 + r + 3) = \sum_{i=0}^{14} (r + 2i)$, i.e., 7r = 38, which is false.

Theorem 3.6 Let G be an r-UB-graph with $m \le 3$ bridges. Then $G \in \{C_4, H_8, H_{14}^{(1)}, H_{14}^{(2)}, H_{14}^{(3)}, H_{14}^{(4)}, H_{26}^{(4)}, H_{26}^{(5)}, H_{26}^{(5)}, H_{26}^{(5)}\}$.

Proof This theorem follows immediately from Theorem 2.3, Lemmas 3.2 and 3.5.

We end this paper with the following conjecture.

Conjecture A graph G is an r-UB-graph if and only if $G \in \{C_4, H_8, H_{14}^{(1)}, H_{14}^{(2)}, H_{14}^{(3)}, H_{14}^{(4)}, H_{14}^{(4)}, H_{14}^{(4)}, H_{14}^{(5)}, H_{26}^{(6)}\}$.

References

- 1 Bondy JA, Murty USR. Graph Theory with Applications. Macmillan Press, 1976
- 2 Yap H P, Teo S K. On uniquely r-pancyclic graphs. Lecture Notes in Math, $1984(1073):334\sim335$
- 3 Shi Yongbing. Some theorems of uniquely pancyclic graphs. Discrete Math, $1986(59):167\sim180$
- 4 Shi Yongbing, Yap H P, Teo S K. On uniquely r-pancyclic graphs. Annals of the New York Academy of Sciences, $1989(576):487\sim499$

关于唯一 r-偶泛圈图

施永兵 (上海师范大学)

孙家恕 #南师范专科学校》

关键词 圈;偶图;唯一r-偶泛圈图中图法分类号 O157.5